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Abstract

Background: Antimicrobial peptides (AMPs) are essential components of the innate immune system and can
protect the host from various pathogenic bacteria. The marine environment is known to be one of the richest sources
for AMPs. Effective usage of AMPs and their derivatives can greatly improve the immunity and breeding survival rate
of aquatic products. It is highly desirable to develop computational tools for rapidly and accurately identifying AMPs
and their functional types, for the purpose of helping design new and more effective antimicrobial agents.

Results: In this study, we made an attempt to develop an advanced machine learning based computational
approach, MAMPs-Pred, for identification of AMPs and its function types. Initially, SVM-prot 188-D features were
extracted that were subsequently used as input to a two-layer multi-label classifier. In specific, the first layer is to
identify whether it is an AMP by applying RF classifier, and the second layer addresses the multi-type problem by
identifying the activites or function types of AMPs by applying PS-RF and LC-RF classifiers. To benchmark the
methods,the MAMPs-Pred method is also compared with existing best-performing methods in literature and has
shown an improved identification accuracy.

Conclusions: The results reported in this study indicate that the MAMP-Pred method achieves high performance for
identifying AMPs and its functional types.The proposed approach is believed to supplement the tools and techniques
that have been developed in the past for predicting AMPs and their function types.
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Background
Antimicrobial peptides (AMPs) are crucial components
of the innate immune system and can protect the host
from various pathogenic bacteria and viruses. They are
generally short peptides with 10–50 amino acids [1] and
have very low sequence homology to one another. AMPs
nowadays have attracted increased attention of research
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owing to their broad-spectrum antimicrobial activity and
more importantly to the fact that AMPs may overcome
the antimicrobial resistance, which makes it a potential
alternative therapeutic agent for humans or a substitute to
conventional antibiotics.

However, the mechanisms of action of AMPs, as well as
their structure-activity relationships, are not completely
understood [2]. Identification and optimization of AMPs
can provide a theoretical basis for discovery and design of
new and more effective antimicrobial agents. For instance,
a multidimensional signature model was proposed in [3]
that facilitates discovery of AMPs and offers insights into
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the evolution of molecular determinants. Experimental
and computational studies are generally devoted to deal-
ing with this challenging task. Computational methods
were developed to accelerate the process of prediction
and classification of AMPs. Recently, approaches based on
machine learning techniques are commonly adopted due
to their high efficiency, high speed, low cost and gener-
alization abilities. They can sufficiently mine the intrinsic
linear and non-linear relationship between antibacterial
activity and biochemical attributes, which is suitable for
dealing with large scale antimicrobial peptide prediction
tasks with complex models.

Methods of choice include support vector machine
(SVM) [4–7], nearest neighbor [8] or k-nearest neigh-
bor algorithm [9], random forests (RFs) [10]), decision
tree model [11], hidden Markov models (HMMs) [12] ,
and neural network model [13] which seek for predic-
tion power in a context of supervised classification. Most
recent work includes a "deep" network architecture for
chemical data analysis and classification together with
a prospective proof-of-concept application proposed in
[14]. Some predictors only apply binary classifiers to iden-
tify whether a query peptide sequence is AMP or not, such
as [4, 5, 8]. Multi-class classifiers have also been devel-
oped which obtained more detailed quantitative results.
Lira et al. [11] created a decision tree model to clas-
sify the antimicrobial activities of synthetic peptides into
four classes. ClassAMP [4] has been developed to predict
the propensity of a peptide sequence to have antibacte-
rial, antifungal, or antiviral activity. However, it can be
seen by a comparison of the sequences in APD database
[15, 16] that a same sequence may occur in different
subclasses, which in fact a very common phenomenon.
Therefore, it is highly desirable to develop mechanisms for
rapidly and accurately learning from multi-label datasets,
for the purpose of helping design new and more effective
antimicrobial agents. Considering various possible func-
tional types of AMPs, Xiao et al. proposed a two-level
multi-label classifier iAMP-2L, where an improved fuzzy
K-nearest neighbour (FKNN) algorithm was applied, and
after the AMPs are first identified, the positive samples
are subjected to regular multi-label learning processing
[9]. The prediction accuracy for 4 types of AMPs was fur-
ther improved in [17]. Zhou’s method [18] has applied the
LIFT multi-label learning algorithm to predict 5 types of
AMPs and achieved 70% accuracy of prediction.

This paper aims to develop an advanced method,
MAMPs-Pred, for classification and prediction of AMPs
and their function types, which proves to achieve an
improved prediction accuracy upon state of the art mech-
anisms. The marine environment is known to be one of
the richest sources for AMPs. It is meaningful to pre-
dict the AMPs and their function types of penaeus by this
method, which has helped us to understand the immune

system of marine species. In addition, it eases subsequent
mining and exploration of antimicrobial activity of other
species.

In this approach, a 188-D feature set constructed from
SVM-Prot features [19, 20] were used to map the pep-
tide sequences to numeric feature vectors, which were
subsequently used as input to a two-layer multi-label
classifier. The first layer is to identify whether a query pep-
tides sequence is an AMP, and the second layer addresses
the multi-type problem by identifying whether an AMP
belongs to multiple function types. Different classification
methods were compared, and the results were discussed
and analyzed. In short, a combination of first-layer 188D-
RF classifier and second-layer PS-RF or LC-RF classifier is
proved to have achieved the best performance. The pro-
posed approach achieved higher accuracy than existing
approaches of best performance, while performed upon
benchmark dataset. In addition, the quality of the predic-
tion was verified when applied to penaeus sequences. The
proposed method may play an important complementary
role to the existing predictors in this area.

Materials and methods
Benchmark dataset
For the convenience of later description, the benchmark
dataset is expressed by

s = sAMPs ∪ snon−AMPs (1)

Where sAMPs is the AMPs dataset consisting of AMPs
sequences only, snon−AMPs the non-AMP dataset with
non-AMP sequences only, and ∪ is the symbol for union
in the set theory. The peptide sequences in sAMPs were
fetched from the APD database [15, 16], which has col-
lected all antimicrobial peptides from the PubMed, PDB,
Google and Swiss-Prot databases. According to their dif-
ferent functional types, the AMP sequences can be further
classified into 16 categories; i.e.,

s = sAMPs
1 ∪ sAMPs

2 ∪ sAMPs
3 ∪ . . . ∪ sAMPs

16 (2)

Where the subscripts 1, 2, 3, ...,16 represent “Wound
healing”, “Spermicidal”, “Insecticidal”, “Chemotactic”,
“Antifungal”, “Anti-protist”, “Antioxidant”, “Antibacterial”,
“Antibiotic”, “Antimalarial”, “Antiparasital”, “Antiviral”,
“Anticancer/tumor”, “Anti-HIV”, “Proteinase inhibitor”
and “Surface immobilized”. The lengths of AMPs are
varying within the region from 5 to 100 amino acids.
Note that among the original 2954 sAMPs sequences, 278
sequences have unknown antibacterial activity.

Furthermore, to reduce homology bias and redundancy,
the program CD-HIT [21] was utilized to winnow those
sequences that have ≥ pairwise sequence identity to any
other in a same subset. The alignment bandwidth of the
CD-HIT field is set to 5 according to the shortest length of
AMPs. To ensure that each subset has enough samples for
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statistic processing, and to ensure that all categories are
covered, the CD-HIT only performs redundancy removal
to a subset of samples with sequence numbers larger
than 180, which means that the de-redundancy processing
are only performed for antifungal, antibacterial, antiviral
and anti-cancer polypeptides. Finally, we obtained 2618
AMPs as the current benchmark dataset sAMPs as shown
in Table 1.

The negative samples snon−AMPs contains polypep-
tide sequences snon−AMPs−Pept , and protein fragments
snon−AMPs−Prot .

Where snon−AMPs−Pept were constructed according to
following procedures:

1 Collected all the polypeptide sequences sUNP−Peptide

with length 1 to 15483, in total 79378, from the
UniProt database.

2 Removed any sequence that already exists in sAMPs,
any sequence that contains any code other than the
20 native amino acid codes, and any sequence with
length less than 5 or larger than 100.

3 The process is described by following equation, and
at this point 10503 sequences snon−AMPs−Pept were
obtained.

snon−AMPs−Pept = sUNP−Peptide − sAMPs − seqilleg

(len ∈[ 5, 100] ) (3)

Table 1 Preprocessed benchmark dataset

Function Dataset Function type Sequence

AMPs sAMPs
1 Wound healing 18

sAMPs
2 Spermicidal 13

sAMPs
3 Insecticidal 28

sAMPs
4 Chemotactic 57

sAMPs
5 Antifungal 593

sAMPs
6 Anti-protist 4

sAMPs
7 Antioxidant 22

sAMPs
8 Antibacterial 1297

sAMPs
9 Antibiotic 32

sAMPs
10 Antimalarial 25

sAMPs
11 Antiparasital 101

sAMPs
12 Antiviral 125

sAMPs
13 Anticancer 125

sAMPs
14 Anti-HIV 109

sAMPs
15 Proteinase inhibitor 26

sAMPs
16 Surface immobilized 43

sAMPs 2618

non-AMPs snon−AMPs 4371

On the other hand, snon−AMPs−Prot were constructed
according to following procedures:

1 Obtained Pfam families that sAMPs belong to. Because
some AMPs are homologous and have the same
family number, we remove duplicate family numbers
from Pfam and get de-redundant families posPfam.

2 Removed posPfam from the Pfam families and
obtained negPfam. Fetched a random protein
sequence with the length between 5 and 100 from
each negPfam family.

3 The process is described by following equation. In
total 109 short protein sequences snon−AMPs−Prot

were obtained.

snon−AMPs−Prot = Ran(Pfam − posPfam)

(len ∈[ 5, 100]) (4)

The snon−AMPs were constructed by following equation.

snon−AMPs = snon−AMPs−Pept ∪ snon−AMPs−Prot (5)

The CD-HIT [21] program was then applied to win-
now snon−AMPs. Finally, 4371 sequences were constructed,
which were used to form the negative samples dataset
snon−AMPs as shown in Table 1.

Feature extraction
In machine learning, choosing informative, discriminating
and independent features is a crucial step for the success
of a prediction method. The optimal feature set shall be
able to capture the distribution patterns of the dataset.

In this study, we have adopted two feature extraction
algorithms for comparison, which are SVM-Prot 188-D
based on 8 types of physical-chemical properties and
amino acid composition, and Pseudo amino acid composi-
tion features (Co-Pse-AAC) based on 5 types of physical-
chemical properties respectively.

SVM-Prot is a web server for protein classification. It
constructs 188-D features for protein sequences descrip-
tion and classification [19, 20]. The features have been
applied successfully in several protein identification
works, such as cytokines [22, 23] and enzymes [24, 25].
The extracted features include hydrophobicity, normal-
ized van der Waals volume, polarity, polarizability, charge,
surface tension, secondary structure and solvent accessi-
bility [19]. For each of these 8 types of physical-chemical
properties, some feature groups were designed to describe
global information of protein sequences. These feature
groups contain composition (C), transition (T) and distri-
bution (D) [19, 26]. Thus, the dimension of each feature
vector is 21. In addition, considering amino acid com-
position (AAC), the protein structure is composed of 20
amino acids. The dimension of 188-D features is therefore
expressed as below formula:
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D188−D =
L∑

i=1
D21Vct + Daac (6)

Where L is the number of features, which is 8 in this
context. Take Cecropin A as an example. The 188-D fea-
tures of Cecropin A is showed in Table 2. To the best of
our knowledge, it is the first attempt in literature to apply
SVM-Prot 188-D feature set composition in AMPs and
non-AMPs classification and identification.

On the other hand, Pseudo amino acid composition fea-
tures (Co-Pse-AAC) [27] as an efficient computation tool
has been diffusely leveraged for protein sequences in pre-
dicting protein structures and functions, as well as DNA
and RNA sequences [28]. The 40-dimension Co-Pse-AAC
features were extracted and sufficiently incorporate the
effects of sequence order. This method has taken 5 types
of physical-chemical properties into consideration.

Data balancing
Most machine learning classification algorithms are sen-
sitive to the imbalanced data sets [29]. The classifiers
tend to have a higher recognition rate for the majority
class, which makes it difficult to identify the minority class
correctly [30–32]. In this study, there were 2718 AMPs
samples and 4371 non-AMPs samples, which were highly
imbalanced. In order to eliminate the over fitting problem
caused by imbalanced data, we have applied two sampling
mechanisms to construct the training dataset.

Firstly, we have implemented a random-under-sampling
method to down sample the large class set snon−AMPs,
so that the sample number of large class set equals the
small class set, and the resulting training dataset is defined
as strain. Another method we have applied is weighted
random sampling [33], which has balanced the dataset
by applying different weights to the unbalanced samples.

Given that the ratio of sAMPs and snon−AMPs is approxi-
mately equal to 3:5, weight factor 5 and 3 were applied to
sAMPs and snon−AMPs respectively, and the obtained train
dataset is defined as sweight−tr .

Test dataset
The test dataset was constructed by following method.
Firstly we randomly pick up 1382 negative samples from
the sequences that have been deleted from snon−AMPs in
the CD-HIT process, and noted it by snon−AMPs−DEL. Fur-
ther, in the phrase of acquiring benchmark dataset from
APD (The Antimicrobial Peptide Database) database,
there are 278 sequences with unknown antibacterial activ-
ity among the original 2954 sAMPs sequences, which is
defined by snon−AMPs−NOACT .

The 278 snon−AMPs−NOACT sequences, together with the
1382 snon−AMPs−DEL, form the independent test dataset
Stest for the first layer of our two-layer multi-label classi-
fier, which is in total 1660 samples.

The 278 snon−AMPs−NOACT sequences were also applied
as prediction dataset for the second layer of our two-layer
multi-label classifier, which will be illustrated in following
chapters.

Two-layer multi-label classifier
In machine learning, multi-label classification is the prob-
lem of finding a model that maps inputs x to binary vectors
y, i.e., assigning a value of 0 or 1 for each label in y. In the
multi-label problem there is no constraint on how many
of the classes the instance can be assigned to. An overview
of multi-label classification is available at [34].

In general, the methods to study multi-label classifica-
tion can be divided into two categories: adapted algo-
rithm methods and problem transformation methods.
Some classification models have been adapted to the

Table 2 188-D feature of cecropin A

Sequence KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK

Property Value of feature vector

Amino acid composition 13.5 0.0 2.70 2.70 2.70 10.8 0.0

135 00 27.0 27.0 27.0 108 00

13.5 18.9 2.70 0.00 2.70 2.70 8.10

135 189 27.0 0.00 27.0 27.0 81.0

2.70 0.00 2.70 10.8 2.70 0.00

27.0 00 27.0 108 27.0 00

Hydro-phobic 37.8 29.7 32.4 19.4 30.5 19.4 2.70

378 297 324 444 555 444 27

16.2 35.1 45.9 100. 32.4 48.6 64.8

162 351 459 000 324 486 648

81.0 97.2 5.40 13.5 40.5 70.2 94.5

810 972 54 135 405 702 945
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multi-label task, without requiring problem transforma-
tions. For instance, AdaBoost.MH and AdaBoost.MR are
extended versions of AdaBoost for multi-label data. And
the ML-kNN algorithm extends the k-NN classifier to
multi-label data. Examples also include decision trees,
neural networks adapted for multi-label learning.

Problem transformation methods fall into another cat-
egory of multi-label classification. With converting multi-
label problems into one or more single-label problems,
literally existing single-label classifier can be used to meet
the multi-label classification requirements. Representa-
tive algorithms include Binary Relevance (BR), Classifier
Chains (CC), Label Combination Method (LC/LP), Inte-
grated LP Method Rakel, and Pruned Sets Method (PS).
BR amounts to independently training one binary classi-
fier for each label; CC is similar to BR, except that it takes
into account label dependencies; LC/LP treats each label
combination as a new label and implicitly considers the
label.

A polypeptide can be a non-AMP that does not have
any antimicrobial activity. It is actually a prediction prob-
lem with negative samples, which cannot be handled
directly by traditional multi-label classification. Incor-
porating non-AMPs rationally into predictive models is
an essential issue for multi-label classification to predict
function types of AMPs. To address this issue, we improve
upon the state of the art in multi-label classification and
make several contributions.

For the first-layer classifier in identifying a query pep-
tide sequence as an AMP or non-AMP, the random forest
(RF) algorithm was applied as a base classifier because
of its good performance and simple-to-use feature. Ran-
dom forest is an ensemble method in which a classifier
is constructed by combining several independent base
classifiers. The individual predictions are aggregated to
combine into a final prediction, based on a majority voting
on the individual predictions. By averaging several trees,
there is a significantly lower risk of over fitting.

For the second layer classifier in identifying which func-
tional type(s) the query AMP peptide sequence belongs
to, a task of multi-label classification was launched. We
choose Meka/Mulan open source framework to imple-
ment our second layer multi-label classifier. Meka is
based on the Weka machine learning toolkit, one of
the well-known data mining platforms (http://www.cs.
waikato.ac.nz/ml/weka/), and integrates the open-source
Java library Mulan framework for providing the capa-
bility of multi-label datasets learning. Meka proposed
a trimming set method and a Classifier Chains (CC)
method, and uses logarithmic loss to punish misplaced
tags to prevent partial misprediction in the overall label
distortion. For the second-layer prediction, PS-RF or LC-
RF is applied as a base multi-label classifier due to its
performance.

Measurement metrics
The metrics Sensitivity (SN), specificity (SP), overall accu-
racy (Acc) and Matthew’s correlation coefficient (Mcc)
were applied to measure the performance of the first-layer
classifier [18, 35–40], where TPi, FPi, TNi, FNi denote
the numbers of true positive instances, false positive
instances, true negative instances and false negative
instances respectively.

SN = TPi
TPi + FNi

(7)

SP = TNi
FPi + TNi

(8)

Acc = TPi + TNi
TPi + FPi + TNi + FNi

(9)

Mcc = TPi × TNi − FPi × FNi√
(TPi + FPi) × (TNi + FNi) × (TPi + FNi) × (TNi + FPi)

(10)

The metric Exact-Match Ratio (EMR), Hamming-
Loss (H-Loss), Accuracy (Acc), Precision (Precison,
Recall), Ranking-Loss (RL), Log-Loss, One-error (OE), F1-
Measure (F1-Mic, F1-Mac) were applied for evaluation
the second-layer multi-label classifier.

EMR(�t) = 1
K

K∑

i=1
(ỹi = yi) (11)

H − Loss(�t) = 1
KL

K∑

i=1

|ỹi ∪ yi| − |ỹi ∩ yi|
L

(12)

Acc(�t) = 1
K

K∑

i=1

|ỹi ∪ yi|
|ỹi ∩ yi| (13)

Precision(�t) = 1
K

K∑

i=1

|ỹi ∩ yi|
ỹi

(14)

Recall(�t) = 1
K

K∑

i=1

|ỹi ∩ yi|
yi

(15)

F1(�t) = 2.0 × Precision(�t) × Recall(�t)

Precision(�t) + Recall(�t)

OE(�t) = 1
K

K∑

i=1
{[ argmaxy∈Y h(xi, y)] �∈ yi}

= 1
K

K∑

i=1

2|ỹi ∩ yi|
|ỹi| + |yi| (16)

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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RL(�t)= 1
K

K∑

i=1

1
|ỹi|×|yi| |{(y1, y2)|fth((xi, y1))

≤ fth((xi, y2))}| (17)

Log − Loss(�t) = 1
KL

K∑

i=1

L∑

j=1
(18)

{
min

[
−Log − Loss

(
w̃i

j , yi
j

)
, ln(K)

]}

Results
First classifier - Identifying AMPs or non-AMPs
Firstly, we extracted SVM-prot 188-D features and Co-
Pse-AAC 40-D features for each peptide sequence. Then
the first-layer classifier was followed for identifying if the
sequence is AMPs or not. Several common classifiers,
including Random Forest (RF), Bagging, J48, OneR, Naive
Bayesian NB, KNN, and LibSVM, were chosen for perfor-
mance comparison. The result showed that the Random
Forest and Bagging classifiers based on decision trees
have achieved the highest prediction accuracy rate that
exceeded 84% for both SVM-prot 188-D and Co-Pse-AAC
40-D features (Fig. 1).

We further applied 1660 test dataset samples Stest to
verify 5 RF and Bagging based classifiers (188D-RF–W,
188D-RF–R, 188D-Bagging–W, 188D-Bagging–R, 40D-
RF-R), where W denotes weighted random sampling,
and R denotes random-under-sampling, since the AMP
dataset is highly imbalanced, whereas sampling methods
might affect the prediction performance significantly.

Table 3 shows that the 188D-RF-W classifier based on
weighted random sampling can guarantee good sensitiv-
ity and specificity on both training set and test set, which
can efficiently identify AMPs and non-AMPs, where TPR
represents true positive rate, FPR represents false positive
rate, and AUC is area under the curve. Hence, we use it
as the first-layer classifier of our proposed MAMP-Pred
method. FPR TPR AUC

Second classifier - Identifying function types of AMPs
We investigated several multi-label classification methods
on dataset sAMPs in order to find the best classifier for
identifying AMPs function types. We firstly evaluated dif-
ferent problem transformation methods, including Binary
Correlation (BR), Classifier Chain (CC), Bayesian Clas-
sifier Chain (BCC), Tag Combination (LC), pruning set
(PS), combined with representative single-label classifiers

Fig. 1 The main flowchart of the AMPs identification and prediction process
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Table 3 Performance comparison of first-layer classifiers on test dataset Stest

Classifier
AMPs non-AMPs

Acc(%)
TPR FPR AUC TPR FPR AUC

188D-RF-W 0.831 0.156 0.900 0.844 0.169 0.900 84.157

188D-RF-R 0.892 0.205 0.897 0.795 0.108 0.897 81.145

188D-Bagging-W 0.888 0.205 0.899 0.795 0.112 0.899 81.084

188D-Bagging-R 0.921 0.220 0.897 0.780 0.079 0.897 80.361

40D-RF-R 0.874 0.194 0.890 0.806 0.126 0.890 81.747

a. Statements that serve as captions for the entire table do not need footnote letters
b. W = weighted random sampling, R = random-under-sampling, 188D = SVM-prot 188-D, 40D = Co-Pse-AAC 40-D

including J48, Random Tree, Random Forest, KNN and
Bagging. We also investigated several adapted algorithm
methods such as MLkNN, BRkNN, BP neural network,
BPMLL, and DeepML, whereas the details were not illus-
trated in this paper due to the space limitations.

All multi-label classifiers have adopted train/test dataset
split and 10-fold cross-validation mechanisms based on
sAMPs for evaluation. The evaluation results of BR-RF,
PS-RF, CC-RF, BCC-RF, LC-RF and BRkNN methods on
dataset sAMPs are shown in Table 4. It can be seen that
PS-RF and LC-RF have achieved the highest overall accu-
racy, and 10-fold cross-validation performs better than
train/test dataset split mechanism for all problem trans-
formation methods.

The second stage is to apply PS-RF and LC-RF classi-
fiers for predicting the possible antimicrobial activities or
function types of the 278 AMPs with unknown antibac-
terial activity snon−AMPs−NOACT . Similar prediction results
were obtained in PS-RF and LC-RF. As shown in Fig. 2,
there is one wound healing activity, one spermicidal activ-
ity, one chemotactic activity, one antimalarial activity, 6
Insecticidal activities, 27 antifungal activities, 27 anti-HIV
activities, 13 Antiparasital activities, 19 antiviral activi-
ties, 23 anticancer activities, 5 proteinase inhibitor activ-
ities, 223 antibacterial activities. In addition, none of the
antimicrobial peptides may have anti-protist, antioxidant,
antibiotics, and surface immobilized activities.

Performance evaluation
To benchmark our method, we present a comparative
analysis of our MAMPs-Pred method against other exist-

ing best-performing in literature. Most of the existing
methods can only be used to identify a query peptide as
an AMP or non-AMP.

To make the comparison feasible and applicable, we
firstly compared the first-layer classifier of MAMPs-Pred
with the first-level classifier of iAMP-2L. We have applied
the independent test data sets SInd

test in [9], which con-
tains 920 AMPs and non-AMPs sequences. The overall
accuracy rate of iAMP-2L was 86.32%. Our mechanism
has achieved 87.14% classification accuracy, which shows
better performance than iAMP-2L, as shown in Table 5.

The second-layer classifier of MAMPs-Pred was com-
pared with the iAMP-2L method [9] and LIFT classifi-
cation method proposed in [17]. It can be seen that our
MAMPs-Pred method has gained an improved overall
performance over iAMP-2L and LIFT as shown in Table 6.

The first reason is that the amino acid composition and
its eight physicochemical properties which are used for
feature extraction in this study, can better express the
relationship between structure and antimicrobial peptides
function types thus yield significantly improved perfor-
mance.

The second reason is that the pruning set method
applied in the second-layer multi-label classification,
which transforms the label set into a single label in the
problem, and directly models the label correlation, can
achieves an overall better prediction performance.

Performance on predicting Penaeus AMPs
In total 14298 protein sequences of shrimp (Penaeus)
were fetched from the public UniProt database, includ-

Table 4 Performance Comparison of Second-layer Classifiers (10 fold cross-validation)

Models Acc EMR H-Loss F1-Micro F1-Macro One-error Rank-Loss Log-Loss

BR-RF 0.839 0.785 0.021 0.920 0.941 0.122 0.019 0.076

PS-RF 0.856 0.825 0.020 0.923 0.939 0.138 0.052 0.056

CC-RF 0.844 0.794 0.021 0.922 0.942 0.165 0.051 0.057

BCC-RF 0.847 0.801 0.020 0.924 0.943 0.160 0.051 0.056

LC-RF 0.855 0.824 0.020 0.923 0.939 0.139 0.052 0.056

BRkNN 0.696 0.561 0.044 0.838 0.783 0.238 0.101 0.121
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Fig. 2 Predicting function types of snon−AMPs−NOACT

ing Penaeus monodon, Penaeus vannamei, etc. We then
obtained 1452 sequences with a length between 5 and
100 from the 14298 sequences, followed by extracting
SVM-prot 188-D features based on amino acid composi-
tion (AAC) and its 8 physicochemical properties for each
penaeus protein sequence. The processed sequences were
subsequently fed to the first-layer classifier of MAMP-
Pred. A total of 126 AMPS/AMPS-like sequences were
detected, accounting for 8.68% of the total sequence.

In the second-layer multi-label classification, we have
predicted the possible antimicrobial activities or function
types that an AMP belongs to. All 126 penaeus AMPs
sequences had antibacterial activity, one with chemotac-
tic activity, and four with antifungal activity, as shown
in Fig. 3. MAMP-Pred can be regarded as an efficient
data-mining method to predict the potential antimicro-
bial peptides and antibacterial activities of the query
sequences.

Discussion
Antimicrobial peptides are increasingly gaining consider-
able attention both from research and industry, as well as
clinical interest. With the growing microbial resistance to
conventional antimicrobial agents, the demand for uncon-
ventional and efficient AMPs has become urgent. Effective

Table 5 Performance comparison of MAMPs-Pred and iAMP-2L
first-layer on SInd

test dataset)

Method Acc SN SP Mcc

MAMPs-Pred 93.91% 92.83% 94.99% 0.878

iAMP-2L 92.23% 97.72% 86.74% 0.845

usage of AMPs and their derivatives can greatly improve
the immunity and breeding survival rate of aquatic prod-
ucts.

The results reported in this study indicate that the
MAMP-Pred method achieves high performance for iden-
tifying AMPs and its functional types. The proposed
approach is believed to supplement the tools and tech-
niques that have been developed in the past for prediction
of AMPs. The primary reason is that the amino acid com-
position and its eight physicochemical properties which
are used for the feature extraction in this study, can better
express the relationship between structure and antimicro-
bial peptides function types. The second reason is that
the pruning set method applied in the second-layer multi-
label classification achieves an overall higher prediction
performance.

As summarized in [41], the recognition accuracy of
machine learning methods ranges from the upper 70 to
the lower 90 percent. Reported recognition accuracy has
steadily improved over the past decade, while there is
room for improvement.

The current MAMP-Pred approach can be straightfor-
wardly extended in following directions in future research
work:

Table 6 Performance comparison of MAMPs-Pred and iAMP-2L,
LIFT second-layer on SInd

test data set

Method Acc EMR Precision Recall H-Loss

MAMPs-Pred 0.856 0.825 0.918 0.929 0.020

iAMP-2L 0.669 0.43 0.833 0.75 0.164

LIFT 0.700 0.5365 0.838 0.741 0.1392
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Fig. 3 AMPs activity prediction of 126 shrimp sequences

1. Construct a more reliable datasets of positive and
negative samples to reduce potential bias of model train-
ing introduced by sequence homology. We also believe
that with more data available in the future, the prediction
accuracy can be significantly enhanced.

2. The two-level prediction requires learning and clas-
sification to be performed twice, which lowers down
the prediction efficiency. An adaptive dynamic approach
which possibly yields faster speed and higher efficiency is
of definite interest in our future research.

3. In this approach, the overlay of prediction errors
might incur significant drop of prediction accuracy. In
future work, the current method shall be straightfor-
wardly extended to address these issues.

4. Predicting the AMPs and their function types of
penaeus by this method can help us to understand the
immune system of marine species. In addition, it eases
subsequent mining and exploration of antimicrobial activ-
ity of other species. The predictor holds very high poten-
tial to become a useful high throughput tool to predict
antimicrobial activity of other species.

Conclusion
In this study, we made an attempt to develop an advanced
machine learning based computational approach,
MAMPs-Pred, for identification of AMPs and its function
types. Initially, SVM-prot 188-D features were extracted
that were subsequently used as input to a two-layer
multi-label classifier. The first layer is to identify whether
it is an AMP by applying RF classifier, and the second
layer addresses the multitype problem by identifying the
activities or function types of AMPs by applying PS-RF
and LC-RF classifiers.
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