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Abstract

virus had pandemic risk with high probability.

pandemic risks for HZ/N9 and HON2 avian viruses.

Background: Avian influenza virus can directly cross species barriers and infect humans with high fatality. As
antigen novelty for human host, the public health is being challenged seriously. The pandemic risk of avian
influenza viruses should be analyzed and a prediction model should be constructed for virology applications.

Results: The 178 signature positions in 11 viral proteins were firstly screened as features by the scores of five amino
acid factors and their random forest rankings. The Supporting Vector Machine algorithm achieved well performance.
The most important amino acid factor (Factor 5) and the minimal range of signature positions (63 amino acid residues)
were also explored. Moreover, human-origin avian influenza viruses with three or four genome segments from human

Conclusion: Using machine learning methods, the present paper scores the amino acid mutations and predicts
pandemic risk with well performance. Although long evolution distances between avian and human viruses suggest
that avian influenza virus in nature still need time to fix among human host, it should be notable that there are high

Keywords: Avian influenza virus, Amino acid mutation, Machine learning, Pandemic risk

Background

Influenza A virus contains eight segments of single-strand
negative RNA. Segment 4 codes hemagglutinin (HA) gene
and segment 6 codes neuraminidase (NA) gene. Accord-
ing to the antigenic characteristics of HA and NA, avian
influenza A virus has 16 subtypes HA and nine subtypes
NA [1]. Since the mutation rates of viral genome were
fast, the phenotype of antigen, drug-resistance, and viru-
lence changed in a relative short time. Moreover, segmen-
tal pattern facilitates the reassortment of viral genome and
promote fast change of phenotypes [1].

Avian influenza virus (AIV) could across the species
barrier and infect human fatally, which caused huge loss
of economy and attracted extensive attention of the soci-
ety. The highly pathogenic AIV of H5N1 subtype was
firstly reported in Asia in 1996 [2]. The fact that H5N1
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virus cross species barriers directly and fatally infect the
respiratory system were confirmed by the isolation of
human-origin H5N1 virus from clinical samples in 1997
[3, 4]. Human infections of H5N1 subtype were continu-
ously reported widely since 2003 and huge data were de-
posited in public database [5-8]. Besides H5N1 virus,
other subtypes can also infect human by direct interspe-
cies transmission. There are two infection cases of
HY9N2 in 1999 and 2003 [9, 10]. H7N7 virus infected
farmers in the Netherlands in 2003 [11], Moreover,
H7N9 occurred in 2013 and infections of human cases
were still reported up to now [12, 13]. Interspecies trans-
mission of AIV had two phenotypes in the view of trans-
mission efficiency: (1) keeping popular among poultry or
causing human infection with low probability; (2) adap-
tation to human host and human-to-human transmis-
sion with high efficiency. Thus far, AIVs in nature had
not the second phenotype, which represents initial adap-
tion to the new host and low efficiency of transmission
among human.
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Seasonal and pandemic influenza virus had high effi-
ciency of transmission among human. Unfortunately,
more and more reports about transmission efficiency
proved that AIV with adequate amino acid (AA) muta-
tions could have the ability of highly efficient transmission
among mammals, which strongly suggested that pandemic
risk of AIVs among human was rising [14—20]. As high fa-
tality and antigen novelty for human host, the public
health is being challenged seriously by AIVs. So, computa-
tional tools in the field of bioinformatics should be pro-
posed to screen mutations in viral proteins not only for
the study of high efficiency transmission among human
but also for the prediction of transmission phenotype and
the corresponding pandemic risk of AIVs.

In a previous study, five amino acid factors summarized
from 491 highly redundant amino acid attributes were as-
sociated with specific physiochemical amino acid proper-
ties, namely, polarity, secondary structure, molecular
volume, codon diversity, and electrostatic charge [21]. In
this paper, we used five AA factors to transform viral pro-
teins and used the random forest (RF) method to select
features from high-dimensional protein data and score
them by their contributions to the efficiency of transmis-
sion and pandemic risk. After ranking the positions con-
taining important mutation information, the classifier
could predict the transmission phenotype of high effi-
ciency to evaluate the pandemic risk. In the paper, we first
identified 178 signature mutation positions by the RF
scoring, then predicted AIV occurrence by four popular
machine learning methods. Using the most effective clas-
sifier, we explored the important amino acid factors and
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the minimal range of signature positions. The study re-
sults could benefit pandemic surveillance and future study
on the efficiency of AIV transmission.

Results

Dataset

The final dataset contained 869 high-quality AIV strains
(440 avian-origin AIVs with H1-H14, H16 subtypes; 429
human-origin AIVs with H5N1, H5N6, H7N3, H7N?7,
H7N9 and HIN2 subtypes) and 914 seasonal, pandemic
human, and artificial viruses (HIN1, HIN2, H3N2 sub-
type; H5N1 artificial virus). As the 869 AIVs have low ef-
ficiency of transmission and low pandemic risk among
human, they were regarded as negative samples. The 914
human or artificial viruses were regarded as positive
samples since they were verified to have high efficiency
of transmission among humans or mammals. The infor-
mation related to these strains
Additional file 1.

is summarized in

Signature amino acid residues
The importance score at each position in the 11 viral
proteins was computed by the RF model to screening
the signature positions. The slope of the curve obviously
changed at an importance score of 10 (Fig. 1a). There-
fore, 10 was preliminary selected as cutoff score. The
178 signature positions were founded and the initial
amino acid mutation set was generated for further
machine learning.

As shown in Table 1, the hemagglutinin protein (HA)
contained the largest number of signature positions (41
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Fig. 1 Importance score curve and the performances of k-nearest neighbor (KNN), naive Bayes (NB), support vector machine (SVM), and random forest
(RF) classifiers. a The ranked scores were calculated from five AA factors using the random forest method. The x and y coordinates denote the total
length of the 11 protein alignments and the importance scores, respectively. The cutoff value 10 is indicated by the thin horizontal line. b
Performances of the four classifiers were evaluated from 100 repeats of 10-fold cross-validation. The area under the curve (AUC) ranges from 0 to 1
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Table 1 Scores for the 178 signature amino acids of avian influenza viruses

Num Pro® Pos® Score Num Pro Pos Score Num Pro Pos Score
1 PB2 44 1213 61 HA 124 12.51 121 NP 430 10.74
2 PB2 61 14.04 62 HA 137 10.16 122 NP 442 18.71
3 PB2 81 11.32 63 HA 141 10.61 123 NP 444 1248
4 PB2 105 13.20 64 HA 144 10.61 124 NP 455 10.90
5 PB2 199 12.53 65 HA 155 10.56 125 NP 456 10.54
[§ PB2 225 10.72 66 HA 158 10.36 126 NP 473 10.14
7 PB2 271 2113 67 HA 160 16.89 127 NA 105 1092
8 PB2 323 20.77 68 HA 163 11.46 128 NA 200 1032
9 PB2 368 10.29 69 HA 164 10.57 129 NA 247 1748
10 PB2 391 13.25 70 HA 169 1033 130 NA 347 10.16
" PB2 475 16.03 71 HA 171 1035 131 NA 372 10.85
12 PB2 526 11.05 72 HA 172 10.15 132 NA 399 12.30
13 PB2 559 10.52 73 HA 189 13.15 133 M1 15 1057
14 PB2 567 12.55 74 HA 190 19.80 134 M1 30 16.61
15 PB2 588 14.51 75 HA 193 13.31 135 M1 37 10.92
16 PB2 591 10.79 76 HA 203 1247 136 M1 115 1649
17 PB2 627 1112 77 HA 224 16.94 137 M1 116 19.25
18 PB2 645 11.76 78 HA 225 14.94 138 M1 137 1112
19 PB2 674 11.02 79 HA 226 15.14 139 M1 142 11.79
20 PB1 99 16.40 80 HA 228 15.09 140 M1 207 12.04
21 PB1 287 11.47 81 HA 246 10.95 14 M1 209 14.74
22 PB1 336 14.27 82 HA 272 12.19 142 M1 214 16.99
23 PB1 339 11.25 83 HA 276 1212 143 M2 13 11.26
24 PB1 361 13.80 84 HA 285 10.01 144 M2 14 12.88
25 PB1 368 12.23 85 HA 299 10.21 145 M2 18 12.14
26 PB1 375 13.66 86 HA 327 1271 146 M2 20 10.14
27 PB1 486 11.37 87 HA 367 11.62 147 M2 27 1413
28 PB1 581 19.70 88 HA 393 1332 148 M2 28 10.01
29 PB1 584 11.53 89 HA 406 1153 149 M2 31 11.00
30 PB1 741 14.47 90 HA 413 10.90 150 M2 43 13.76
31 PB1_f2 Nl 11.53 91 HA 462 1.7 151 M2 50 1052
32 PB1_f2 27 13.74 92 HA 490 10.82 152 M2 54 1238
33 PB1_f2 59 10.05 93 HA 493 11.39 153 M2 57 11.57
34 PB1_f2 60 14.89 94 HA 530 10.65 154 M2 65 11.31
35 PB1_f2 73 11.33 95 HA 531 12.94 155 M2 66 13.29
36 PB1_f2 78 13.81 96 NP 16 11.77 156 M2 77 10.00
37 PB1_f2 83 14.22 97 NP 21 10.30 157 M2 78 17.00
38 PA 28 1642 98 NP 33 15.12 158 M2 79 12.74
39 PA 55 13.03 99 NP 61 1244 159 M2 86 15.40
40 PA 57 11.25 100 NP 99 2249 160 M2 93 1845
41 PA 65 10.78 101 NP 100 18.84 161 M2 95 11.66
42 PA 66 1042 102 NP 119 10.82 162 NS1 7 1023
43 PA 94 13.02 103 NP 136 13.19 163 NS1 22 1157
44 PA 163 11.54 104 NP 189 11.58 164 NS1 53 10.59
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Table 1 Scores for the 178 signature amino acids of avian influenza viruses (Continued)

Num Pro® Pos® Score Num Pro Pos Score Num Pro Pos Score
45 PA 225 12.94 105 NP 190 13.23 165 NS1 60 13.19
46 PA 268 12.08 106 NP 283 17.10 166 NS1 74 10.03
47 PA 277 14.17 107 NP 289 1137 167 NS1 81 14.88
48 PA 337 13.50 108 NP 293 12.50 168 NS1 114 13.45
49 PA 391 10.69 109 NP 305 20.80 169 NS1 125 11.55
50 PA 400 1118 110 NP 313 16.72 170 NS1 171 10.83
51 PA 421 12.85 m NP 345 13.40 171 NS1 189 13.00
52 PA 520 11.20 112 NP 351 10.14 172 NS1 205 11.00
53 PA 552 16.33 113 NP 353 10.09 173 NS1 215 11.37
54 PA 669 11.64 114 NP 357 21.26 174 NS1 227 1245
55 HA 12 14.87 115 NP 372 1250 175 NEP 32 1243
56 HA 94 1048 116 NP 375 12.09 176 NEP 70 18.26
57 HA 101 11.00 117 NP 400 10.68 177 NEP 89 11.59
58 HA 110 17.94 118 NP 422 14.84 178 NEP 107 14.74
59 HA m 11.00 119 NP 425 12.20

60 HA 17 11.34 120 NP 426 10.69

2Viral protein; PPosition of amino acid residue as H3 subtype numbering

amino acid residues; about 41/178 =23%), suggesting
that HA is very important for highly efficient transmis-
sion of AIVs among human. HA is mainly involved in
receptor-binding and fusion activities. Positions
HA102-HA290 locate in or close to the region of host
receptor binding [22, 23], and HA158, H163, HA189,
HA190, HA224, HA226, HA228H is reportedly related
to the specificity of receptor binding [14—19]. HA%4,
HA101, HA327, HA367, and HA393 locate at or near
the fusion peptide [24], which triggers fusion activity in
acidic environments and favors transmission to humans.
The HA327 position in the cleavage site are important
virulence sites [25]. The 627 position in the polymerase
basic protein 2 (PB2) has been implicated in increased
replication or virulence of AIVs in mammals and trans-
mission among humans [19, 26]. The 93 and 95 posi-
tions in the matrix protein 2 (M2), which are affiliated
with viral particle ensembles [27], were also screened.
The 372 and 375 positions in the nucleoprotein (NP) are
reportedly involved in intracellular transport of viral
proteins [28, 29].

The viral proteins were transformed by the five amino
acid factors and 178 signature positions were screened
by the RF method. Part of the signature positions had
been verified to be related with the mechanism of inter-
species transmission or high efficiency of transmission
among humans, which would rationalize model con-
struction and benefit predicting accuracy. Moreover, the
rest amino acid mutation without trial verification would
facilitate the exploration of molecular mechanisms about
high efficiency transmission among humans.

Performance of the prediction model

The 10-fold cross validation and the receiver operating
characteristic (ROC) curve were used to evaluate the
performance of the classifiers. The area under the ROC
curve (AUC) reveals the optimal parameters in the four
classifiers. As shown in Fig. 1b, the performances were
different obviously. The AUC medians of the Supporting
Vector Machine (SVM) and RF models were almost 1
while that for the K-Nearest Neighbor (KNN) model
were almost 0.5. The KNN model had not good per-
formance and the reason may be the nonlinear predic-
tion rules in feature space. The performance of the
Naive Bayes (NB) classifier was slightly poorer and less
stable than those of the SVM and RF classifiers.
Considering the benefit of small samples and the com-
putation complex, the SVM classifier was selected as the
optimal machine learning model for predicting pan-
demic risk of AIVs.

Contributions of the AA factors

AlVs were characterized by the scores of 178 amino
acid mutations. The five AA factors were associated
with specific physiochemical amino acid properties: po-
larity, secondary structure, molecular volume, codon
diversity, and electrostatic charge. To understand the
importance of the five AA factors, the SVM classifier
was used to evaluate all combination patterns. As
shown in Fig. 2a, most of the stable performances of
the SVM classifier were contributed by AA Factor 5 or
combinations with AA Factor 5. Notably, the median
AUC values were almost 1 and remained stable under



Qiang and Kou BMC Bioinformatics 2019, 20(Suppl 8):288 Page 5 of 11
p
g g
S e =L Do os 00050 o S = = =3
2| FET T TR e O 0P - P P OP0EE ST TFTTTTITTTE
o 6000000 o o o 0 0 0 o o o o ° ° 8 L 8 i
o + o0 © © 0 0 0 °0 ©o + o o L © 0 0 0 0 o ©°o o - o + o 8 ® o ».
o o o © 0 0 0 0 0 ©o © 0 0 0 °o © 0 0 o o o ©o o o o ¥
B 6060006 60600 6 60 06060 60006 o000
& ° 6 60000 o0 6o0o6oo ose 6006060 0 &
o)} o o o © 0 0 o ©°o © o o o ° © 0 o0 o o © 0 0 0 ©0 ©° (o)}
o’ o o o © o o © o o o o o o o 0 o0 ©o © 0 0 o © (o)}
o o o o o o ©o o o o ©o o o o O
o o o © o o o o o o © ©0 0 o o ° o H
o o ©o © 0 0 0 O © o o o © ©0 o o o ©o o H H
°o o © o o o o ° o o o H H
00 o o o o o o o o : :
) ° o ° °3e o o o ss w° ° P
g3 ° O g P
D o © o °o o o o o D o : 3
< © o ©o o " o ” g o < o. ‘
o o o : 3
° P4
N ° o :
D o o H
% ° n H
(=} 0 :
o o [«)} H
S i
° 0
ES S
. o
© 2
]
o (=] °
(a) ~N~W'ﬂﬁﬂzﬁmgngmg§§§§§§§§ggéggggg (b) 10 11 12 13 14 15 16 17 18 19 20
Fig. 2 Contributions of AA factors and different mutation sets. a Performance of SYM classifier for different combinations of the five AA factors.
The x and y coordinates denote the 31 combination patterns and the AUC values (from 0 to 1), respectively. Along the x axis, ‘15" denotes that
the set of 178 amino acid residues was transformed using AA Factor 1 and AA Factor 5 together, for example. b Contributions of mutation
positions for different cutoff values (range 10-20). The y coordinate shows the AUC values

AA Factor 5 alone. The performances of the SVM clas-
sifiers under AA Factor 1, or AA Factor 2 alone were
not as good as AA Factor 5. These results indicate an
important role for AA Factor 5 in the mechanism of
AlIVs transmission. Therefore, AA Factor 5 was employed
in further analysis.

Contributions of the mutation sets

One hundred seventy-eight mutation sites were achieved
under a cutoff value of 10 as mentioned above. To fur-
ther explore the minimum mutations set associated with
transmission efficiency, the cutoff value was adjusted
and was incremented in steps of 1. The SVM classifier
was still calculated with the five AA factors together. As
shown in Fig. 2b, the SVM classifier destabilized at
higher cutoffs and achieved stable and best performance
at cutoffs 13. The performance of the SVM classifier
with AA Factor 5 alone was also calculated for different
cutoffs. As shown in Fig. 3a, the SVM classifier per-
formed stably and well up to a cutoff of 17 and the best
performance was achieved at cutoff 13, which giving 63
signature positions (Table 2). These 63 signature resi-
dues were regarded as the minimum mutation set of
amino acid residues and were transformed by AA
Factor 5 alone to show the pattern of avian and hu-
man influenza viruses by the multidimensional scaling
method [see Additional file 2].

The distribution of human and avian influenza virus in
two dimensions were shown in Fig. 3b. In the view of pan-
demic risk, most of avian viruses were cluster at the low left
while human viruses formed three separate clusters at the

right. Avian influenza virus 1 (EPI_ISL_64953, A/turkey/
NC/353568/2005, H3N2), 2 (EPI_ISL_3141, A/Duck/
Nanchang/4—184/2000, H2N9) and 3 (EPI_ISL_3362,
A/duck/NC/91347/2001, HIN2) were closed to the
human viruses, which should be strictly supervised in
the future. The viruses in group 4 were composed by
seasonal human and avian virus of H3N2 subtype iso-
lated from 2005 to 2013 in North America (Fig. 3c),
which suggested that direct interspecies transmission
once occurred.

As shown in Table 2, the 63 signature positions were
screened with the cut-off value 13. The nucleoprotein
(NP) contained the largest number of signature positions
(12 amino acid residues; about 12/63 = 19%), suggesting
that NP is very important for host range of influenza
virus [1]. The HA protein contained the similar number
of signature positions to the NP protein (11 amino acid
residues; about 11/63 =17%), which further confirmed
that HA is very important for highly efficient transmis-
sion of AIVs among human. Although amino acid muta-
tions in the HA protein are essential for AIV
transmission in mammals [14—19], mutations in other
proteins are also necessary and should be further veri-
fied by trials [14, 15, 20]. Mutations distribution in dif-
ferent viral proteins suggested that the role of synergy
and nonlinearity among viral proteins should be focused
in the study of AIVs.

Pandemic risk of human-origin AlVs
It was supposed that potential pandemic may be trig-
gered by the reassortment of viral genomes [1], which
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5 10

means that genome segments of human viruses (exclud-
ing the HA segment) were inserted into the genome of
AIVs. To value the pandemic risk of human-origin AIVs,
the artificial stimulation of genome reassortment be-
tween human-origin AIVs and human influenza viruses
(seasonal human virus and 2009 pandemic virus) was
performed. As shown in Table 3, three or four genome
segments were needed at least to achieve the change of

transmission phenotype with high probability (> = 0.90).
The computing results were compatible with the reports
from Zhang Y., et al. 2013 [20]. It should be notable
that there was high pandemic risk for H7N9 virus
(only three segments needed) and HIN2 virus (flex-
ible patterns of genome reassortment), which was
very important for the surveillance of avian influenza
virus in the future.
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Table 2 Minimal amino acid set for predicting AlVs

Num Pro® Pos® Score Num Pro Pos Score Num Pro Pos Score
1 PB2 61 14.04 22 PA 337 13.50 43 NP 345 13.40
2 PB2 105 13.20 23 PA 552 1633 44 NP 357 21.26
3 PB2 271 2113 24 HA 12 14.87 45 NP 422 14.84
4 PB2 323 20.77 25 HA 110 17.94 46 NP 442 18.71
5 PB2 391 13.25 26 HA 160 16.89 47 NA 247 1748
[§ PB2 475 16.03 27 HA 189 13.15 48 M1 30 16.61
7 PB2 588 14.51 28 HA 190 19.80 49 M1 115 16.49
8 PB1 99 16.40 29 HA 193 13.31 50 M1 116 19.25
9 PB1 336 14.27 30 HA 224 16.94 51 M1 209 14.74
10 PB1 361 13.80 31 HA 225 14.94 52 M1 214 16.99
" PB1 375 13.66 32 HA 226 15.14 53 M2 27 1413
12 PB1 581 19.70 33 HA 228 15.09 54 M2 43 13.76
13 PB1 741 1447 34 HA 393 1332 55 M2 66 1329
14 PB1_f2 27 13.74 35 NP 33 15.12 56 M2 78 17.00
15 PB1_f2 60 14.89 36 NP 99 2249 57 M2 86 1540
16 PB1_f2 78 13.81 37 NP 100 18.84 58 M2 93 1845
17 PB1_f2 83 14.22 38 NP 136 13.19 59 NS1 60 13.19
18 PA 28 1642 39 NP 190 13.23 60 NS1 81 14.88
19 PA 55 13.03 40 NP 283 17.10 61 NST 114 1345
20 PA 94 13.02 41 NP 305 20.80 62 NEP 70 18.26
21 PA 277 1417 42 NP 313 16.72 63 NEP 107 14.74

2Viral protein; PPosition of amino acid residue as H3 subtype numbering

Discussion

Avian influenza viruses can cross the species barrier, po-
tentially causing a human pandemic. In this paper, AIV
pandemic risk was predicted by the SVM model with ex-
cellent performance. We firstly screened 178 mutation
positions in the 11 viral proteins by the RF method. Part
of the residues at these positions have been related to in-
terspecies transmission in earlier reports, such as
HA158, HI163, HA189, HAI190, HA224, HA226,
HA228H [14-16, 18], H163 [17], HA94, HA101,
HA327, HA367, and HA393 [24], M2 93, M2 95 [27],
NP372, NP375 [28, 29], PB2 627 [26], which guarantee
the accuracy and the biologically meaningful of the pre-
dicting model. The proposed models provide important
clues for future surveillance in the field of virology and

Table 3 Artificial simulation of genome reassortment

is a useful pre-screening tool for phenotype screening in
high-level biological safety laboratories.

Amino acid mutations in the HA protein are essential
for highly efficient transmission in mammals [16], but
mutations in other viral proteins are also necessary [14,
15]. Mutations in different proteins introduce synergy
and nonlinearity among these viral proteins, which was
supported by the results in the paper. The linear classi-
fier (the KNN model) showed poor predictive perform-
ance on the initial set of 178 signature positions.
Moreover, the minimal signature position set was com-
posed by 63 amino acid residues and distributed among
different viral proteins as shown in Table 2. This syner-
gistic effect should be notable in further study. More-
over, the NP protein contained the largest number of

Human-origin AlV Human influenza virus Probability Genome segment
A/Egypt/682/2015_H5N1 A/Ohio/09/2015_H1N1 0.90 seglseg3seg5seg’
A/Zhejiang/9/2015_H7N9 A/Ohio/09/2015_H1N1 091 seglseg5seg’

A/Hunan/44558/2015_HIN2 A/Ohio/09/2015_H1N1 094 seglseg2segbseqg’
A/Hunan/44558/2015_HIN2 A/Ohio/09/2015_H1N1 093 seglseg3seg5seg’
A/Hunan/44558/2015_HON2 A/Ohio/09/2015_H1N1 091 seglseg5seg7seg8

A/Hunan/44558/2015_HIN2

A/Sichuan/1/2009_H1N1

091 seglseg2seg5seg’
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signature positions (12 amino acid residues; about 12/
63 = 19%), suggesting that NP is very important for host
range of influenza virus [1]. The role of NP protein for
transmission should be focused in the future.

The molecular characteristics of AA Factor 5 are re-
lated to electrostatic charge with high coefficients on
isoelectric point and net charge [21]. Electrostatic charge
is strong related with the binding of biology molecules,
such as the binding between viral surface protein and
host receptor, the binding between viral enzyme and
host molecules. The poor performance of other four fac-
tors may suggest that host receptor binding, and viral
polymerase activity play key roles for the adaption of hu-
man host and transmission of avian influenza virus with
high efficiency.

Four popular classifiers were used to predict the pheno-
type of AIVs. With the empirical parameters, the SVM
model achieved well performance while KNN not. The
KNN parameters were adjust from k=1 to 20 and the

( Construct high-quality )
dataset

Transform protein sequence
with five AA factors separately

v

Score AA mutation with random
forest method

v

Select signature position set to
model four classifiers

v

Evaluate classifier performance
with ten fold cross validation

v

Evaluate five AA factors and minimize

mutation set

Artificial simulation of genome
reassortment

Fig. 4 Flowchart of machine learning algorism used in the paper
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performance was still not good. The reason may be that
the size of data was not adequate for the dimension of fea-
ture vector. In the paper, all of the 1783 influenza viruses
in the final dataset were represented by a 178 x 5 =890
dimension vector. The KNN algorism had weak perform-
ance for our data.

As shown in Table 3, three or four genome segments
were needed for H7N9 and HIN2 virus to achieve the
change of transmission phenotype with high probability
(> =0.90), which was very important for the surveillance
of AIVs in the future. Moreover, when avian and human
virus with the predicted genome pattern were founded
in the same region or in the same case, the pandemic
risk should be notable.

Conclusions

The 178 signature mutations in 11 viral proteins were
firstly screened by the random forest model. AIV pan-
demic risk was predicted by the SVM model with excel-
lent performance. Although long evolution distance
between avian and human influenza suggested that avian
influenza virus in nature still need long time to fix
among human, it should be notable that there are high
pandemic risks for H7N9 and HIN2 AIVs. The novel
findings in the paper provide important clues for pan-
demic surveillance.

Methods
Dataset
The genome data of 16,551 influenza viruses isolated
from nature were collected from the EpiFlu public
database [30, 31] and those of six artificial H5N1 vi-
ruses with pandemic risk were collected from the ref.
[14], which were processed and modeled using mul-
tiple public bioinformatics tools and algorithms as
shown in Fig. 4. The strains were isolated between
January 1996 and February 2016. The details for data
cleaning are the same as those in the ref. [32-34].
The final dataset for predicting pandemic risk con-
tained two category virus in the view of pandemic risk:
1) 869 high-quality AIV strains with low transmission ef-
ficiency among human: 440 avian-origin AIVs (H1-H14,
H16 subtypes) and 429 human-origin AIVs (H5NI,
H5N6, H7N3, H7N7, H7N9 and HIN2 subtypes); 2) 914
influenza strains with high transmission efficiency
among human: 908 seasonal or pandemic human influ-
enza (HIN1, HIN2 and H3N2 subtypes) and six artifi-
cial H5N1 viruses [14]. Considering the balance of data
size and high similarity of viral protein sequence, sea-
sonal and pandemic human virus in nature should differ
by isolation location, isolation time, or antigen subtype.
The information related to these strains is summarized
in Additional file 1.
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Scoring amino acid mutation

Random Forest is a collection of a large number of deci-
sion trees. The contribution of each feature to each tree
in the random forest were calculated. All of the features
were ranked according to the average of contributions to
all of the trees in the model. The random forest method
is very popularly used for feature selection of prediction
problems and can rank the importance of the features in
a large scale to discriminate the different categories. In
this paper, transmission phenotype of high efficiency was
predicted to evaluate the pandemic risk. Before the con-
struction of classifier models, molecular features associ-
ated with transmission efficiency were firstly screened.
The positive samples (high transmission efficiency) and
negative samples (low transmission efficiency) were
then classified by their importance scores at each
amino acid position.

The RF method was used to screen the signature muta-
tion in the 11 viral proteins [35]. To facilitate the comput-
ing of importance scores, the 11 proteins in each strain
were artificially concentrated as order: Polymerase basic
protein 2 (PB2), Polymerase basic 1 (PB1), The second pro-
tein expressed in the PB1 gene (PB1-F2), Polymerase acidic
protein (PA), Hemagglutinin (HA), Nucleoprotein (NP),
Neuraminidase (NA), Matrix protein 1 (M1), Matrix
protein 2 (M2), Non-structural protein 1 (NS1), Nuclear
export protein (NEP). Numerical sequences of the amino
acid factor were achieved with the transformation of the
artificial protein with the length of 4620 amino acids. Any
deletions or insertions in the protein were replaced by
zeros. All of the viruses were processed sequentially and
were input to the RF model for the ranking of signature
position. Breiman’s random forest algorithm was used as
default. As five factors were used to select the feature and
construct the classifiers, the final importance score at each
position was the sum of five calculations. In brief, highly
scoring positions were important for distinguishing positive
and negative samples. Signature positions with high scores
were regarded as important amino acid mutations associ-
ated with the phenotype of highly efficient transmission.

Constructing the predicting model

Two-class model was constructed to predict and
evaluate the pandemic risk of AIVs in the paper. After
the ranking of amino acid mutations in all of the 11
viral proteins, each strain was represented as a nu-
meric vector of length 5N, where N is the length of
the screened amino acid residue set. The pandemic
risk was then predicted by four popular machine learn-
ing models: 1) Support vector machine [36]. The opti-
mal hyperplane is determined with the regularization
parameter C (C=1) and the radial basis function
(RBF) as default. 2) Random forest [35]. The RF model
was implemented with the default parameter in the
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package. 3) Naive Bayes [36]. The NB model was also
implemented with the default parameter in the pack-
age. 4) K-nearest neighbor [37]. The KNN classifier is
a nonparametric method to determine a sample cat-
egory by a majority vote of its neighbors; the number
of neighbors in this paper was set to be 3 (k = 3). All of
the four classifiers were implemented in the R envir-
onment and related packages.

Evaluating the performance of different classifiers

All of the four models were trained on 823 positive sam-
ples (high transmission efficiency) and 782 negative
samples (low transmission efficiency) randomly selected
from the cleaned dataset of influenza virus. The remaining
10% of samples (91 positive and 87 negative samples) were
reserved as an independent test dataset for assessing the
performances of the classifiers. The 10-fold cross validation
and the receiver operating characteristic curve were used
to evaluate the performance of the SVM, NB, RF and KNN
classifiers. The area under the ROC curve reveals the opti-
mal parameters in the four classifiers. To compare the clas-
sifier performances, we repeated the evaluation process
100 times and plotted the distributions of the resulting
AUC values. The AUC was calculated in R [38]. The AUC
value ranges from O to 1. The performance and robustness
of the four classifiers was evaluated by the AUC values and
its distribution. The 1783 influenza viruses in the final
dataset were shown by the multidimensional scaling
method in R [37].

Artificial simulation of genome reassortment

As human influenza virus and human-origin avian influ-
enza virus existed simultaneously in nature, mix infec-
tion in one case could cause the occurrence of pandemic
virus by the mechanism of genome reassortment [20].
The perfect SVM classifier was used to analysis the arti-
ficial stimulation of genome reassortments between
three human-origin AIVs and three human viruses. The
artificial data were treated and predicted as above. Platt
scaling was used to transform the output of the SVM
model into a probability over two classes and evaluated
the pandemic risk of genome reassortment viruses.

In the paper, three human viruses with high effi-
ciency of transmission in positive samples: A/Ohio/
09/2015 (EPI_ISL_179403; HI1N1), A/Wisconsin/13/
2015 (EPI_ISL_176723; H3N2), and A/Sichuan/1/2009
(EPI_ISL_30411; HIN1; 2009 pandemic swine virus)
and three human-origin avian viruses with low effi-
ciency of transmission in negative samples: A/Egypt/
682/2015 (EPI_ISL_195659; H5N1), A/Zhejiang/9/
2015 (EPI_ISL_192505; H7N9) A/Hunan/44558/2015
(EPI_ISL_203644; HIN2) were used.
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