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Abstract

Background: Regularized generalized linear models (GLMs) are popular regression methods in bicinformatics,
particularly useful in scenarios with fewer observations than parameters/features or when many of the features are
correlated. In both ridge and lasso regularization, feature shrinkage is controlled by a penalty parameter A. The elastic
net introduces a mixing parameter « to tune the shrinkage continuously from ridge to lasso. Selecting « objectively
and determining which features contributed significantly to prediction after model fitting remain a practical challenge
given the paucity of available software to evaluate performance and statistical significance.

Results: eNetXplorer builds on top of glmnet to address the above issues for linear (Gaussian), binomial (logistic), and
multinomial GLMs. It provides new functionalities to empower practical applications by using a cross validation
framework that assesses the predictive performance and statistical significance of a family of elastic net models (as « is
varied) and of the corresponding features that contribute to prediction. The user can select which quality metrics to
use to quantify the concordance between predicted and observed values, with defaults provided for each GLM.
Statistical significance for each model (as defined by &) is determined based on comparison to a set of null models
generated by random permutations of the response; the same permutation-based approach is used to evaluate the
significance of individual features. In the analysis of large and complex biological datasets, such as transcriptomic and
proteomic data, eNetXplorer provides summary statistics, output tables, and visualizations to help assess which
subset(s) of features have predictive value for a set of response measurements, and to what extent those subset(s) of
features can be expanded or reduced via regularization.

Conclusions: This package presents a framework and software for exploratory data analysis and visualization. By
making regularized GLMs more accessible and interpretable, eNetXplorer guides the process to generate hypotheses
based on features significantly associated with biological phenotypes of interest, e.g. to identify biomarkers for
therapeutic responsiveness. eNetXplorer is also generally applicable to any research area that may benefit from
predictive modeling and feature identification using regularized GLMs. The package is available under GPL-3 license at
the CRAN repository, https://CRAN.R-project.org/package=eNetXplorer.
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Background

Rigorous, exploratory analysis for the identification of cor-
relates and predictors in a multi-parameter/feature setting
is needed in a variety of contexts, especially in systems
biology where data involving a large number of parame-
ters are highly prevalent. Oftentimes, bioinformatics anal-
ysis in such settings involves generalized linear models
where observations (N) are outnumbered by parame-
ters/features (p) measured. This class of problems can
be addressed by the elastic net [1], which uses a mixing
parameter « to tune the number of features used in the
model continuously from ridge (¢ = 0) to lasso (@ = 1).

Algorithmically, the elastic net was efficiently imple-
mented by the package glmnet, a coordinate descent algo-
rithm [2, 3] that, for each «, generates an entire path of
solutions in the regularization parameter A, which con-
trols the penalty for using more parameters. While the
choice of A is usually guided by prediction performance
using cross validation, « is often viewed as a higher-level
parameter and chosen based on more subjective grounds
[3]. Lasso generates parsimonious solutions in that a small
number of predictor variables are selected from a large
number of input parameters, particularly useful in p > N
scenarios; however, in the presence of complex correla-
tion structures among input variables (or degeneracies),
lasso can arbitrarily pick one as a predictor among a set
of correlated variables and ignore the rest. This charac-
teristic may lead to models that are idiosyncratic of the
input data set, as opposed to more robust solutions cap-
turing relevant signals, or it may even lead to unstable
solutions in some extreme cases [3]. On the contrary, ridge
regression promotes redundancy by shrinking correlated
features towards each other, thus allowing information to
be borrowed across them.

In multi-parameter exploratory analysis where the pri-
mary goal is to generate hypotheses, e.g. to assess which
variables correlate with a biological phenotype of interest,
it is desirable to examine the entire family of elastic net
models spanning the range from ridge to lasso. In this sce-
nario, an objective, quantitative framework is needed to
assess the statistical significance of individual models and,
within each model, that of individual parameters/features.
Towards this goal of transforming large-scale data sets
into biological hypotheses, this paper introduces eNetX-
plorer, an R package providing a quantitative framework
to explore elastic net families for generalized linear mod-
els (GLM). In the current version, three important GLM
types are implemented: linear regression, two-class logis-
tic, and multinomial classification. In future releases, we
plan to extend it to other GLM types such as Poisson
regression and the Cox model for survival data.

eNetXplorer is built on top of the existing R pack-
age glmnet and provides new functionalities to empower
practical applications, including evaluating the statistical
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significance of a family of fitted models and the cor-
responding features that contributed significantly to
prediction via a cross validation framework. Both bioin-
formaticians and biologists can utilize our package to help
transform data into biological insights, for example, to
help answer which biological variables, often out of a large
number in the current age of large-scale ‘omics’ datasets,
provide predictive information about an outcome variable
(e.g., drug responses). Furthermore, our package provides
a set of standard plots, summary statistics, and output
tables to enable the visualization and interpretation of
the results, thus making regularized GLMs more read-
ily accessible to a larger user base of diverse scientific
backgrounds.

Figure 1 provides a conceptual schema of eNetXplorer
in the context of GLM regularization. Multiple datasets
of size N x p; (d = 1,..,D) can be aggregated into an
input matrix N x p, where p = ZdD:lpd (Fig. 1 (a)).
In p > N scenarios, such as (but not limited to) typi-
cal single- and multi-omics datasets, regression analysis
requires regularization models such as ridge and lasso
(Fig. 1 (b)). The elastic net provides an integrated frame-
work to analyze the full regularization path from ridge
to lasso; however, there remained a number of issues
ranging from model selection and assessing statistical sig-
nificance of individual models to feature selection and
their statistical significance (Fig. 1 (c)). By generating null-
model ensembles via random permutations of the sample
label of the response variable (Fig. 1(d1)), eNetXplorer
addresses these issues (Fig. 1(d2—4)). Although the empha-
sis of our presentation is placed on biomedical applica-
tions, for which high-throughput technologies such as
DNA/RNA sequencing, deep-phenotyping flow and mass
cytometry, as well as highly multiplexed proteomics typ-
ically generate p > N datasets, eNetXplorer is generally
applicable to datasets beyond biomedicine. The accom-
panying vignette (Additional file 1) illustrates in detail
the application of eNetXplorer to synthetic datasets with
different feature/response covariance structures, which
further highlight the flexibility of our approach in a variety
of scenarios.

Implementation
eNetXplorer generates a family of elastic net models for
multiple values of & from ridge (¢ = 0) to lasso (¢ = 1).
Figure 2 shows a flowchart of the algorithm’s implementa-
tion. The algorithm is composed of three main modules:
(a) model building, (b) null model building, and (c) model
vs null comparison, which are sequentially executed for
each value of o; at the end, the results are integrated across
«a for downstream analysis and visualization.

In the model building module (Fig. 2 (a)), a
set of m; values is obtained using the full data;
independently from #,, the user may also specify a
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Fig. 1 Conceptual schema of eNetXplorer. (@) One or more datasets can be aggregated into an N x p input matrix. Depending on the GLM of
interest, the response is a numeric vector (linear), 2-class factor (binomial) or multi-class factor (multinomial). (b) Ridge and lasso implement different
regularization penalty terms, which are tuned by the regularization parameter A. (€) The elastic net introduces the mixing parameter « as a
continuous tuner from ridge to lasso. (d) eNetXplorer generates a null-model ensemble via random permutations of the response (dy), which
allows the quantitative exploration of elastic net families by assessing the statistical significance of each model (d3), the feature-level significance

value for n§* > n, to extend the range of A values

symmetrically while keeping its density constant in log
scale. For each A, elastic net cross-validation models are
generated for #, runs, where each run randomly assigns
instances (i.e. the N measured samples/observations)
among 7y folds. The chosen regularization A* is deter-
mined by maximizing a quality function (QF) that
compares the out-of-bag (OOB, i.e. not used in training)
predicted response against the observed response. User-
defined QFs can be provided. Otherwise, GLM-specific
defaults are used: for linear regression, the default QF is
correlation (where the user can choose among Pearson’s,
Spearman’s and Kendall’s methods); for binomial models,
it is accuracy; and, for multinomial models, average accu-
racy. For the latter two, the QF defaults are chosen based

on the property of invariance under class label permuta-
tions. Other popular performance measures implemented
are precision, recall (sensitivity), F-score, specificity, and
area-under-the-curve, which are not invariant under
class label permutations [4], but may be useful for some
applications. Any of these performance measures can be
selected as QF by the end user.

Individual features are characterized by their distribu-
tion of model coefficients across cross-validation itera-
tions, which we summarize by the following measures.
From the feature frequency per run, v; .., defined as
the fraction of folds (within a run) for which the given
feature was assigned a non-zero model coefficient, we
derive the mean and standard deviation of feature fre-
quency (averaged over all runs). Similarly, we define the
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Fig. 2 Flowchart of the algorithm'’s implementation. The algorithm consists of three main modules: (@) model building, (b) null model building, and
(€) model vs null comparison, sequentially executed for each value of «; at the end, the results are integrated across « for downstream analysis and
visualization. Abbreviations used: in-bag (IB), out-of-bag (OOB), quality function (QF). More details provided in the Implementation section

feature coefficient per run, k] .., as the mean of non-
zero model coefficients across all folds in the run. We
perform a weighted average over all runs, where weights
are w' o v; .., to determine the weighted mean and
weighted standard deviation of the feature coefficient.

A key aspect of eNetXplorer is the generation of an
ensemble of null models associated with each («¢—specific)
member of the elastic net model family, which is accom-
plished by the null model building module (Fig. 2 (b)).
Each one of n, runs are assigned into folds (based on
the same fold assignments used previously) and #, null
models per run are generated by randomly shuffling the
sample labels of the response; for each permutation, the
overall OOB performance of the null model is evaluated
via the QF, whereas the contribution of individual features
is characterized by v'” , and k" following analogous

nul null’
definitions to those given above.

The empirical statistical significance of a model, imple-
mented by the model vs null comparison module (Fig. 2
(¢)), is hence determined as

ny Mp

1+ Z Z e (QF}:fll - QF:nadel) ’

r=1 p=1

Pval = m

(1)

where O is the right-continuous Heaviside step function.
For sampling permutations with replacement, this expres-
sion provides a conservative estimate [5]; expressions for
the exact p-value, as well as numerical approximations
thereof, are provided by Ref. [6].

As discussed above (recall Fig. 1), eNetXplorer aims to
tackle the following questions that remained unaddressed
by the elastic net framework implemented in glmnet:
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e Which « provides the best-performing regularized
model?

e What is the statistical significance of the predictive
performance for each model across different a?

e For each «, what is the statistical significance, in
terms of contribution to prediction, of individual
features included in the model? And how does the
statistical significance change across o?

In order to address these questions, eNetXplorer gener-
ates quantitative results and provides a variety of standard
plots (Figs. (3)-(6)) that enable their interpretation.

Let us highlight a few key graphical outputs of our pack-
age, generated by the use case studies below, wherein
further details on the data and goals of the analyses can be
found. Model performance results are visualized by a sum-
mary plot, which shows the average OOB QF (red plot, left
axis) and the model vs null p-value significance (blue plot,
right axis) spanning the full range of « values for the exam-
ple discussed below (Fig. 3 (a) and (b)) shows the lasso
QF vs X profile and the chosen A* (dashed line); using this
A*, (Fig. 3 (c)) shows OOB predictions vs response for all
observations in the dataset.

Replacing QF in Eq. (1) by v or |«|, our framework
also provides empirical p-value estimates of the impor-
tance and statistical significance of individual features.
Caterpillar plots are generated to display the top features
ranked by their importance, in which significance thresh-
olds are indicated by customary dot and asterisk annota-
tions. Figure 4 (a) shows the top features ranked according
to statistical significance based on the frequency at which
each feature is selected across cross validation iterations;
red symbols and bars represent the mean and standard
deviation of the model feature frequency, while those for
the null model are displayed in blue. Similarly, Fig. 4 (c)
shows the top features ranked according to statistical sig-
nificance of feature coefficients. While caterpillar plots
show the top-ranking features for a single value of «,
eNetXplorer also generates heatmaps of feature frequen-
cies (Fig. 4 (b)) and feature coefficients (Fig. 4 (d)) across
all e—models.

The same analysis strategy can be applied to any GLM
in a similar fashion; two additional plot types are avail-
able to display results for binomial and multinomial clas-
sification models. Figures 5 (a)-(c) illustrate graphical
representations of the contingency table for a multino-
mial classification analysis performed by eNetXplorer.
Figures 5 (b)-(d) show boxplot representations of the OOB
predictive accuracy for each class of samples, which can
be thought of as the categorical counterparts of Fig. 3
(c) for linear regression. Figures (3)-(6) were generated by
functions provided by eNetXplorer; these functions can
be called with custom graphics parameters. The package
also includes additional methods to provide summary
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and data export functionality to facilitate downstream
analysis.

Results

Linear regression case study: Predicting HIN1 influenza
titers upon vaccination

Figures (3)-(4) illustrate a typical eNetXplorer workflow
to assess predictive models and parameters in the context
of predicting antibody responses to HIN1 influenza vac-
cination using cell frequency data from Ref. [7] (included
in the package). Here we focus on day 7 data (specifically,
log fold-change from the baseline, i.e. log(day7)-log(day0))
to predict the antibody response on day 70. The over-
all model performance across the entire elastic net family
is summarized in Fig. 3 (a), which shows that the statis-
tical significance against the null model is p ~ 0.1 for
o =~ 0.35 and increases monotonically towards the lasso
(p ~ 0.05). Based on the assessment for this specific
dataset, we will focus our discussion on the lasso solution;
however, it is useful to retain the ability to examine param-
eters for other values of «, which may pick up additional
informative predictors and thus could provide further
biological insights. It should be noted that the model-
level statistical significance across « is dataset-specific;
the accompanying vignette (Additional file 1) discusses
varying effects of regularization on model performance,
which arise in different scenarios of predictor/response
covariance structure.

For « = 1, Figure 3 (b) shows the QF vs A profile and
the chosen A* (dashed line) that was used to build the
solution for this particular value of «. If, instead of dis-
playing a well defined maximum, this profile happened to
appear flat or monotonically increasing/decreasing, this
could suggest that the range of X is insufficiently large and
needs to be extended via 7$*, which is functionality imple-
mented in eNetXplorer for this purpose. If the profile
continues to appear flat or monotonic, that may suggest
that the model is a poor fit to the data. Figure 3 (c)
shows OOB predictions vs response for individual sub-
jects. The positive correlation (r = 0.24) suggests that
some cell populations at day 7 may indeed be informative
of the antibody response after vaccination, although the
substantial width of the 95% confidence interval (shown
in light blue) suggests a weak statistical significance.
This plot also highlights outliers such as subject ‘s244;
which appears with a large standard deviation and far
from the region of correlation, which may be due to
other covariates, such as demographic, clinical, or tech-
nical factors, not taken into account in the model.
Note that in this illustrative analysis all subjects were
used and the antibody response (as captured by the
adjMFC metric [7]) was modeled as a continuous vari-
able in the linear regression. In the original publication
[7], the analysis focused on building predictive models
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predictions and the response. (b) Selection of A by QF maximization (¢ = 1). (c) Scatterplot of response vs out-of-bag predictions across all subjects

and finding predictive parameters for high vs. low respon-
ders.

The caterpillar plot of Fig. 4 (a) displays the top 15 cell
populations ranked by model vs null significance accord-
ing to feature frequency; the top features thus obtained are
plasmablasts (p < 0.01) and IgD-CD38+ B-cell memory
(»p < 0.05), which were both reported as day 7 predic-
tors in the original publication [7]. Figure 4 (b) shows
these same top features (which were chosen based on the

lasso solution) in the larger context of the entire elastic
net family. Frequencies are trivially equal to 1 for ridge
(¢ = 0), thus none appears as significant compared to
the null; however, as « is increased, we observe the selec-
tion of several features that gradually decrease statistical
significance towards the lasso. A complementary view is
offered by the feature coefficient caterpillar plot (Fig. 4
(c)) and corresponding heatmap (Fig. 4 (d)), which show
the direction (plus or minus sign) in which a given cell
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subpopulation affects the titer response. Taken together,
feature frequency and feature coefficient maps point to
potentially predictive cell populations, including those
positively correlated with the titer response (plasmablasts,
IgD-CD38+ memory B, CD25+ activated T cytotoxic) and
others negatively associated with the titer response (HLA-
DR+ activated monocytes, IFNa+ plasmacytoid dendritic
cells, CD8+Perforin+ T cytotoxic, effector memory T
helper).

Multinomial classification case study: Uncovering
microRNA signatures of acute leukemia subtypes
Figures (5)-(6) present eNetXplorer results for multinomial
models from a study of microRNA(miR)-based signatures
of acute myeloid leukemia (AML) in contrast to B-cell
(B-ALL) and T-cell (T-ALL) lymphoblastic leukemias [8],
where features correspond to 370 miRs measured in mul-
tiple cell lines and primary leukemia samples. The full
dataset is included in the package; details on data process-
ing following Ref. [8] are provided in the accompanying
vignette (Additional file 1).

Figures 5 (a)-(c) display the contingency matrix with
the average number of instances predicted for each
acute leukemia type; Figs. 5 (b)-(d) show boxplot

representations of OOB predicted samples in each class.
The top panels correspond to ridge (¢ = 0), while
the bottom panels correspond to slightly more regular-
ized models (¢ = 0.2). The contingency matrix for
ridge, Fig. 5 (a), shows a good overall OOB classifi-
cation performance, although with some misclassifica-
tions across the lymphoblastic classes; Fig. 5 (b) displays
predictions for individual samples. By increasing fea-
ture shrinkage, performance is quickly increased and the
model is able to classify most samples correctly, as shown
in Fig. 5 (c)-(d). It is important to note that these results
are based on a large number of cross validation itera-
tions, where (for each run and for each fold within the
run) a model was built using the in-bag, training data only,
and the model was then applied to generate predictions
on unseen, out-of-bag samples, followed by assessing the
concordance between the predicted and known response
(class labels). This process is free of data leakages since
the training and testing sets are independent, thus miti-
gating the risk of having biased accuracy estimates due to
overfitting.

For multinomial models, feature significance is sepa-
rately assigned to each class. For AML, we observe that
the top features selected by lasso are miR-27a, miR-223,
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and miR-145 (Fig. 6 (a)), which agree with the most con-
nected miRs in the cell-line based AML-centric dyad
networks reported in Ref. [8]. By considering less reg-
ularized models (i.e. for smaller values of «), miR-23a,
miR-24, and other related miRs showed up as signifi-
cantly associated with AML. miR-27a is co-localized in
mammalian genomes with miR-23a and miR-24 and they
form the so-called ‘miR-23a’ cluster, which was reported
to be misregulated in multiple cancers; similarly, miR-145
was shown to be involved in proliferation and differen-
tiation of hematopoietic cells and to be altered during
leukemogenesis [9]. This example illustrates the ability of
eNetXplorer to help explore AML signatures ranging from
a minimal, informationally non-redundant set of mark-
ers (which can be useful prototypes of a diagnostic panel)
to a larger, correlated set of signals (which can provide
biological insight and guide the formulation of testable
hypotheses). For B-ALL, we observe that miR-146a, miR-
708, miR-629 and other significant miRs in the elastic net
family (Fig. 6 (c)-(d)) were also reported as hubs in B-
ALL-centric network ensembles [8]. Most notably, quan-
titative reverse transcription polymerase chain reaction

(qRT-PCR) analysis of relative miR-708 expression lev-
els showed that it could be a good biomarker for B-ALL
[8]. Similarly, the most significant, differentially expressed
miRs for T-ALL previously reported are recapitulated, at
various degrees of parsimony controlled by « (Fig. 6 (e)-
(£)). Beyond their potential role as diagnostic biomarkers,
some of these differentially expressed microRNAs have
been reported as clinically informative in the context of
prognosis and treatment response in chronic and acute
leukemia patients [10].

Discussion

In a biomedical context, observations are associated
with biological samples (derived from patients, model
organisms, or cell lines), features are cellular and
molecular measurements obtained from those sam-
ples (as well as demographic and clinical informa-
tion associated with the subjects) and responses are
categorical or numerical representations of phenotype,
diagnosis, prognosis, or outcome (i.e. response to inter-
ventions). The number of available observations (N) in
a study is severely constrained by limiting factors such
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as subject enrollment, ethical, financial and logistic con-
siderations; on the contrary, the number of features per
observation (p) enabled by state-of-the-art biotechnology
assays and electronic health records is ever increasing. As
represented by the conceptual schema of Fig. 1, regres-
sion models in these pervasive p > N scenarios require

regularization; the elastic net provides a framework to
generate mixed-regularization model families. In this con-
text, eNetXplorer plays a critical role by providing a quan-
titative assessment of model and feature performance, as
well as of their statistical significance; it is to be viewed as
the compass to navigate the regularization path.
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In order to illustrate applications of eNetXplorer
to real biomedical datasets, we presented two case
studies. In the first one, we found cell populations
that may explain the antibody response to HIN1
influenza vaccination. In the second study, we found
micro-RNAs that may play key roles in leukemoge-
nesis, and/or may be utilized as biomarker signa-
tures. As discussed above, while some of the findings
were validated by existing literature, others suggest
novel associations that remain to be further explored.
Naturally, regression models alone are unable to eluci-
date the molecular mechanisms at play; their role is that
of showing (potentially novel) associations in large and
complex datasets, thus aiding field experts in the pro-
cess of formulating hypotheses and suggesting further
experiments to confirm or rule out those hypotheses.

Lastly, let us emphasize that eNetXplorer, although pri-
marily conceived in the context of biomedical research,
it is generally applicable to other research areas as well.
The accompanying vignette (Additional file 1) illustrates
eNetXplorer workflows of general applicability.

Conclusions

Uncovering correlates and predictors in a multi-
parameter setting is an ubiquitous problem in systems
biology. In this context, regularized generalized linear
modeling is a popular approach due to its flexibility, but it
is often desirable to retain the ability to explore different
levels of regularization and examine elastic net families
that span the full range from ridge to lasso.

Our package is built on top of glmnet to provide
novel functionalities that neither glmnet itself, nor (to
the best of our knowledge) other currently available
software packages provide. Importantly, one of the most
valuable new functionalities our software enables is to
empower biological applications in real-world settings
to address one of the most frequently asked questions:
which biological variables, often out of a large number
in the current age of large-scale ‘omics’ datasets, provide
predictive information about an outcome variable (e.g.
diagnosis, vaccination efficacy, drug/treatment response,
etc.)? Specifically, both the null model evaluation
functions (based on response label permutations) that
quantitatively assess which parameters are important
and statistically significant for prediction, as well as a
set of functions for visualization of these results across
parameter space provided by our software, are novel
and provide a systematic framework to rigorously assess
parameter significance.

Thus, eNetXplorer aims to make regularization
approaches to generalized linear modeling more readily
available to a larger user base of diverse scientific
background in order to transform large-scale data sets
into biological hypotheses and insight.
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Availability and requirements
Project name: eNetXplorer
Project home page:
package=eNetXplorer
Operating system(s): Platform independent
Programming language: R (> 2.10)

Other requirements: R packages glmnet, stats, Matrix,
RColorBrewer, calibrate, progress, graphics, methods,
grDevices, gplots

License: GPL-3

Any restrictions to use by non-academics: none

https://CRAN.R-project.org/

Additional file

Additional file 1: eNetXplorer vignette. Detailed description of
eNetXplorer's workflow applied to synthetic datasets with different
feature/response covariance structures. Descriptions of real datasets
distributed with the package and analyzed in the Results section of this
paper are also provided, as well as a Summary with the key aspects of
eNetXplorer. (PDF 318 kb)
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GLM: Generalized linear model; QF: Quality function; OOB: Out-of-bag; miR:
Micro-RNA; AML: Acute myeloid leukemia; B-ALL: B-cell acute lymphoblastic
leukemia; T-ALL: T-cell acute lymphobilastic leukemia
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