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Abstract

previously known cytometric populations.

diversity.

Background: Flow cytometry (FCM) is one of the most commonly used technologies for analysis of numerous
biological systems at the cellular level, from cancer cells to microbial communities. Its high potential and wide
applicability led to the development of various analytical protocols, which are often not interchangeable between
fields of expertise. Environmental science in particular faces difficulty in adapting to non-specific protocols, mainly
because of the highly heterogeneous nature of environmental samples. This variety, although it is intrinsic to
environmental studies, makes it difficult to adjust analytical protocols to maintain both mathematical formalism and
comprehensible biological interpretations, principally for questions that rely on the evaluation of differences between
cytograms, an approach also termed cytometric diversity. Despite the availability of promising bioinformatic tools
conceived for or adapted to cytometric diversity, most of them still cannot deal with common technical issues such as
the integration of differently acquired datasets, the optimal number of bins, and the effective correlation of bins to

Results: To address these and other questions, we have developed flowDiv, an R language pipeline for analysis of
environmental flow cytometry data. Here, we present the rationale for flowDiv and apply the method to a real dataset
from 31 freshwater lakes in Patagonia, Argentina, to reveal significant aspects of their cytometric diversities.

Conclusions: flowDiv provides a rather intuitive way of proceeding with FCM analysis, as it combines formal
mathematical solutions and biological rationales in an intuitive framework specifically designed to explore cytometric

Keywords: Flow cytometry, Cytometric diversity, R language

Background

Flow cytometry (FCM) is a highly versatile technology
that has been widely applied in various fields, from indus-
trial processes to medical and environmental research
[1-3]. One of the greatest appeals of FCM stems from
its rapid and reliable assessment of detailed information
on single or multiple cells from any given cell population.
This versatility has led to its rapid adoption in different
areas of expertise, resulting in a wide range of applications
and the development of various specialized protocols for
data analysis, which are usually not interchangeable.
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Environmental sciences in particular face difficulty in
adapting non-specific protocols to their context, mainly
because of the highly heterogeneous nature of environ-
mental samples [4, 5]. However, this heterogeneity is cen-
tral to environmental studies, as it reveals much about the
properties of any given community, for instance microbial
communities [4, 5]. Precisely for this reason, the envi-
ronmental FCM community has been directing efforts
to developing methods focused on the depiction of this
heterogeneity through cytograms, a concept presently
explored under the closely related names of “cytometric
pattern” [6], “cytometric fingerprint” [6] and “cytometric
diversity” [7, 8].

Studies of cytometric resemblance have made great
efforts with respect to their implementation [9-12]
and their critical assessment [6], but the most suitable
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methods to manipulate environmental data are still under
debate. In one sense, reasonable choices would favor
methods that appropriately balance mathematical formal-
ism and comprehensible biological interpretations, in a
very similar manner to those that are extensively applied
in the field of ecology [13].

Notably, most available tools in some sense do incor-
porate ecological rationales into their methods, but the
possibility of explicitly applying them to describe cytomet-
ric resemblances remains underexploited. Indeed, since
this approach was pioneered more than 20 years ago by
Li (1997) under the term “cytometric diversity” [7], only a
few studies have delved into this line [8, 14—16].

Briefly, Li’s seminal approach consists of binning
cytograms and converting them to contingency tables
of events, counting them by applying 16x16 Cartesian
grids to each two-dimensional cytogram. Each contin-
gency table summarizes a pool of non-taxonomic units,
the bins, which are then used to derive some measures of
biodiversity. Notwithstanding its astounding implications,
some important aspects of the method were left incom-
plete in the original method, namely: i) the issue of low
dimensionality; ii) the optimal number of bins; iii) the
integration of differently acquired datasets; iv) pairwise
resemblances; and v) bin’s explicit roles on cytometric
diversity.

The issue of low dimensionality refers to the difficulty of
dealing with more than two channels at a time. Although
this suffices in many situations [14], selection of only
two channels impedes deeper scrutiny of the information,
since it does not allow efficient control of the additional
features of the data at hand, notably for multicolor assays.

The optimal number of bins relates to a formal rather
than empirical definition of the appropriate number of
bins prior to the data analysis. While the most parsimo-
nious solution at this point is to narrow the bin width to
limits in which the largest amount of information data is
preserved while still allowing less-intensive computation,
this issue still lacks a closed-form solution.

Integration of differently acquired datasets encom-
passes the idea that a proper comparison between
cytograms requires them to be set to common perspec-
tives in order to correctly match the bins of interest.
This is a highly restrictive constraint that requires all
files to be acquired strictly within the same proto-
col guidelines. To some extent, however, such a con-
straint could theoretically be relaxed if some sort of
perspective guides, such as internal standards (e.g., latex
beads), could be used for a perspective control of
cytograms, as is usually done in traditional FCM analy-
sis. This solution, although promising, has not yet been
explored.

Last are the issues regarding two closely linked
aspects, easily deducible from but not covered in the
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first implementation of the method: pairwise resem-
blances and the bins’ explicit roles in cytometric
diversity.

Pairwise resemblances derive from the fact that because
individual cytograms can be depicted by their individ-
ual properties, clearly it should be possible to infer their
pairwise (dis)similarities as well. The diversity indices («
indices) described in the original work concern only the
particular features of a system. Hence, if the o diversities
of two or more cytograms can be inferred, their resem-
blances, a concept referred to in ecology as § diversity, can
also be assessed.

Measuring the cytometric B diversity, on the other
hand, intuitively raises questions regarding the bins’ con-
tributions to the differences detected, notably how the
bin properties, such as position and number of counts,
could lead to differences between cytograms, and in what
way these properties effectively correlate with previously
known cytometric populations. This is fundamental infor-
mation, without which diversity measures provide only
limited information [17].

In this article, we suggest solutions for these fundamen-
tal questions by discussing the implementation of flowDiv,
a pipeline for analyzing environmental flow cytometry
data, devised as an extended full implementation of Li’s
ideas. To illustrate the potential of flowDiv, we applied it to
reveal important aspects of the cytometric diversity from
31 lakes in Argentine Patagonia.

Design and implementation

flowDiv is implemented in the R language and is struc-
tured in 19 stages of processing and 11 stages of oriented
decision (Fig. 1). Here we describe the rationale behind
each stage in detail.

Data read

The first step of the pipeline consists of reading and pars-
ing preprocessed (i.e. compensated, normalized or trans-
formed) [18] FCS data. Input may be structured either
as FlowJo workspaces or, equivalently, as GatingSet R
objects.

This process is a wrapper for some flowWorkspace [19]
and flowCore [20] subroutines. It is intended to reduce the
complexity of the overall analysis by reducing the num-
ber of required software programs to two at most. This
allows a manageable and more reproducible execution of
the assay.

Gate selection
Once imported, the next action consists of the extraction
of user-defined regions of interest, the gates.

Gates are regions defined by their channels and respec-
tive borders (limits) that must be provided to the
algorithm. While borders are internally and automatically
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Fig. 1 Schematic view of the flowDiv workflow

parsed, information about which channels to use must be
defined empirically by the analyst.

This is one of the key steps of the algorithm,
as it expands the data analysis to higher dimen-
sions, allowing more than two channels to be set per
analysis.

Range definitions

For any selected channel, a histogram is generated with
equal numbers of bins. First, the channel ranges and bin
width must be outlined.

The ranges within which channels will be binned can be
defined either by the relative maximum and minimum val-
ues of the pooled set of channels (dynamic ranges), or by
setting absolute limits for each channel separately (fixed
ranges).

Fixed ranges define static limits for the histograms,
producing a global model for comparative analyses
between different runs of the algorithm. Dynamic
ranges, on the other hand, mean that only the lim-
its spanned by the data are considered in the bin-
ning process, maximizing the information gain in the
analysis.

Normalization
To fit specific scenarios where the data include any control
standards (e.g., beads) but are acquired under different
protocol guidelines — namely for scenarios where the
operator accounts for changes in the data while control-
ling for the variance — we provide an approach to set
the data to a common perspective through a transla-
tional transformation of the data (termed, in our pipeline,
normalization).

Formally, in each vector v = (a1, ay, ..., a,), representing
the channels features of a particular cytogram, we apply a
transformation 7, such as:

T(W) = (a1 + Aby,ay + Aby, . .. ,a, + Aby) (1)

Where b = (Aby, Abs,...,Ab,) represents the dis-
placement coordinates for each point. Here, b is the vector
of the difference computed between the mean bead val-
ues of each channel and a grand mean, calculated from the
pooled mean bead values for each channel of all cytograms
in the set, such as:
YW

n

Abij = Wl'j (2)
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Where wj; is the representation of the arithmetic mean
of bead values from channel i of cytogram j, and # corre-
sponds to the absolute number of samples (cytograms).

Following translation, flowDiv runs a variance stabiliza-
tion of the data based on the approach implemented by
Azada et al. (2015) in the flowVS package [21].Briefly,
these steps proceed to an inverse hyperbolic sine (asinh)
transformation of data with the form:

T(v;) = asinh(v;/c;) (3)

Where ¢; equals a normalization factor, calculated for
each channel i individually [21].

Binning

After the ranges are defined and the data centralized, the
algorithm proceeds to data binning: here, the analyst will
be asked how many bins should be used in the histogram
construction.

In view of the innate high variability of natural environ-
ments, it is not reasonable to define a basic number of
bins that represent any kind of data. Binning should be
changeable, according to the nature of the data at hand.
To deal with this, we have implemented a subroutine for
inferring the optimum number of bins, which is based on
the Freedman-Diaconis rule [22]:

max(x;) — min(x;)

(4)

bins;j = =
2 - IQR(xy) - I’lj3

Where bins;; represents the ceiling number of bins for
channel i of sample j; # is the number of observations for
the sample j; IQR stands for interquartile range and x;; is
the channel vector i of sample j.

The optimum number of bins, bins, is calculated simply
from the arithmetic mean of all suggested bins pooled, as
follows:

Y} Y2 bins;

max(i) - max(j)

(5)

binsy, =

Contingency tables

The binning process results in the creation of common,
mutually exclusive, exhaustive and ordered classes (bins),
which are then cross-tabulated and used to construct an
n-dimensional contingency table S in the form:

S={x; 1i=12,...,m and k=12,...,n} (6)

Where x;, corresponds to the number of counts for bin
i of channel k.

Vectorization

Each n-dimensional contingency table is further linearly
transformed to column vectors, in a process known as vec-
torization, creating a one-to-one correspondence between
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elements of the multidimensional space and elements of
its transformed form, as follows:

Vi=vec(Sj) = {x1,,. .., %15, - - 5 Xip } (7)

The rationale behind this step is to make the data
more manageable for subsequent manipulation, by reduc-
ing the data dimensionality while keeping the information
unchanged.

Volume correction

In some circumstances, environmental samples are previ-
ously diluted before running a flow cytometer experiment:
such dilutions may occur as a direct consequence of stain,
fixative or beads addition, or as a requirement to keep
event counting within a protocol-specified range [2].

All of these situations must be appropriately considered
in the final calculations, in order to correctly determine
the real frequency of any targeted event. In our pipeline,
we deal with dilution bias by applying a user-defined
correction factor to each individual sample, such as:

F=W. Dy 8)

Where W is an nxj matrix composed of all column vec-
tors V;, and Dy is a diagonal matrix in which element
djj corresponds to the ratio between the minimum true
volume passed (i.e., the real volume analyzed, considered
after correcting for dilutions of any nature) of all sam-
ples pooled and the true volume passed for sample j. The
minimum value is chosen to downweight any background
noise generated in relatively long runs.

Diversity analysis

After vectorization, each cytogram is further used to
derive three measures of biological diversity: «-diversity,
species evenness, and S-diversity.

To make these steps as feasible and adjustable as pos-
sible, we take advantage of another important suite of
tools available in the vegan package [23] to provide a
wide range of « and g indices for calculation. By incorpo-
rating vegan::diversity() and vegan:betadiver() functions
in its workflow, flowDiv allows analysts to manage, in
addition to one evenness index (Pielou’s index), three dif-
ferent indices of « diversity (Shannon-Weaver, Simpson
and inverse Simpson) and 24 indices of B diversity, as
reviewed by Koleff et al. (2003)[24].

Nestedness and turnover

Some of the available g indices have particularly use-
ful properties for FCM data analysis, as is the case for
Bray-Curtis [25] semimetrics. Besides being an appropri-
ate index for raw count data, it can also be partitioned
into two very informative complementary components,
nestedness and turnover.
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In an abstract sense, nestedness and turnover cor-
respond, respectively, to AND and XOR relationships
between two sets of bins (e.g., Baselga, 2009 [26]). In the
present context, these two components serve as conve-
nient proxies to detail how the differences in cytograms
might be partitioned between bin superposition (nested-
ness) or bin differential counting (turnover).

Because of their clear utility, both indices are also
incorporated in our pipeline, as a wrapper of the beta-
part:bray.part() function, and are automatically called
when the Bray-Curtis dissimilarity is chosen.

Transformations

To accommodate other ecologically meaningful dis-
tance measures (see [27] and [23] for details), we have
also incorporated another optional step, transformation.
Internally, this process is simply a wrapper for the
decostand{vegan} function.

Ordination analysis, clusterization and mapping

Once B-diversity indices are acquired, the next step con-
sists of an ordination and biplot of the results (cytograms
and bins) to help in further investigations of the con-
tributions of bins to the observed differences. Since
Non-Metric Multidimensional Scaling (nMDS) has the
convenient property of accommodating any (dis)similarity
measure handled by flowDiv [28], we applied this tech-
nique in our pipeline.

For the purpose of keeping track of broader regions of
the contingency tables while allowing further inspection
of plots using traditional visual approaches, flowDiv pro-
ceeds to the clusterization of the bin ordination scores to
generate a single masking image, which is further applied
onto each cytogram individually. This step provides a
novel and straightforward way of visually interpreting the
bin ordination directly in cytograms.

For clusterization, we use the K-means clustering
method. Briefly, the goal of K-means clustering is to par-
tition # observations into k mutually exclusive clusters.
More formally, K-means aims to minimize a squared error
function J, such as:

k n
arg min / = arg min Z Z”xji — wil3 ©)
c Cc

i=1 j=1

Where ||x;; — ;]l2 is the Euclidean distance between a
data point x;, belonging to cluster i, and the cluster cen-
ter u;. In the flowDiv context, the set of observations
x = (x1,%9, ..., ) represents the set of 2-dimensional real
vectors, defined by each of the # bin ordination scores
obtained in the previous step.
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Choice of K

Determining the ideal number of clusters, K, is not a trivial
task unless analysts can make some reasonable practical
assumptions about the optimum number of clusters. For
other situations, a data-driven process should be used,
and considering these explicitly, we adopted the Calinski-
Harabasz [29] criterion to guide our definition of the best
number of clusters. The Calinski-Harabasz criterion, C, is
defined as:

— K BG
c=" LSS (10)
K—-—1 WGss

In the formula, # is the number of bins, K is the number
of clusters, WGgs is the sum of squares within the clusters,
and BGgs is the sum of squares between the clusters.

flowDiv tests K iteratively within a pragmatically
defined range, from one to ten clusters, and the lowest C is
set as a suggestion of the appropriate number of clusters.

Example of use

Introduction

To evaluate flowDiv, we analyzed bacterioplankton data
from 31 lakes in Patagonia, Argentina, collected in the
provinces of Chubut, Santa Cruz and Tierra del Fuego.
These aquatic systems seem to be an appropriate bench-
mark for our pipeline, as they have a clear geospatial
gradient as well as a multitude of different ecological char-
acteristics that have already been shown to be reflected in
their bacterial community structure [30—32].

To assess the flowDiv consistency, we also briefly con-
trasted it with five other available cytometric fingerprint
computation tools: Dalmatian Plot [11], Cytometric His-
togram Image Comparison (CHIC) [10], Cytometric Bar-
coding (CyBar) [12], FlowFP [9] and PhenoFlow [16].

Material and methods

Datasets

This case study focused on three different datasets for
each aquatic system: (1) 12 morphometric, physical, and
chemical environmental variables; (2) flow cytometry FCS
files, manually gated for bacterioplankton populations;
and (3) bacterial polymerase chain reaction denaturing
gradient gel electrophoresis (PCR-DGGE) bands’ relative
intensities. Detailed information about the study sites,
protocols, sampling design and environmental parameters
was provided by Schiaffino et al. [30-32].

Environmental parameters

Samples were collected from the euphotic zone, during
spring in the years 2007 (Chubut and Santa Cruz) and
2008 (Tierra del Fuego) along a latitudinal gradient
from 45°55’S to 54°36’S. The following parameters
were recorded: latitude, longitude, area, temperature,
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pH, electrical conductivity, dissolved oxygen (DO), dis-
solved nitrogen (DN), diffuse attenuation coefficient (K),
chlorophyll a (Chla), phosphate, and dissolved organic
carbon (DOC).

Flow cytometry data

Flow cytometry data were acquired with a FACSCalibur
(Becton Dickinson) flow cytometer equipped with a stan-
dard 15 mW blue argon-ion (488 nm emission) laser and
a red laser diode (635 nm), using 1 p fluorescent beads
as i nternal controls and SYTO 13 as the nucleic-acid
stain. Bacterioplankton populations were manually gated
by their cytometric signature in detection channels for 90°
light scatter (bacterial cell size and structural complexity),
green fluorescence (nucleic acid content), and red fluo-
rescence (fluorescence spillover from the dye SYTO 13),
following guidelines by Gasol et al. 2015 [2]. The gating
strategy was performed with FlowJo ~ v.10 software.

flowDiv settings

The cytogram ranges were dynamically defined and
were binned through channels SSC-H (90° light scat-
ter), FL1-H (green fluorescence), and FL3-H (red flu-
orescence) for 75 bins per channel. Shannon diversity,
richness, Pielou’s evenness, and Bray-Curtis semimet-
rics, as well as the components nestedness and turnover
were evaluated. Bin ordination scores were clustered
into five groups as suggested by the Calinski-Harabasz
criterion.

Statistics

All statistics were performed with R version 3.3.2 (2016),
using the following additional packages: vegan [23],
RVAideMemoire [33], gvlma [34], corrplot [35], gplots
[36] and ggplot2 [37].
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Principal components analysis (PCA), non-metric mul-
tidimensional scaling (NMDS), and regression of envi-
ronmental vectors onto ordination plots were based on
the stats::prcomp(), vegan::metaMDS() and vegan::envfit()
functions.

Tests on ordination score centroids were conducted
with permutational multivariate analysis of variance (PER-
MANOVA) while controlling for spatial variation. PER-
MANOVA and tests for multivariate homoscedasticity
were done with vegan:adonis() and vegan:betadisper()
respectively.

Linear models were conducted after checking for model
assumptions by gvlma:gvlma(). Additionally, to cor-
rect for unbalanced factors in the models, we merged
mesotrophic (n = 13) and eutrophic (n = 4) groups (cf.
Schiaffino et al. (2013)[31]) into a single class, termed
“meso-eutrophic”.

Distance matrices for pairwise comparisons and
Mantel's test were run with vegan:vegdist() and
vegan::mantel(). All tests were performed assuming an o
level equal to 0.05.

Details of the coding for statistical analysis, including
the datasets generated and analyzed, can be found online
at https://github.com/bmsw/Supplementary-Code/blob/
master/Statistical_Analysis.R.

Results and discussion

Alpha diversity and evenness

Principal components analysis (PCA) of cytometric
indices revealed a smoothed separation pattern among
the samples (Fig. 2a), suggesting that differences among
waterbody trophic states could be associated with cyto-
metric diversity, richness in particular. To test this hypoth-
esis, we performed a Wilcoxon rank sum test under the
null hypothesis that average cytometric richness is not
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dependent on the trophic status of a waterbody. The null
hypothesis, however, was not supported (P <0.05).

Spearman’s rank correlation, in turn, showed that eight
of 13 environmental variables showed significant relation-
ships to the cytometric indices (Fig. 3).

We note that pH, Kd and DOC are variables directly
associated with the trophic status. It has been demon-
strated that at low DOC concentrations, only some
bacterial specialists are able to actively incorporate the
various types of organic matter effectively [38], and as
a consequence, the bacterial diversity would be low.
Accordingly, the positive relationship observed between
a diversity and DOC is in line with the idea that

higher concentrations of DOC, which are associated
with a more-diverse DOC composition, would result in
higher diversity of the bacteria that use these varieties of
compounds.

Beta diversity

Ordination of Bray-Curtis distances indicated appar-
ent differences in group means (Fig 4a), which were
later confirmed by the PERMANOVA test (P<0.05).
The ordination scores, in turn, showed significant lin-
ear correlations with nine environmental variables: DOC,
chlorophyll a, pH, Kd, latitude, longitude, area, altitude,
and temperature (Fig. 4a).
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Fig. 4 a NMDS of 31 Patagonian lakes computed in Bray-Curtis distance (Stress = 0.10) jointly plotted with fitted significant variables: dissolved
organic carbon (DOC), chlorophyll a (Chla), pH, Kd, latitude (Lat), longitude (Lon), area, altitude, and temperature (Temp.); b Pie chart of partitioned
Bray-Curtis distance (nestedness and turnover). Shaded areas in the NMDS plot represent 95% confidence ellipses




Wanderley et al. BMIC Bioinformatics (2019) 20:274

Page 8 of 10

FL1-H

24 . SSC-H

(b)

NMDS2
0.0
L

figures

FL1.H

SSC.H

(e) SSC.H

(f)

Fig. 5 NMDS biplot a and mask of bins onto channels FL1-H and SSC-H b. Cytogram numbers 6 (¢; Pond 7, S1) and 13 (d; Pond 13, S1) are overlaid by
b to reveal how the known gated populations relate to ordination clusters (e and f). Dotted red arrows indicate the logical pathway through the

Furthermore, distance partitioning revealed that nest-
edness accounted for the major differences among the
systems (Fig. 4b).

Ordination analysis, clusterization and mapping

The biplot of the samples and bins, based on chan-
nels FL1-H and SSC-H, showed a broadly common area
shared by most of the cytograms (blue and green clus-
ters, Fig. 5a), as could be anticipated from the nestedness
patterns from previous sections (Fig. 4b). Samples were
differently associated with specific clusters of bins, which
subsequent visual inspection revealed to correspond, par-
tially or totally, to known cytometric subpopulations
(Figs. 5¢-f and Additional file 1: Figure S6)).

Pairwise comparisons

flowDiv and FlowFP were the only pipelines that
significantly and positively correlated with DGGE
information (Mantel statistic r = 0.20 and 0.19,
respectively) Additional file 2: Figure S7. Those

techniques were also highly correlated (Mantel statistic
r = 0.65), probably due to their common principles (i.e.,
binning-based techniques) (Table 1).

Notably, these results are in line with previously pub-
lished reports that described the correlation between
molecular traits and cytometric diversity [16, 39].

Although flowDiv did not correlate significantly with
the remaining techniques, the discrepancies could be
interpreted merely as a matter of tuning, caused by differ-
ences in their default working principles [6, 16].

Conclusions

The need to both reduce the analytical subjectivity
and emphasize more practical aspects of environmental
flow cytometry studies causes a paradigm shift so as
to harmonize objectivity with applicability. flowDiv pro-
vides a fast, low-cost, straightforward, and rather intu-
itive way of proceeding with this kind of analysis, as it
combines formal mathematical solutions and biological
rationales in an intuitive framework specifically designed

Table 1 Mantel statistics based on Bray-Curtis distance matrix calculated for pairwise comparisons of pipelines

DGGE CHIC Dalmation plot CyBar flowFP PhenoFlow flowDiv
DGGE -
CHIC 0.05 -
Dalmation plot -0.05 0.06 -
CyBar -0.07 -0.07 -0.11
flowFP 0.18* 0.13 -0.34 042* -
PhenoFlow 0.10 0.08 -0.35 0.15 0.37* -
flowDIV 0.20* 0.12 -0.20 0.12 0.65* 0.22* -

Asterisks () represent significant results at &« = 0.05
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to explore cytometric diversity. In addition to solving
some important technical issues, such as the perspec-
tive correction of differently acquired datasets, flowDiv
provides an intelligible foundation for the use of multi-
dimensional contingency tables in environmental FCM
analyses. On the one hand, multidimensional contingency
tables resolve quite efficiently for multicolor assays, since
they maintain an epistemological relationship to the fairly
well-known ecological tables. This property permits a
more straightforward biological interpretation of diversity
indices derived from FCM data. On the other hand, their
summaries by biplots, along with a further clusterization
and mapping of bins back to cytograms, constitute an ele-
gant strategy to understand the global and local behaviors
of FCM populations in the cytometric fingerprint.

flowDiv is a flexible and robust analytical method for
considering FCM data analysis. We hope that it will be
a useful tool for environmental and non-environmental
cytometrists, since there are clearly many possible
avenues for expanding its applications, from environmen-
tal monitoring to data-quality assessment of FCM experi-
ments. As an open-source initiative we hope that flowDiv
will be considered, studied and improved by cytometrists
from all fields of expertise in which it may be useful, both
environmental and others.

Availability and requirements
Project name: flowDiv
Project home page:
packages/flowDiv/
Operating system(s): Platform independent
Programming language: R

Other requirements: R 2.16.0 or higher

License: GPL-3

Any restrictions to use by non-academics: no
restrictions

https://cran.r-project.org/web/

Additional files

Additional file 1: Cytograms and masks of bins overlaid onto channels
FL1-Hand SSC-Hforall 31 Patagonian lakes used in this study. (PNG 11400 kb)

Additional file 2: Heatmaps based on distance matrices (Bray-Curtis
distance) for the Patagonian lakes used in this study. Data are from: (a)
DGGE, (b) CHIC, (c) flowCyBar, (d) Dalmation Plot, (e) FlowFP, (f) PhenoFlow,
and (g) flowDiv pipelines. Dendrograms were based on Ward's hierarchical
agglomerative clustering method. (PNG 1810 kb)

Abbreviations

ANOVA: Analysis of Variance; CHIC: Cytometric Histogram Image Comparison;
Chla: Chlorophyll a; CyBar: Cytometric barcoding; DGGE: Denaturing Gradient
Gel Electrophoresis; DOC: Dissolved Organic Carbon; DN: Dissolved Nitrogen;
DO: Dissolved Oxygen; FCM: Flow Cytometry; Ky: Diffuse Attenuation
Coefficient; Lat: Latitude; Lon: Longitude; nMDS: Non-Metric Multidimensional
Scaling; PCA: Principal Component Analysis; PCR-DGGE: Polymerase Chain
Reaction-Denaturing Gradient Gel Electrophoresis; PERMANOVA:
Permutational Multivariate Analysis of Variance; SSC: 90° Side Scatter; Temp:
Temperature
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