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Abstract

Background: Sub-nuclear structures or locations are associated with various nuclear processes. Proteins localized in
these substructures are important to understand the interior nuclear mechanisms. Despite advances in high-throughput
methods, experimental protein annotations remain limited. Predictions of cellular compartments have become very
accurate, largely at the expense of leaving out substructures inside the nucleus making a fine-grained analysis impossible.

Results: Here, we present a new method (LocNuclei) that predicts nuclear substructures from sequence alone. LocNuclei
used a string-based Profile Kernel with Support Vector Machines (SVMs). It distinguishes sub-nuclear localization in 13
distinct substructures and distinguishes between nuclear proteins confined to the nucleus and those that are also native
to other compartments (traveler proteins). High performance was achieved by implicitly leveraging a large biological
knowledge-base in creating predictions by homology-based inference through BLAST. Using this approach, the
performance reached AUC = 0.70–0.74 and Q13 = 59–65%. Travelling proteins (nucleus and other) were identified
at Q2 = 70–74%. A Gene Ontology (GO) analysis of the enrichment of biological processes revealed that the predicted
sub-nuclear compartments matched the expected functionality. Analysis of protein-protein interactions (PPI) show that
formation of compartments and functionality of proteins in these compartments highly rely on interactions between
proteins. This suggested that the LocNuclei predictions carry important information about function. The source code
and data sets are available through GitHub: https://github.com/Rostlab/LocNuclei.

Conclusions: LocNuclei predicts subnuclear compartments and traveler proteins accurately. These predictions carry
important information about functionality and PPIs.

Keywords: Sub-nuclear localization, Traveler proteins, Prediction, Support vector machines (SVM), Profile kernel, GO
enrichment, Evolutionary information, Predict protein function

Background
The nucleus was the first sub-cellular organelle to be
discovered as early as in the seventeenth century [1]. It
is enclosed by a membrane and only found in eukaryotic
cells (Greek “eu” εν: true, “karyon” καρυον: kernel, i.e.
cells with a core, Latin: nucleus). The nucleus contains
most of the genetic material, organized in chromosomes,
and is the site for DNA replication and transcription.
Nuclear proteins are synthesized mostly on the ribo-
somes in the cytoplasm and have to be transported back
into the nucleus for proper function. Import into and

export out of the nucleus differ in several ways from the
transport to other sub-cellular compartments. For in-
stance, all proteins have to pass through a large struc-
ture in the nuclear envelope known as the nuclear pore
complex (NPC) [2, 3]. Nuclear proteins can be trans-
ported in their fully folded conformation [3]. Transport
is often regulated through binding to specific proteins,
called karyopherins. Karyopherins bind by recognizing
nuclear localization signals (NLS for import into the nu-
cleus) or nuclear export signals (NES; for export from
the nucleus) in the amino acid sequence of their cargo
proteins [4]. Relying only on these NLS and NES fails to
identify nuclear proteins because many known signals
are too unspecific in sequence (match in many
non-nuclear proteins) and for most known nuclear pro-
teins such signals remain unknown [5–7].
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The nucleus is a compartment separated by two mem-
branes that contains several distinct sub-structures, each
associated with distinct sets of function. These nuclear
sub-structures are not enclosed by membranes and are
very dynamic. Nuclear sub-structures can be in continu-
ous flux; some are exclusively formed during particular
cell stages through interaction with DNA, RNA and pro-
teins [8, 9]. These dynamic rearrangements complicate
experimental annotations. Translocation within the nu-
cleus has been linked to NLS- and NES-like signals [10,
11]. However, this process is not well understood [8].

Results
High performance: Q13 = 62% and Q2 = 72%
LocNuclei describes two separate prediction methods: (1)
predict one of 13 nuclear sub-structures and (2) distin-
guish proteins functional only in the nucleus vs.traveler
proteins,i.e.those functional in the nucleus and other com-
partments. Each of those two methods combines two dif-
ferent algorithms: (i) homology-based inference and (ii)
machine learning-based prediction (through profile kernel
SVMs). For the prediction task of 13 sub-nuclear com-
partments, the homology-based inference for proteins for
which experimentally annotated homologs were available
was most accurate with Q13 = 68% at E-value ≤10− 50 (Fig. 1
black arrow). However, if only using homology-based in-
ference, a random decision had to be made when no
homolog of known localization was available at a given

threshold. Thus,the Q13 dropped to 38% (Fig. 1: left bar at
E-value 10− 50). This was still statistically significantly
above random (Fig. 1: standard error bars substantially
above random performance of 27% shown at the leftmost
bar). On the same test set, the de novo-based inference
employing a battery of 13 SVM classifiers achieved an al-
most three-fold higher level of Q13 = 59% (Fig. 1: 2nd bar
from the left). This result encouraged the application of a
simple protocol: use homology-based inference when
available, else use the machine learning method. The ac-
curacy of homology-based inference decreased for less
stringent E-value thresholds (Fig. 1: line decreases toward
right). We chose the PSI-BLAST E-value of 10− 20 as the
decision threshold between homology-based inference
and machine learning based de novo prediction because
the simple combination of homology-based and de novo
was highest (the performance was determined using
cross-validation/cross-training, i.e. NOT the testing set).
The combined method, LocNuclei, outperformed both its
components (Fig. 1: circle above bar for SVM and
homology), reaching an overall accuracy of Q13 = 62 ± 3%
(Fig. 1: circle).
In terms of relative contributions of HB vs. ML for

our data set, the numbers were as follows. From the
1934 subnuclear proteins in our data set, 736 (38%) were
predicted through homology-based inference (HB), and
1096 (57%) through the SVM Profile Kernel (ML). For
102 proteins (5%), neither HB nor any of the 13 SVMs
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Fig. 1 Effect of homology threshold to predict 13 sub-structures. The accuracy Q13 for classifying proteins into 13 sub-nuclear compartments
using the homology-based inference with PSI-BLAST (based on 3522 experimentally annotated proteins) varied with the E-value thresholds
(darker gray bars on the left). For proteins for which a protein with experimentally known nuclear sub-structure annotation was more sequence
similar than the threshold, performance depended on the threshold (black line). The highest accuracy Q13 = 68% was reached at E-value ≤10−
50(black arrow). However, if forcing predictions for all proteins, Q13 dropped to 38% compared to random (27%). The performance of machine
learning-based profile kernel SVMs on the same set was Q13 = 59% (gray horizontal line). The lighter gray bars mark the combination of homology
inference and machine learning. The optimal threshold for the combination was E-value ≤10− 20. One standard error marked on each bar and on the
black line and through the dotted lines for ML
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predicted any nuclear sub-compartment (note: this was
only a subset of all prediction mistakes).
For the second prediction task (nuclear-only vs. traveler

proteins) the final method combined homology-based in-
ference and machine learning (again a Profile Kernel
SVM) essentially in the same straightforward manner: take
HB if possible. The final method (also referred to as
LocNuclei) performed best at the PSI-BLAST E-value
≤10− 5 reaching an overall performance of Q2 = 72 ± 2%
(Additional file 1: Figure S1). In detail of the 1098 nuclear
proteins in the corresponding data set, 419 proteins (38%)
were predicted by homology-based inference, all other
679 (62%) using the SVM Profile Kernel.

Good predictions also for minority classes
LocNuclei distinguished between 13 different nuclear
sub-structures. One crucial challenge for predicting many
classes was the lack of experimental annotations for the
minority classes, i.e. those with fewer known proteins. For
instance, the SVM had to generalize from only 14 proteins
in the spindle apparatus and from only 13 in the perinu-
cleolar sub-structure (Additional file 1: Table S1). Never-
theless, LocNuclei succeeded in predicting for minority
classes, e.g. 8 of the 14 samples for spindle apparatus were
predicted correctly. The worst performance was observed
for the Cajal body: 10 of the 42 predicted in this
sub-structure were correctly predicted, while an equal
number of 10 proteins were mis-predicted to be in the nu-
cleoplasm (Table 1). All these ten mis-predictions origi-
nated from the SVM prediction. Using exclusively
homology-based inference correctly predicted 8 of 42
Cajal bodies and no misclassification to nucleoplasm
would occur (Additional file 1: Table S2).

Reliability index allows focus on best predictions
For each prediction, LocNuclei also provides a reliability
index (RI) that reflects the prediction strength. The RI was
scaled to values between 0 (uncertain prediction) and 100
(reliable prediction). Although the RI scaling did not cor-
relate with performance throughout its entire interval, it
enables users to focus on reliably predicted proteins: e.g.
of the 25% most strongly predicted proteins, 76% were
correctly predicted (RI > 50, Fig. 2a: dashed lines).
For the second prediction task (traveler), the reliability

index correlated slightly better with performance in the
sense that with increasing RI Q2 increased (albeit not
significantly above values of RI = 50, Fig. 2b). For RI >
50, LocNuclei predicted for 45% of the proteins and 77%
of these were predicted correctly (Fig. 2b: dashed line).

Performance of LocNuclei confirmed for independent
data set of novel proteins
The only method for predicting nuclear sub-structures
available during the development of our new method was

NSort [12]. Comparing the two methods back-to-back
using values published was meaningless due to the differ-
ences in data sets. Being no longer available, NSort could
not be run on new data. Thus, the only meaningful bench-
mark required training and testing LocNuclei on the sets
used for NSort. Towards this end, we downloaded the
NSort data set from http://bioinf.scmb.uq.edu.au:8080/
nsort/db and split into five subsets, trained on four and
tested on the remaining one. These sets were rotated five
times, so that each protein in the NSort set was tested
exactly once. The area under the ROC curve (AUC)
calculated from the test proteins proxied performance for
comparability. For training, we used the same parameters
as for the original method. The data set of NSort con-
tained proteins from eight sub-nuclear localizations;
LocNuclei-NSort performed equally well as or even better
than NSort except for proteins located in the perinucleolar
(Table 2). Comparing the original version of LocNuclei
predicting 13 classes with the version re-trained on eight
using the NSort data set using common proteins showed
that LocNuclei performed on average equally well
(Additional file 1: Table S3).

Spectra of sub-nuclear distributions predicted between
organisms differ
After completing the development, LocNuclei was applied
to predicting the nuclear sub-structures for entire prote-
ome in Homo sapiens (human), Pan troglodytes (chimp),
Mus musculus (mouse) and Saccharomyces cerevisiae
(baker’s yeast). Human, mouse and baker’s yeast contrib-
ute the most proteins to the development set (341, 961,
and 101, respectively). Chimp was only chosen because we
expect it to be very close to human. LocTree3 [13] pro-
vided the whole proteome predictions for all four organ-
isms (https://rostlab.org/services/loctree3/proteomes). All
proteins predicted as nuclear and nuclear membrane were
used. The resulting datasets contained 6123 proteins for
human, 7358 proteins for mouse, 4761 proteins for chimp
and 2107 for yeast.
Most machine learning tools have some kind of pre-

diction bias overestimating some classes while underesti-
mating others. To correct for this bias, it was proposed
to use the confusion matrix of the tool based on the de-
velopment set [14]. This leads to an estimation of the
overall class distribution that is closer to the truth than
the actual predicted distribution. The compositions of
the predicted sub-nuclear compartments, i.e. the
sub-nuclear spectra were very similar for all organisms
for the part only using homology inference (Fig. 3b, c, d
and e inner circles). When applying the bias correction
to the whole dataset, the composition for human, mouse
and chimp remained similar (Fig. 3b, c and d). For hu-
man, chimp and mouse, the distributions were also close
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to the one of the development set (Fig. 3). Only the dis-
tribution for yeast differed with a higher number of pro-
teins localized to the chromatin than for the other
organisms (Fig. 3e). For all organisms, most proteins were
predicted to be either in the chromatin or in the nucleolus
(Fig. 3b, c, d and e). Chromatin is a structure built from
the interaction with DNA and its role is the maintenance
of DNA and the regulation of its transcription. It is known

that many proteins that compose the chromatin are ex-
changed with other sub-nuclear compartments, such as
the nucleolus [15, 16].
Using the given distribution, we can also calculate the

Euclidean distance between these distributions and use
them as a proxy for the distance between the organisms.
In our lab, it has been shown that the simple predicted
location spectra using all subcellular localizations

Nucleoplasm 1%

Chromatin 33%
NPC 2%

Nucleolus 31%

PML body 5% Nuclear Speckle 14%

Nuclear Lamina 4%

Nuclear Envelope 3%

Other 8%

Development dataset
A

Nucleoplasm 13%

Chromatin 28%

NPC 2%

Nucleolus 28%

PML body 7%

Nuclear Speckle 15%

Nuclear Lamina 2%
Nuclear Envelope 1%

Other 4%

Human
B

Nucleoplasm 12%

Chromatin 24%

NPC 3%

Nucleolus 30%

PML body 6%
Nuclear Speckle 15%

Nuclear Lamina 3%
Nuclear Envelope 2%

Other 5%
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C
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Nuclear Speckle 14%

Nuclear Lamina 3%
Nuclear Envelope 2%
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Mouse
D
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NPC 2%

Nucleolus 29% PML body 1%

Nuclear Speckle 11%

Nuclear Lamina 2%
Nuclear Envelope 1%
Other 3%

Yeast
E

Fig. 2 Highly reliable predictions more accurate. The reliability index (RI, x-axis) of LocNuclei scaled between 0 (unreliable) and 100 (reliable). It
related the prediction strength to the performance. The data for this figure were binned in intervals of 20. Each point reflected the cumulative
performance, i.e. we computed accuracy (Q13 and Q2) and coverage (percentage of proteins for which predictions were made above given RI). a
For the prediction of 13 nuclear sub-structures, 19% of all proteins were predicted at RI > 60 (point marked by dotted lines). For this top 19%, accuracy
rose from the average Q13 = 62% (indicated by leftmost black point) to 75% (point marked by dotted lines). For our data set, RI < 20 did not correlate
with accuracy. b For the prediction of traveler proteins, 29% of all proteins were predicted at RI > 60 (part B, point marked by dotted lines) with
Q2 = 78% (point marked by dotted lines, improving over the average of 72% by six percentage points)

Table 2 Comparison between LocNuclei and NSort

Sub-nuclear compartment Number of proteins AUC NSort AUC LocNuclei-NSort

Perinucleolar 24 0.80 ± 0.05 0.73 ± 0.03

Cajal body 49 0.60 ± 0.03 0.62 ± 0.02

Nuclear pore complex 51 0.79 ± 0.05 0.88 ± 0.02

Nuclear lamina 77 0.70 ± 0.01 0.82 ± 0.01

PML bodies 91 0.77 ± 0.03 0.75 ± 0.01

Chromatin 323 0.71 ± 0.01 0.78 ± 0.01

Nuclear speckle 403 0.71 ± 0.01 0.77 ± 0.01

Nucleolus 598 0.60 ± 0.01 0.72 ± 0.01

Sum/Mean 1285 0.71 ± 0.03 0.76 ± 0.02

For this comparison, LocNuclei was re-trained using the development data of NSort, comprising 1285 sequence-unique proteins annotated in eight sub-nuclear
localization classes. On proteins from all eight classes, LocNuclei performed equally well as or better than NSort except for proteins located in the perinucleolar.
The overall cross-validated AUC of LocNuclei was 0.76 compared to 0.71 for NSort. The values for NSort were taken from its publication [12]
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capture evolutionary aspects of cross-species compari-
sons [17]. Applying the same concept to the subnuclear
location spectra suggested yeast to be most distant from
human, chimp and mouse while the distance between
human and mouse was smaller than that between hu-
man and chimp (Table 3). These differences were statis-
tically significant. If we consider de novo prediction and
homology-based inference separately, the relation be-
tween organisms based on the distances of the sub-
nuclear location spectra did not change for de novo
prediction while the location spectra predicted through
homology-based inference reflected the expected

relation, i.e. human appeared closest to chimp and most
distant to yeast (Additional file 1: Table S4).

Predictions for homologous protein pairs from different
organisms agreed
For a more fine-grained analysis, we also compared pre-
dictions for pairs of homologous proteins. For each of the
six possible organism pairings, we identified all pairs of
homologous proteins in the same way used for LocNuclei
(PSI-BLAST at E-Values≤ 10-20). The resulting number of
homologous protein pairs mirrored the distance between
the predicted subnuclear location spectra (Table 3) for
these organisms: For 70% of the human nuclear proteins,
we found a homologous protein in mouse (Table 4); the
distance between these two organisms based on the loca-
tion spectra was also the smallest. For yeast, which was
most distant to the other organisms, we only found hom-
ologous proteins for 20–23% of the proteins (Table 4). For
all organism pairs, most protein pairs were predicted by
homology-based inference (Table 4, third column). For
only a few protein pairs (2% or 6%), one of the proteins
was predicted using homology-based inference while the
other one is predicted de novo (Table 4, fourth column).
For pairs of homologous proteins, we expect similar

predictions from LocNuclei. The similarity in predictions
between two proteins was measured through the fraction
of agreement (Eq. 5; note: for some proteins more than
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Fig. 3 Composition of sub-nuclear compartments in a LocNuclei's development set, b the human, c chimp, d mouse and e yeast proteome.
Proteomes show in B-E are corrected for prediction bias. Most machine learning tools have a prediction bias leading to wrong estimates of
distributions. Using the confusion matrix of the development set, this bias can be corrected leading to more realistic estimates of the distribution
[14]. When applying this correction to the sub-nuclear predictions for human, chimp, mouse and yeast, the distributions for human, chimp and
mouse look more similar to the development set. For all four organisms, the fraction of proteins annotated to the nucleoplasm decreases after
the correction

Table 3 Euclidean distance between organisms based on
predicted subnuclear location spectra

Overall

Human Chimp Mouse Yeast

Human 0 4.0 ± 0.6 1.8 ± 0.3 9.7 ± 0.7

Chimp 4.0 ± 0.6 0 4.0 ± 0.5 12.7 ± 0.8

Mouse 1.8 ± 0.3 4.0 ± 0.5 0 9.9 ± 0.7

Yeast 9.7 ± 0.7 12.7 ± 0.8 9.9 ± 0.7 0

We calculate the Euclidean distance between predicted subnuclear location
spectra and use that distance as proxy to identify evolutionary relationships.
As expected, yeast is most distant from the other organisms. However, according
to the subnuclear location spectra, human is closer to mouse than to chimp
which is opposite what we would expect from known evolutionary relationships.
Predicted subnuclear location spectra help in identifying certain aspects of
evolution while they cannot capture all evolutionary relations in detail

Littmann et al. BMC Bioinformatics          (2019) 20:205 Page 6 of 15



one class was predicted). For almost three fourth (74%)
of all protein pairs this agreement was 1, i.e. all classes
were predicted identically; while for over 95% of the
pairs the agreement scores were ≥ 0.5 (Fig. 4a). Surpris-
ingly, the agreement was essentially the same if both
proteins were predicted by homology-based inference
(HB) and de novo by machine learning (ML, Fig. 4a
dashed and dotted lines). Only for mixed protein pairs
(one predicted by HB, the other by ML) predictions

agreed much less (Fig. 4a: lowest line with dots and
dashes). However, these pairs constituted a small frac-
tion of the overall set of protein pairs (Table 4, fourth
column; 2% of all pairs of homologous proteins).
For the set of four model organisms (human, chimp,

mouse, and yeast), predictions for homologous proteins
agreed most between human and chimp, slightly less be-
tween human-mouse or chimp-mouse, and least for
human-yeast, mouse-yeast and chimp-yeast (Fig. 4b). As

Table 4 Homologous protein pairs between four different organisms

Overall Both HB HB/SVM SVM % of proteins (organism1) % of proteins (organism2)

Human/Chimp 3663 2510 (68%) 58 (2%) 1095 (30%) 60% 62%

Human/Mouse 4316 2609 (60%) 67 (2%) 1640 (38%) 70% 50%

Human/Yeast 809 638 (79%) 50 (6%) 121 (15%) 13% 21%

Chimp/Mouse 4041 2667 (66%) 65 (2%) 1309 (32%) 65% 55%

Chimp/Yeast 776 608 (78%) 42 (6%) 126 (16%) 16% 20%

Mouse/Yeast 973 742 (76%) 50 (5%) 181 (19%) 13% 23%

We identified pairs of homologous proteins between human, chimp, mouse, and yeast. The second column in the table gives the overall numbers of pairs for these two
organisms, the next three columns refer to pairs of proteins where both were predicted using homology-based inference, one was predicted with homology-based
inference and the other one de novo, and both were predicted de novo. The last two columns give the percentage of proteins in the respective organisms for which a
homolog was found

A B

Fig. 4 Agreement for predictions of homologous protein pairs. 95% of all pairs of homologous proteins agreed to a score≥ 0.5 (Eq. 5); 74% reached full
agreement (score = 1; black lines in A and B). a If both proteins were predicted using the same approach (either homology-based inference or de novo),
the fraction of agreement was very similar. Predictions disagreed more when the proteins were predicted by different approaches. b Predictions for yeast
proteins and homologs in any other organism disagreed more than for other pairs of organisms
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yeast is the most distant from the other organisms, it is
most likely that yeast proteins have different sub-nuclear
locations although related in evolution.
Overall, homologous protein pairs, obviously share

sub-nuclear locations, otherwise, homology-based infer-
ence would not work for our predictions. Nevertheless,
for some protein pairs predictions agreed poorly, with
the minimal agreement of 0.14 and with 21 protein pairs
having agreement ≤0.2. Of these 21 proteins, only eight
include proteins from yeast; most (15) include a protein
from mouse. The agreement score inversely correlated
with the number of compartments predicted differen-
tially between the two organisms. For instance, for the
four worst predictions (agreement = 0.14), seven com-
partments were predicted for one organism, but only
two for the other. The second protein with two pre-
dicted compartments was always the probable E3
ubiquitin-protein ligase HUL4 from yeast (Uniprot iden-
tifier P40985) while the other four proteins seemed to
belong to the same family. Three proteins were from
mouse (genes Herc6, Herc4, and Herc3; Uniprot identi-
fier F2Z461, Q6PAV2, A6H6S0) and the fourth protein
was from the chimp gene HERC6 (Uniprot identifier
H2QPV8).

GO enrichment of sub-nuclear predictions
Subcellular localization is one aspect of protein function.
Thus, the Gene Ontology (GO) [18, 19] reserves one of
its three ontologies for function to Cellular Component
(the other two being Molecular Function and Biological
Process). This does not strictly imply that the LocNuclei
predictions correlate with function as described by the
BFO (Biological Process Ontology of GO). Nevertheless,
we hypothesized that there is a correlation.
To address this hypothesis, we performed a GO en-

richment analysis of terms from the BFO for the human
nuclear proteins predicted by LocNuclei. Experimental
annotations were available for 4667 of the 5088 (92%)
predicted human nuclear proteins. For each of the 13
nuclear sub-structures, we identified the BFO-terms
enriched at highest statistical significance (p-value< 0.01,
Additional file 1: Table S5). Only for 10 of the 13, more
than 10 BFO terms reached p-values< 0.01 (only 2 for
peri-nucleolar, only one for nucleoplasm, and none for
the spindle apparatus, Additional file 1: Table S5).
The nucleolus is involved in ribosomal biogenesis [20]

and LocNuclei predicted 1856 of the 5088 (36%) human
nuclear proteins at the nucleolus. For these proteins, the
BFO terms “rRNA processing”, “rRNA metabolic
process”, “RNA modification” and “ribonucleoprotein
complex biogenesis” were prominent amongst the ten
terms with the lowest p-value (highest significance, Add-
itional file 1: Table S5). Chromatin packages DNA and

regulates the access of DNA-binding proteins [21]. For
the 1901 proteins predicted to locate to the chromatin
(37% of all nuclear proteins) enriched BFO terms in-
cluded “chromatin organization”, “regulation of RNA
biosynthetic process” and “regulation of transcription,
DNA-templated” (Additional file 1: Table S5). Kineto-
chores are protein complexes that form when a cell di-
vides; they are located at the centromere and attach the
duplicated chromosomes to the mitotic spindle to allow
their separation [2]. Only 42 proteins were predicted to
locate to the kinetochores. For these proteins enriched
BFO terms included “cell division”, “chromosome segre-
gation”, and “attachment of spindle microtubules to ki-
netochores” (Additional file 1: Table S5). Although only
few (42) proteins were predicted for kinetochores, the
GO enrichment analysis revealed a clear link between
the predicted localization and function. Overall, the re-
sults of the enrichment analysis for nucleolus, chromatin
and kinetochore clearly supported the hypothesis that
the predicted sub-nuclear location provided important
new evidence for inferring protein function. The results
for other compartments such as nuclear pore complex
and nuclear envelope also supported the hypothesis
(Additional file 1: Table S5).
For other sub-structures, the signal was less clear. One

extreme negative example was the spindle apparatus for
which not a single BFO term was enriched statistically
significantly. The problem might have been that only 13
proteins were predicted in this sub-structure (Additional
file 1: Table S5) limiting the power of an enrichment
analysis. Another extreme example was the nucleoplasm
for which 852 proteins (17% of all) were predicted but
only one BFO term was statistically significant (namely
Keratinization, Additional file 1: Table S5). The problem
here might have originated from the diversity of this
sub-structure that might also result in many prediction
mistakes (Table 1). The third sub-structure for which we
found fewer than 10 BFO terms enriched at P-values<
10− 2 was the perinucleolar (two terms enriched in 33
predicted proteins, Additional file 1: Table S5). For an-
other sub-structure full of a variety of very different pro-
teins [22], the PML bodies, our hypothesis was also not
supported making it difficult to clearly infer function
from enrichment of GO terms.
Performing the same analysis for traveler proteins shows

that the most significantly enriched BFO terms for traveler
proteins are all associated with transport and localization
(Additional file 1: Table S5) suggesting that traveler pro-
teins travel in and out of the nucleus to transport mole-
cules and guide protein localization. Less, but still
significantly enriched terms also include involvement in
signal transduction (e.g. GO35556 – intracellular signal
transduction, GO0023051 – regulation of signaling, or
GO0010646 – regulation of cell communication).
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Protein-protein interactions (PPI) related to
predicted sub-nuclear localizations
Another way to proxy biological processes is through moni-
toring physical protein-protein interactions (PPIs1) [23]. In
analogy to the BFO enrichment analysis, we tested whether
or not proteins predicted in nuclear sub-structures by
LocNuclei contained information about PPIs. More expli-
citly, we analyzed whether the experimentally annotated
PPIs are overrepresented for certain compartments.
Overrepresentation is described by the odds ratio that sets
the number of observed PPIs between proteins in two com-
partments (or the same one) into relation with the expected
number of PPIs between these compartments. An odds ra-
tio below 1 indicates less PPIs than expected, 1 indicates as
many PPIs as expected and values above 1 indicate more
PPIs than expected.
Toward this end, the set of human proteins with pre-

dicted sub-nuclear localizations were mapped to a data-
set of binary, direct interactions from multiple sources
used in a different context by our group [24]. In this set,
more PPIs than expected are observed within all com-
partments with especially high values for PPIs between
proteins within the kinetochore and the spindle appar-
atus (Fig. 5) indicating that the formation of compart-
ments and the functionality of proteins performed in
these compartments highly relies on interaction between
proteins. PPIs between proteins in different compart-
ments are either underrepresented or close to expected
except for interactions between proteins in the kineto-
chore and the spindle apparatus as well as between pro-
teins in the nuclear pore complex, the nuclear lamina
and the nuclear envelope (Fig. 5).
Another way to analyze PPIs within nuclear pro-

teins is to compare them to proteins outside the nu-
cleus. To do so, we constructed a PPI network from
the human PPI data with proteins being the nodes
and an edge drawn between proteins when they inter-
act. The network consists of 15,634 nodes in 569
connected components. Only 142 of these compo-
nents consist of more than one node. Of the 15,634
proteins in the network, 2037 are solely located in
the nucleus, 1283 are traveler proteins travelling be-
tween the nucleus and other compartments and
12,314 are proteins located outside the nucleus. On
average, nuclear proteins in this network have an
average degree of 18 for non-traveler and of 20 for
traveler while non-nuclear proteins only have a degree
of 10. Considering only the largest connected compo-
nent with 14,875 does not significantly change the
average degree. So, on average nuclear proteins have
a higher degree, i.e. they are interacting with more
other proteins, than non-nuclear proteins. Also, trav-
eler proteins have a slightly higher degree than
non-traveler proteins indicating that they need to

interact with other proteins to move in and out of
the nucleus. Also, most of the nuclear proteins (97%)
are located in the largest connected component, so
they are an important part of the PPI network.

Discussion
LocNuclei predicts sub-nuclear localization at a high ac-
curacy. It combines homology-based inference and de
novo prediction to achieve the highest performance. The
relatively conservative threshold at which the combination
was best (Fig. 1: E-value ≤ 10-20) was surprising due to its
extremity (e.g. thresholds down to E-values ≤ 10− 3 are
often used to infer functional similarity), and due to the
fact that the performance for lower values was still higher
than that of the machine learning (Fig. 1: “Homology (with
hit)” vs. SVM). In fact, the curve remained numerically
higher down to E-values≤10− 5 (straight gray line at
Q13 = 59% vs. dark line in Fig. 1). Given the simple algo-
rithm for the combination of homology-based inference
(HB) and machine learning (ML) (if ∃ HB, take HB, else
take ML) the combined algorithm could never be worse
than its constituents (HB&ML >max (HB,ML)). Thus, the
optimality in Q13 of a conservative threshold suggested
that some of the proteins for which HB was available were
also predicted above average for ML. Conversely, the cases
added at lower thresholds of HB were predicted better by
ML than by HB thereby reducing performance by choos-
ing HB over ML (Fig. 1 threshold between 10−20 and 10− 5

all have HB above the ML performance).
Trained on the NSort training data, LocNuclei-NSort

outperforms NSort, a predictor for eight sub-nuclear
localization classes. On the one hand, it appeared that
LocNuclei did not gain much from more recent data. On
the other hand, it appeared not to have lost from distin-
guishing more classes.
Spectra for subnuclear compartments calculated from

the distribution of the actual predictions show that none
of the spectra for human, chimp, mouse, or yeast
resembled that for the development set (Additional file 1:
Figure S2A) suggesting that the new method was not
completely biased by its development set and could dis-
cover important aspects in the nuclear proteomes of hu-
man, chimp, mouse, and yeast. The biggest difference was
for the nucleoplasm for which a much large fraction was
predicted in all organisms than in the development set.
Since the fraction of proteins predicted in the nucleo-
plasm decreases when applying a correction (Fig. 3), this
suggests a bias in the prediction towards overestimating
the number of proteins located to that compartment.
The Euclidean distance between subnuclear location

spectra is used to discover evolutionary relationships be-
tween organisms. However, the discovered relations be-
tween human, chimp, mouse, and yeast are not all as
expected (e.g. human closest to mouse instead of
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chimp). So, while the comparison of subnuclear location
spectra can reveal some insights into the evolutionary
relationship between organisms (e.g. human, chimp
and mouse closer to each other than to yeast), not
all evolutionary aspects can be uncovered com-
pletely. Either the subnuclear spectra do not carry
enough information to capture evolutionary relation-
ships between these organisms fully or the de novo
method makes too many mistakes when predicting
subnuclear compartments so that not enough

information is left to reconstruct the evolutionary re-
lationships correctly.
For pairs of homologous proteins, the predicted

sub-nuclear compartments often agree. However, there
are some pairs where the predictions are very different,
especially in terms of number of predicted compart-
ments. We could not find any evidence in public data-
bases or the literature that the difference in predicted
compartments for these protein pairs is reasonable.
Therefore, the major reason for a disagreement in
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Fig. 5 Odds ratio of protein-protein interactions (PPIs) in the human nuclear proteome. The heatmap shows the odds ratio of PPIs within and
between 13 sub-nuclear compartments. The experimentally annotated PPIs were extracted from mentha [46], the Integrated Interactions Database (iid)
[47], the Human Reference Protein Interactome Mapping Project (HuRI) [48] (data gathered by the Center for Cancer Systems Biology at the Dana-Farber
Cancer Institute and supported by the National Human Genome Research Institute of NIH, the Ellison Foundation, Boston, MA and the Dana-Farber
Cancer Institute Strategic Initiative, accessed on 14-02-2018), HINT [49], iRefIndex [50], InBio Map [51] and mapped to those in human proteins of 13
predicted sub-nuclear compartments. Values below 1 (depicted by green colors) indicate less PPIs between proteins in these compartments than
expected, values equal to 0 (depicted by white) indicate as many PPIs as expected and values above 1 (depicted by red colors) indicate more PPIs than
expected. PPIs are observed more often than expected within all compartments and also between proteins in the Spindle apparatus and Kinetochore as
well as proteins in the Nuclear Pore Complex, Nuclear Lamina and Nuclear Envelope which can be explained by the shared functionality of the
different compartments
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predictions between homologous proteins seems to be
that LocNuclei predicts too many compartments for cer-
tain proteins. In fact, this observation is also true for the
development set: For 34% of the proteins, the correct
number of compartments is predicted, for 61%, at least
one compartment more is predicted than annotated, and
for 44%, even at least two compartments more are pre-
dicted than annotated.
Predicted subnuclear compartments can reveal in-

sights into a protein’s functionality. GO enrichment ana-
lysis revealed a clear link between the predicted
localization and function for many compartments (e.g.
nucleolus and kinetochores) while the signal was less
clear for other compartments (e.g. nucleoplasm and
PML bodies). Overall, the inference of function (as prox-
ied by BFO) from LocNuclei predictions worked best for
compartments with a stable structure and a clearly
defined function.
Monitoring PPIs provides another way to proxy bio-

logical processes. As expected, the number of PPIs be-
tween proteins within the same compartment is always
high while the number of PPIs between proteins in dif-
ferent compartments is much lower. There are only a
few exceptions (PPIs between kinetochores and spindle
apparatus, and between nuclear pore complex, nuclear
lamina, and nuclear envelope occur more often than ex-
pected) and these ones can be explained by the shared
functionality of the proteins in these compartments. The
kinetochore is responsible for attaching the duplicated
chromosomes to the spindle apparatus [2] making PPIs
between these two compartments inevitable for proper
functionality. Nuclear pore complex, nuclear lamina and
nuclear envelope are all part of the nuclear membrane
suggesting that interactions between proteins of these
compartments are needed for stability and proper func-
tionality of the nuclear membrane. As the GO enrich-
ment analysis, the analysis of PPIs between sub-nuclear
human proteins showed that the predicted nuclear
sub-structures related to the expected functionality of
sets of proteins. Therefore, being able to correctly pre-
dict subnuclear compartments can help in identifying
probable PPIs and functionality.

Conclusions
LocNuclei is an easy-to-use new method predicting
sub-nuclear localization; it combined homology-based in-
ference (using PSI-Blast) and de novo prediction (machine
learning through an SVM Profile Kernel) to predict the
most likely of 13 sub-nuclear compartments in which a
nuclear protein functions. It used a similar technology to
distinguish between proteins functional only in the nu-
cleus and those also functional in other non-nuclear com-
partments (dubbed traveler proteins). Fivefold stratified

cross-validation yielded Q13 = 0.62 ± 0.03 (one standard
deviation) for the sub-structure prediction and Q2 = 0.72
± 0.02 for the traveling proteins. These high values consti-
tuted another example for the scientific merit of the
Profile Kernel technology [25].
Six thousand one hundred twenty-three proteins of

20,248 of the human proteins (30%) were predicted by
LocTree3 to be located in the nucleus. Here we intro-
duced a set of new methods, referred to as LocNuclei
that mapped these proteins onto 13 sub-nuclear struc-
tures. Most of the nuclear proteins (57%) were predicted
to function in the chromatin or the nucleolus. LocNuclei
also distinguished between traveler and non-traveler
proteins. This method suggested only about one third of
all nuclear proteins to also function outside the nucleus.
GeneOntology (GO) enrichment analyses focusing on

the BFO (Biological Process Ontology) suggested that
BFO terms can be inferred from the predicted sub-nuclear
locations, at least for stable localizations with a clearly de-
fined role. By cross-referencing the mapped human nu-
clear proteome protein-protein interaction (PPI) data, an
overrepresentation of interactions of proteins within a
compartment as well as between proteins located to the
kinetochores and the spindle apparatus or proteins located
to the nuclear lamina, nuclear envelope, and nuclear pore
complex were observed. Like the BFO enrichment, the
PPI enrichment suggested that LocNuclei predictions
might help in annotating protein networks.

Methods
Data set for development and evaluation
Experimentally annotated nuclear proteins and annota-
tions for their sub-nuclear localization were combined
from six databases: HPRD [26], NMPdb [27], NOPdb
[28], NPD [29], NSort/DB [30], and Swiss-Prot [31].
These databases differ in some of their annotation terms
for sub-nuclear compartments. We “normalized” these
differences through a set of 13 distinct keywords
describing the sub-nuclear data set (Additional file 1:
Table S6).
Of 12,055 proteins experimentally annotated as nuclear,

only 3522 (29%) were associated with one or more nuclear
sub-structure. UniqueProt [32] generated a non-redundant
subset for these by only accepting pairs with HVAL< 20
[33, 34] (implying less than 40% pairwise sequence identity
for alignments over 250 residues). At lower HVALs, the
data set became too small for meaningful performance es-
timates. The final sequence-unique sub-nuclear set com-
prised 1934 proteins (Additional file 1: Table S1).
Four thousand seven hundred twenty-two of the same

12,055 nuclear proteins were also annotated in at least
one other non-nuclear sub-cellular compartment (e.g. the
mitochondria). The complete set of 12,055 nuclear pro-
teins was redundancy-reduced at HVAL< 0 yielding 1098
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sequence-unique proteins, of which 559 (51%) were anno-
tated to exclusively localize to the nucleus, 539 (49%) to
be in the nucleus and some other compartment.
The resulting prediction method was trained to differen-

tiate between (i) proteins localized solely to the nucleus and
proteins localized to the nucleus and other sub-cellular
compartments (traveler proteins), as well as between (ii)
proteins of the 13 sub-nuclear localization classes.

Prediction methods
LocNuclei combined homology-based inference and ma-
chine learning-based de novo predictions in the same way
LocTree3 [13] does: if a sequence similar to a protein of
experimentally known localization is available that annota-
tion is transferred, if not, the machine learning-based pre-
diction is returned. Stratified fivefold cross-validation was
used to determine all parameters and to assess the per-
formance. In a stratified cross-validation, the distribution
of classes is approximately equal in every subset [35].

Homology-based inference
PSI-BLAST [36] alignments are used to transfer annota-
tions by homology. For all proteins of known localization,
PSI-BLAST profiles were generated with two iterations
and E-value ≤ 10− 3 using an 80% non-redundant database
combining UniProt [37] and PDB [38]. These profiles
were then aligned at E-value ≤ 10− 20(for prediction of sub-
nuclear compartments) or ≤ 10− 5 (for prediction of trav-
eler proteins) against non-redundant proteins in the
development set. For performance estimates, PSI-BLAST
self-hits were excluded. The annotation from the hit with
the highest pairwise sequence identity of all retrieved
alignments was transferred to the query protein.

De novo prediction
The SVM [39] implementation of LibSVM [40] and the
Profile Kernel Function [25, 41] was used to train 13 differ-
ent SVM classifiers to predict 13 sub-nuclear localizations,
where each classifier was trained to discriminate between
all the proteins in one particular nuclear sub-structure and
all proteins in any of the other 12 nuclear sub-structures.
Another profile kernel SVM learned to distinguish between
proteins exclusively observed in the nucleus and those ob-
served in the nucleus and other sub-cellular compartments
(referred to as traveler proteins).
The Profile Kernel algorithm maps each evolutionary

profile to a 20k-dimensional vector of integers. Each di-
mension represents one k-mer, a string of k consecutive
residues and a particular value gives the number of
times this k-mer is conserved in an evolutionary profile
(multiple sequence alignment). Conservation is calcu-
lated as the sum of substitution scores for each residue
in the k-mer and has to fall below a certain threshold σ
[25, 41]. σ and k are user defined parameters that we

optimized during training. For the SVMs, we focused on
optimizing C, the penalty parameter of the error term,
and tol, the tolerance for the stopping criterion. For each
Profile Kernel SVM, we optimized these four parameters
independently. Also, class weights inversely proportional
to class frequencies in the input data were applied for
the subnuclear prediction to correct for class imbalance.
The traveler dataset was almost balanced; thus, we did
not apply class weights for this prediction task. All
chosen parameter settings for the 14 different SVMs are
listed in Additional file 1: Table S7.

Reliability index (RI)
Prediction strength correlated with performance (Fig. 2)
allowing users to focus on more reliable new predictions
through a reliability index (RI) ranging from 0 (weak pre-
diction) to 100 (confident prediction). For the homology-
based inference, the percentage pairwise sequence
identity (PIDE) from PSI-BLAST was used to define the
RI (RI = int(10*(PIDE-20)/8)). To convert the raw SVM
score to a reliability index, this score is normally trans-
ferred to a probability using Platt scaling [42]. However,
the implementation of Platt scaling in LibSVM [40] failed
for our dataset. Typically, SVM scores > 0 should give
probability values > 0.5. For our dataset, this was only ob-
served for the prediction of some sub-structures (classes).
For others, Platt scaling transferred the scores to probabil-
ities < < 0.5. Therefore, we had to renormalize the raw
SVM scores (Eq. 1) as follows:

RIsvm ¼ rawsvm∙
100

max rawsvmð Þ ð1Þ

Performance evaluation
The performance of LocNuclei was assessed through
standard measures. For each localization class, every
prediction can be classified as either true positive (TP,
the sample is predicted and observed in this class), false
positive (FP, the sample is predicted in this class, but ob-
served in another), false negative (FN, the sample is pre-
dicted not to be in this class but observed in it) and true
negative (TN, the sample is predicted and observed in
another class). From this classification, the overall accur-
acy follows:

Q nð Þ ¼ 100∙
Pn

i−1number of proteins correctly predicted in class iPn
i¼1total number of proteins observed in class i

ð2Þ

with n as the number of localization classes (here: 13).
To simplify, this measure calculates the total number of
correct predictions divided by the total number of pro-
teins in the test set.
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The receiver operating characteristic (ROC) curve and
the derived area under the curve (AUC) are combined
performance measures connecting true positive rate
(TPR, Eq. 3) and false positive rate (FPR, Eq. 4) [43].
The ROC-curve shows FPR versus TPR.

TPR ¼ 100∙
TP

TP þ FN
ð3Þ

FPR ¼ 100−100∙
TN

TN þ FP
ð4Þ

The curve is often simplified into a single number, the
Area Under the Curve (AUC) [43].

Comparison of LocNuclei predictions between proteins
LocNuclei might predict more than one sub-nuclear
compartment for a particular protein. This implies that
the comparison of predictions between, e.g. two similar/
homologous proteins requires the introduction of add-
itional parameters. Toward this end, we used the frac-
tion of agreement in two predictions An and Bm defined
as follows:

agree An;Bmð Þ ¼ 1
n
∙
Xn

i¼1
zi; zi

¼ 1; if ai∈ b1;…; bmð Þ
0; otherwise

�
and n≥m w:l:o:g:

ð5Þ
where A and B are two proteins and n and m are the
number of predicted compartments for A and B, re-
spectively. In the limit of a single prediction per protein,
this agreement is identical to the percentage of correct
predictions; in the limit of predicting all sub-
compartments for one protein, the value falls below ran-
dom (1/13 which is lower than random given the differ-
ence in the size distribution of the 13 compartments).

GO enrichment analysis
Gene Ontology (GO) [18, 19] provides a controlled vo-
cabulary (GO terms) of annotated functions for a pro-
tein. It consists of three separate ontologies: “Biological
Process”, “Molecular Function” and “Cellular Compart-
ment”. To analyze whether certain GO terms are statisti-
cally enriched for proteins annotated in a particular
nuclear sub-structure, we used the webserver GOrilla
(http://cbl-gorilla.cs.technion.ac.il/) [44]. GOrilla ana-
lyzes the enrichment of a certain set of proteins through
a hypergeometric distribution. It compares the number
of known experimental annotations of a GO term in all
proteins within a compartment (positive class) and those
in all proteins not in the compartment (negative class).
The resulting p-value gives the probability to observe
the given annotations under the assumption that the an-
notations for proteins from both classes do not differ. A

small p-value indicates that this assumption is not true
and that the corresponding GO term is overrepresented
in the positive class. GOrilla also offers correction for
multiple testing by giving a p-value adjusted using the
Benjamini-Hochberg method [45]. We only considered
the adjusted p-value when analyzing the significance of
results. We considered all terms with p-values < 0.01 as
significantly enriched in the positive. The GO enrich-
ment analysis was carried out exclusively for GO ontol-
ogy “biological process”.

Protein-protein interactions (PPI) for nuclear proteins
To analyze the map between nuclear sub-structures and
protein-protein interactions (PPIs) in human proteins,
we merged a dataset containing information from six
original resources, namely: (1) mentha [46], (2) the Inte-
grated Interactions Database (iid) [47], (3) the Human
Reference Protein Interactome Mapping Project (HuRI)
[48] (data gathered by the Center for Cancer Systems
Biology at the Dana-Farber Cancer Institute and sup-
ported by the National Human Genome Research Insti-
tute of NIH, the Ellison Foundation, Boston, MA and
the Dana-Farber Cancer Institute Strategic Initiative,
accessed on 14-02-2018), (4) HINT [49], (5) iRefIndex
[50], and from (6) InBio Map [51]. For each database,
only binary, direct interactions were considered (often
also referred to as transient physical interactions), i.e. we
excluded associations. Furthermore, only interactions
determined by an experiment and validated by a yeast
two-hybrid (Y2H) experiment or interactions supported
by two independent Pubmed IDs were considered.
To analyze whether proteins between or within a com-

partment interact more often than we would expect, we
calculate an odds ratio for an interaction to happen be-
tween compartment i and j (Eq. 5).

odds PPIij
� � ¼ numobs PPIij

� �
numexp PPIij

� � ð6Þ

where is the number of expected PPIs between proteins
in these compartments and is calculated as

numexp PPIij
� � ¼ numpos PPIij

� �
P

ijnumpos PPIij
� � ∙numobs PPIð Þ ð7Þ

Where numpos (PPIij) is the number of possible PPIs
between proteins in compartment i and j in the whole
PPI dataset and numobs (PPI) is the overall number of
observed PPIs in our data set.
NSort [12] is a framework with eight Bayesian

Network-based classifiers that predict protein sub-nuclear
localization in eight classes (nucleolus, perinucleolar
region, PML bodies, nuclear speckle, Cajal bodies, chro-
matin and nuclear pore complexes). Each classifier
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operates from biological features including protein
sequence, protein interactions, domain and post-
translational modification. Each prediction of NSort can
be traced back to the feature contributing most to the re-
sult. As NSort is the only method available to accomplish
some of the objectives aimed at by LocNuclei, we com-
pared the performance of LocNuclei to that of NSort.

Availability
LocNuclei is a Python project and is available on GitHub:
https://github.com/Rostlab/LocNuclei. The datasets of
sub-nuclear and traveler proteins used for development
as well as sub-nuclear and traveler predictions for all
proteins from the development set are also available.
More detailed information on how to run LocNuclei is
given in the repository.

Endnotes
1Operationally, we defined transient, physical protein-

protein interactions (PPI) as cases of two different
proteins that come so close in space that they “bind”
(physical interaction as opposed to association; closest
C-alpha≤6 Å) and that this binding is shorter than the
“life”-time of either of the two (transient). This simple
definition implies in particular that (i) PPIs are formed
only between different proteins, (ii) no transitivity:
PPI(A,B) ∩ PPI(B,C) ↛ PPI(A,C), and (iii) no molecular
machines: just as most associated proteins do not bind,
most members of the same molecular machine, or large
physical complex do not bind.
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