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Abstract

growing virus to out-compete a faster growing virus.

branching process, Extinction probability

Background: Respiratory viral infections are a leading cause of mortality worldwide. As many as 40% of patients
hospitalized with influenza-like illness are reported to be infected with more than one type of virus. However, it is not
clear whether these infections are more severe than single viral infections. Mathematical models can be used to help
us understand the dynamics of respiratory viral coinfections and their impact on the severity of the illness. Most
models of viral infections use ordinary differential equations (ODE) that reproduce the average behavior of the
infection, however, they might be inaccurate in predicting certain events because of the stochastic nature of viral
replication cycle. Stochastic simulations of single virus infections have shown that there is an extinction probability
that depends on the size of the initial viral inoculum and parameters that describe virus-cell interactions. Thus the
coinfection dynamics predicted by the ODE might be difficult to observe in reality.

Results: In this work, a continuous-time Markov chain (CTMC) model is formulated to investigate probabilistic
outcomes of coinfections. This CTMC model is based on our previous coinfection model, expressed in terms of a
system of ordinary differential equations. Using the Gillespie method for stochastic simulation, we examine whether
stochastic effects early in the infection can alter which virus dominates the infection.

Conclusions: We derive extinction probabilities for each virus individually as well as for the infection as a whole. We
find that unlike the prediction of the ODE model, for similar initial growth rates stochasticity allows for a slower

Keywords: Viral coinfection, Respiratory virus, Within-host model, Continuous-time Markov chain, Multi-type

Background

With the advent of molecular diagnostic techniques, res-
piratory tract specimens from patients with influenza-
like illness (ILI) are now being recognized as having
multiple viruses [1-4]. Around 40% of the hospitalized
patients with ILI have coinfections with influenza A
virus (IAV), influenza B virus (IBV), respiratory syncytial
virus (RSV), human rhinovirus (hRV), adenovirus (AdV),
human enterovirus (hEV), human metapneumovirus
(hMPV), coronavirus (CoV), parainfluenza virus (PIV),
human bocavirus (hBoV) and many others [5-9]. These
patients are reported to suffer from heterogeneous dis-
ease outcomes such as enhanced [10-12], reduced [13, 14]
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and unaltered [14—16] severity compared to patients with
single virus infections. However, it is not clear how the
virus-virus and virus-host interactions influence disease
severity and lead to these varied outcomes. Two or more
virus agents can interact in diverse ways which may
arise from the consequences of their inoculation order,
inter exposure time, initial inoculums, different combina-
tions of viruses, number of coinfecting viruses and host
immune state [17, 18]. Thus, coinfections pose a combi-
natorial problem which can be challenging to study in a
laboratory set up alone.

Coinfection can be better understood using mathemat-
ical modeling. While mathematical modeling of single
virus infections at the cellular level has proven crucial for
finding answers where laboratory experiments are impos-
sible, impractical or expensive [19-23], little has been
done in viral coinfection modeling. A few studies [24—26]
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have used within host models considering interactions
of two different strains of the same virus. Among them,
Pinilla et al. [24] and Petrie et al. [25] used their mod-
els to study competitive mixed-infection experiments of
pandemic A/HINI influenza with its H275Y mutant
strain and Simeonov et al. [26] considered a spatio-
temporal model to explain in vitro cellular susceptibility
due to the simultaneous presence of RSV A2 and RSV B.
Pinky and Dobrovolny [27] proposed a two virus coin-
fection model to investigate viral interference observed
in an experimental study of IAV-RSV coinfection
(Shinjoh et al. [28]) where they concluded that distinct
viruses interact through resource competition. In further
investigations [29, 30], they used the model to quantify
the impact of resource availability, finding the possibil-
ity of chronic single infection if constant cellular regen-
eration was considered and chronic coinfection if both
cellular regeneration and superinfection were considered.
However, the majority of the two virus models studied
so far have focused on the deterministic approach that
reproduces the average behavior of infection kinetics. The
exceptions are Dobrovolny et al. [31] and Deecke et al.
[32] who investigated two strains of the same virus (wild-
type and drug resistant mutant) using a stochastic model
to determine mechanisms driving the emergence of drug-
resistant mutants during the course of a single infection.
Since in real life viral infections are stochastic and dis-
crete events, stochastic simulations of infection models
will provide further insight into coinfection dynamics.
For example, stochastic simulations of single virus infec-
tions have shown that there is an extinction probability
that depends on the size of the initial viral inoculum and
parameters that describe virus-cell interactions [33]. Sim-
ilarly, experimental studies of viral infections in animals
have shown that viruses do not always establish infection
in every animal under study [34]. Although the causative
phenomenon is still unidentified, there are some possi-
ble factors suggested by researchers such as host defense
mechanisms, spatial heterogeneity in the target cell pop-
ulation, and the stochastic nature of the virus life cycle
[34]. Moreover, evaluation of this quantity can be useful
in many situations where the viral dynamics cannot be
explained with a simple deterministic model. Numerous
stochastic models have been developed to study vari-
ous aspects of the single viral infection process such as
virus release strategies (i.e. budding and bursting) for HIV
[33, 34], impact of initial viral dose [35], length of eclipse
and infectious phases [33, 34], impact of the immune
response [34, 35], and how ongoing proliferation of
immune cells acts to decrease the emergence probability
of mutated strains [36]. These models have been studied
using Monte Carlo simulations of the multi-type branch-
ing process [37, 38], or by simulating solutions to stochas-
tic differential equations where processes involved in the
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virus life cycle are diffusion processes (stochasticity is
represented by noise terms in the equations) [35, 39, 40].

Of particular interest for stochastic models is the prob-
ability of extinction, a feature that ODE models can-
not capture. In stochastic models, analytic expression of
extinction probability is formulated by keeping track of
the number of infected cells [41], the number of viri-
ons [42] and both [33] in single virus models, mostly
for HIV infection. Yan et al. [34] used a similar method
to calculate the extinction probability that includes time
dependent immune responses in a single influenza virus
model. Stochastic extinction could be a factor in coin-
fection dynamics since one virus could have a higher
extinction probability, even if the two viruses have the
same initial viral inoculum or initial growth rate, mak-
ing it possible for one virus to go extinct while the other
viral infection grows. Thus the coinfection outcomes pre-
dicted by the ODE model might be difficult to observe in
reality.

In this work, we implement a stochastic counterpart
of our previously published ODE coinfection model [27],
in the form of a continuous-time Markov chain (CTMC)
model. Trajectories for the CTMC model are simulated
using Gillespie’s tau-leap algorithm. In order to investi-
gate how stochastic effects early in the infection impact
coinfection, we vary the initial growth rate and com-
pare to predictions from the ODE model. We also derive
the extinction coefficient analytically for the model using
multi-type branching method. While the ODE model
found that the virus with a higher growth rate con-
sumes more target cells and produces higher peak viral
load compared to the slower growing virus, we find that
stochasticity can allow slower growing viruses to consume
more target cells and produce more virus than the faster
growing virus.

Results

Derivation of extinction coefficient

Stochastic extinction is most relevant during the initial
stage of infection. At this stage the number of target cells
is small. We can consider that the target cells are constant
or equal to the initial number of target cells (T' &~ Tp). As
a result, the states become decoupled making the stochas-
tic events independent of each other. In addition, each
event produces progeny over a lifetime which is also inde-
pendent of the lifetime of all other events. More details
on how to derive a branching process from a CTMC
can be found in [43]. Under these conditions, the CTMC
model becomes a multi-type branching process where
the reduced state vectors now represent /=(ng,, ny,, 1y, ,
nE,, n1,, ny,), where ng, and ng, are the numbers of eclipse
cells, ny, and nj, are the infected cells, and #ny, and ny, are
the virions of both viruses. Including the assumption of a
constant number of target cells, the reduced model is
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Thus the continuous-time Markov chain becomes a multi-
type branching process that describes the dynamics of a
population of individuals having birth and death indepen-
dently according to the specified (in this case exponential)
probability mass function. If a time-homogeneous CTMC
is a branching process, the only absorbing state is 0. For
this model we defined the absorbing state as 0 and the
probability to reach this state from, say, 7, is &(171). This
probability is referred to as the extinction probability. Bio-
logically, the extinction probability is defined as the prob-
ability that the two types of viruses and all their infected
cells are completely eliminated from the host. Once a tran-
sition occurs, the current state 71 is incremented by one of
the transition vectors given below.

ity = (0,+1,0,0,0,0) for V; 25 |
driiy = (0,—1,+1,0,0,0) for Ey <5 I,
driiz = (+1,0,0,0,0,0) for I; 25 v,
driig = (0,0,—1,0,0,0) for I; 2> ¢
driis = (—1,0,0,0,0,0) for Vi = ¢
driig = (0,0,0,0,+1,0) for Vo 225 E,
diii; = (0,0,0,0,—1,+1) for Ey <> I
driig = (0,0,0,+1,0,0) for I, 2> Vs
drii = (0,0,0,0,0, —1) for I > ¢
dniyo = (0,0,0,—1,0,0) for Vo = ¢.

If the rate of the i reaction is defined as a; such that
a1 = P1TVi,a2 = PoT Vo, a3 = kiE1,as = koEy, as =
dl1,a6 = 8213, a7 = p1l1,as = palr, a9 = c1V1,a10 =
¢y Vo, then the probability that the i reaction is the next
reaction is given by
a;(r)

Z ()
Nmax

where Z(i) = Y _ a;(in),

Pi(m) =

and 7,4, is the number of transitions involved in the
model and is equal to 10. The time of the next reaction
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is a random variable with distribution Z(#1) exp(—Z (1))

with mean (according to the Gillespie algorithm).

Z(m)
The probability that a simultaneous exposure to both
viruses eventually evolves to extinction, or reaches the
absorbing state, (0,0, 0, 0,0, 0), from state 7% or the extinc-

tion coefficient, £ (711), is
EGin) = Y P& G+ diiny), in # O, (1)
£(0) = 1 when 711 = 0.

Substituting the expressions for P;(#) and & (7 + dw;) in
Eq. (1), the extinction coefficient becomes:

_ BiTVA oy mp 41 mp mv, ey

E(m) = 7 Py, P, Pn Pv, PE, Pr,

klEl ny, np—1 np+1 ny, NHg, Hl,
7/)‘/1 Pg, Pp Py, Pg,” Pr,
pily ny+1 ng my ny, ng, ng

7 Py~ Pg P Pv, PE, Pr,

6111 ny, np np—1 ny, ng, np
ZpV1p51p11 Pvy PE,” Pry

aVi ny,—1 ng, np ny, Hg, Hp,

7 Pyvi- Pg, P Py, Pg, Pr,

ﬂzTVQ n ng, ny N ng,+1 n
+ = A R T ey e M ¢)

kong, ny, ng np ny, ng—1 np+l
VA4 Pvi Pg, Pr Pvy P, Pp

P212 ny, ngy nn ny,+l ng, np

valp}sl I sz 'OEz'O[z

62[2 ny, Mg, n, Ny, HE, Hnp,—1
1 1 1 2 2 2
+ 7,0‘r1 pEl ,011 ,0‘72 ,052 ,012

Vo ny, nmg my ny,—1 ng, np

valp}sl n Pv, 'OEz'OIz'

+

Although the general solution of this expression is
intractable, the CTMC assumption of independent events
means that the functional equation of &(m) can be
reduced to an algebraic equation. Thus the extinction
probability from a given state is the product of the extinc-
tion probabilities from each of the constituents of that
state [44], so we can write

E(’/_h) = é(nElﬁ np, Ny, NEy; A, an)
= Py, Pr, 1, PV Py Pry ®)
where p;q,‘l/l is the probability that the virus, Vi, initiates
a process with ny, number of virus particles that results
. - - ng,
in extinction. In a similar manner, 10511' ,0111 and others
are probabilities for eclipse cell, E, or infected cell, I; and
so on. Eq. (3) is recognizable as the fixed-point equation
£ = P(£), where € =[¢1,...,¢&/] and P(€) is the probabil-
ity generating function of the progeny distributions. Now

substituting Eq. (3) in Eq. (2), we get
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nn b1 nr 4 np—1
= +
Pn p1+81 Prfn p1+8 Ph
or, pj, = 2 oV1PI —
N s i+ s
”51 nEl -1
Pg, = Pg'  PL, or pg, = pr and
pﬂv2 o BT pﬂvzp p”Vz_l
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BT e
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BoT + co BoT + co
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nr, P2 2
or, VaPly + ————>
fr 1’92-1-5'02'02 p2+ 38
HEy }'152—1
Pg,” = Pg,  PL O PE; = Pl

where py;, p1, and pg; are the extinction probabilities when
the processes are initiated with a single virus particle or
eclipse cell or infectious cell. Solving for each probabil-
¢i(pi + 8)
pilci+ BiT)

,and pg; = pr, where i = 1,2. Since

ity, we get py;, = 1 and py, = , pr; = 1and

di(ci + BiT)
BiT (pi + 6;)

probability has to be less than or equal to 1, we can write
the solutions of the extinction probabilities as:

oy ZInhl(Cﬂlﬁ'+51>1>
! pici+pT) )’
Sier + A T)

oL =

1

pl =
BiT(p1+681)

PE; = pllr
PV =m1n( c2(p2 + 82) 1),
’ pa(ca+ BT’
(52(C2+l32T) >

,1

ply =
BT (p2 + 62)

PE, = pl.

Probability of virus extinction Since the extinction of
each event is independent, we can write for the probability
that both viruses go extinct if the simultaneous infection is
initiated with a single virus of each type by the expression

PV1PVy»
c1(p1 +81)  calpr +62)
pi(c1 + B1To) paea + B2To)

PV1PV, =

Stochastic dynamics of identical viruses
While the probability of virus extinction is an impor-
tant feature of stochastic models, we are also interested
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in understanding if stochasticity affects the predicted
dynamics of coinfections that survive. Previously in our
ODE model [27], we found that the virus with the higher
growth rate always out-competes the slower growing
virus. While ODEs can give us the average behaviors of
the coinfection process, in real systems the biological pro-
cesses are stochastic. The randomness associated with
births and deaths during the initial infection process may
lead to virus extinction even in an exponentially grow-
ing virus population [45]. Yan et al. [34] reported that
the invasion of viral infection is dependent on the ini-
tial viral dose and growth rate of each virus. Here, we
are interested in knowing how the coinfection dynam-
ics change with change in growth rates of each virus.
First, we will observe the dynamics of coinfection with
identical viruses.

Keeping all the initial conditions and transition rates for
both viruses equal, we examine the time course of coinfec-
tion by plotting number of virus over time. 1000 sample
stochastic trajectories of viral load curve for coinfection
with identical viruses are shown in Fig. 1. We find that
both viruses have peaks above the threshold of detection
(100 virions) 88% of the time and 12% of the time one
of the viruses experiences extinction. Among 120 (12%)
extinctions, virus 1 and virus 2 experience extinction 49
and 65 times out of 1000 simulations, respectively. In
another words, there is a 4.9% chance that what begins as a
coinfection will result in a single virus infection with virus
2 or 6.5% chance with virus 1.

The ODE model predicts that when all parameters are
equal, both viruses will have the same time course, split-
ting available target cells equally. In the stochastic model,
we find that despite having identical growth rates, one
virus out-competes the other virus in particular realiza-
tions of the model. Virus 1 has a higher peak viral titer
513 times within 1000 simulations, while virus 2 has the

; \ —— Virus 1
10 — Virus 2
S10°
Q
3}
g
2,3
->10
10"

0 2 4 6 8 10
Time post infection (day)

Fig. 1 Stochastic trajectories for viruses with the same growth rates.
All'initial conditions and parameters are also kept equal
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higher peak viral titer 487 times. So while a particular real-
ization of the model will have a clear dominant virus, on
average, the viruses are equivalent, in agreement with the
ODE model. Additional file 1 includes additional figures
examining the distributions when viruses differ. To char-
acterize the viral time course, we calculate peak viral load,
time of peak for each virus, as well as duration of coinfec-
tion (Fig. 2). The median time of peak for virus 1 is found
to be 2.374+0.64 days and for virus 2, it is 2.375+0.65
days. The median of peak viral load for virus 1 and 2
are (4.04:2.6) x 107 and (4.1£2.6)x 107, respectively. From
the distributions (Fig. 2), we see that even if the viruses
behave differently for a particular model realization, on
average, they tend to behave identically. Finally, the distri-
bution of coinfection duration is given in Fig. 2 where the
median coinfection duration is found to be 5.730£0.059
days. Despite fluctuations in the time course of each virus,
the coinfection duration does not vary much.
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Stochastic dynamics for different viruses

Since growth rate determines which virus is the stronger
competitor [27], we investigate how differences in growth
rate between the two viruses changes stochastic infec-
tions. Unfortunately, growth rate is not a parameter in the
model, so we need to determine which model parame-
ter(s) to change to systematically vary the growth rate. We
use the expression for growth rate derived by Smith et al.
[46] and determine how growth rate depends on different
model parameters (Fig. 3). We find that growth rate varies
approximately linearly with virus production rate, p, over
a large range of p (p > 1), so we will systematically alter p
for one virus to alter its growth rate.

For ease of interpretation, we define the relative viral
production rate r = 2L, We first examine how competi-
tion between the viruses changes as the relative growth
rates change. Here variation is introduced for virus 1 keep-
ing virus 2 fixed for a range, r = 1 x 107! x 10%. We

(right column) and duration of coinfection (bottom row)

140
«» 120
Q
€ 100
(4}
£
3 80
3
« 60
o
o
2 40
20
05 % 7 g 7 8
10 10 10 10 10 10
Peak of virus 1 Peak of virus 2
140 140
£ 120 $120
(&} o
@ 100 & 100
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3 80 N 3 80
3 3
%5 60 5 60
) l°)
= 40 2 40
20 T 20
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8
c 300
o
5
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S
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Fig. 2 Stochastic dynamics of identical viruses. Distribution of time of peak (top row), peak viral load (middle row) for virus 1 (left column) and virus 2
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count the number of times, out of 1000 simulated infec-
tions, a particular virus has a higher viral titer peak than
the other virus. The results are shown in Fig. 4. When the
viruses have identical growth rates, there is a 50% chance
that a particular virus will have the higher peak titer, as
seen in the previous section. The probability of having a
higher peak viral load increases rapidly as the production

-
o

o
®

e
o2}

©
»

o
N

Fraction of simulations virus
has higher peak

e
o

=1

10 10 10'

Relative viral production rate

10

Fig. 4 Number of times one virus has a higher peak viral titer than the

other virus. Growth rate is varied by varying the relative viral

production rate, r = |

p2

rate of a virus increases, reaching 90% with a less than 2-
fold change in viral production. Note that the probability
of having the higher peak viral titer never quite reaches
100%, even when there are large differences in growth rate.
This indicates that early stochastic events can significantly
alter the time course of the infection.

In Fig. 5, we compare coinfection dynamics for the ODE
and CTMC models, looking at peak viral load, time of
viral peak, and coinfection duration. ODEs predict that if
the growth rate of one virus is higher than the other it
will always have a higher peak viral load (Fig. 5 (top left)).
For the CTMC model, the transition from one virus dom-
inating to the other dominating is not as sharp. Unlike
the predictions of ODEs, the CTMC allows for the slower
growing virus to dominate infection dynamics. In fact, the
median peak viral loads for virus 1 and virus 2 cross closer
to a relative viral production rate of 10! rather than 10°
as seen in the ODE model. Stochastic variability in the
peak viral load (as indicated by the shaded area) for both
viruses overlaps for a wide range of relative viral produc-
tion, indicating that the viruses can have similar peak viral
loads.

The time of viral peak also shows some differences
between the ODE and CTMC models. For the ODE
model, the time of viral peak is similar for both viruses
when the relative viral production rate is greater than 10°,
although the time of peak decreases as the relative viral
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production rate increases. This is because the viral pro-
duction rate of virus 1 is increased over its baseline value
causing an earlier time of peak. This drives the earlier time
of peak of virus 2, which is the weaker competitor in this
case. The decline in time of viral peak is not as sharp in the
CTMC model since stochasticity can temper the effect of
the increased production rate of virus 2 by allowing virus
1 to still have an opportunity to infect some cells.

Finally, we compare the predicted duration of coin-
fection variation for ODE and stochastic models (Fig. 5
(bottom row)). Viruses do not coexist for more than about
a week in either model. The longest coinfection dura-
tions are seen, for both models, when the two viruses
have the same growth rates. This is because the faster

growing virus out-competes the slower growing virus
leading to short infections for the slower growing virus.
One feature of viral infections that cannot be cap-
tured by ODE models is extinction of the infection.
Therefore, we simulate the probability of virus extinc-
tion, defined as the fraction of times when one virus
does not grow above the virus detection limit (detec-
tion limit is equal to 100 virus particles), when the
coinfection is initiated with a single virus of each type
(Fig. 6). Note that this is slightly different than the def-
inition for the probability of extinction calculated in
“Derivation of extinction coefficient” section which
requires that virus, along with infectious and eclipse cells,
all go to zero. The probability of both viruses growing to




Pinky et al. BMC Bioinformatics (2019) 20:191

=10

§e]

g

= 0.8

X

0]

3

£06

S

—

o

204

=

©

a

©0.2

o

=1 0 1 2
10 10 10 10
Relative viral production rate

Fig. 6 Probability of virus extinction with respect to varying relative
production rate. Extinction probability is simulated for the case when
the coinfection is initiated with a single copy of each virus and the
virus detection limit is set at 100 virions

detectable levels is highest for viruses with similar rela-
tive production rates. When relative viral production rates
are very different (about 10—100 fold difference), there is a
high probability that one virus becomes extinct. When the
viruses have very different production rates, the virus with
a higher production rate will out-compete the one with
a low production rate driving it to extinction. However,
since one virus (in this case virus 1) experiences decreased
production rate from the base value but initiates infection
with the same amount of virus, the probability of extinc-
tion reaches close to 100% in a quicker manner for lower
relative production rate than that of the higher relative
rates.

Discussion

The dynamics of coinfection were previously modeled
deterministically in several studies [24, 25, 29]. However,
ODE models do not capture the very earliest dynamics of
infection where stochastic effects may play an important
role. The stochastic model presented here indicates that
stochastic effects can dramatically alter the time course
of the infection. Our previous ODE coinfection model
[27] could not distinguish between two identical/similar
viruses, as the predicted time courses are identical. Simu-
lations of the stochastic model, however, indicate that for
a particular realization of the model, two identical viruses
can have very different time courses, with ~12% of infec-
tions initiated with two viruses resulting in infections with
only one detectable virus. When viruses have different
growth rates, the ODE model predicts that the virus with
the higher growth rate will have a higher peak viral titer.
This is not the case for the CTMC where early stochas-
tic effects can allow a slower growing virus to infect more
target cells than the faster growing virus, giving the slower
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virus a competitive advantage that continues over the
course of the infection.

The ODE coinfection model resulted in a simple rule
for determining which virus would be dominant in a
coinfection — the virus with a higher growth rate. Repli-
cation of the slower-growing virus is suppressed due to
lack of accessibility to target cells. This simple rule sug-
gests that we can easily determine which viruses will be
suppressed in coinfections. For example, application of
the ODE model to several respiratory viruses indicated
that parainfluenza virus (PIV) replication is substantially
reduced during coinfection with other respiratory viruses
[27], suggesting that it should be difficult to detect PIV
in coinfections. However, PIV is detected in coinfections
from 30-80% of the time [15, 47-50]. Some of this unex-
pectedly high detection rate might be due to stochasticity.
PIV detection in coinfection is, however, lower than what
is observed for two identical viruses as described in the
previous paragraph. The slow growth rate of PIV means
that most viruses will out-compete PIV more often than
viruses with identical growth rates.

Stochasticity also impacts our ability to use viral inter-
ference as a possible mechanism for treating or preventing
more serious infections. If we cannot guarantee that a
fast-growing virus will suppress growth of a slow-growing
virus, then this strategy might be risky. For example, some
have suggested using defective interfering particles (DIPs)
as a possible method for blocking infections [51-55]. DIPs
cannot replicate on their own, but have a high growth
rate when fully-functioning virus is present. Our results
indicate that even when there is a large difference in
the viral growth rate, there is a non-zero probability that
the slower-growing virus (in this case the fully-functional
virus) will rise to a higher peak than the faster growing
virus, suggesting that use of DIPs for treatment will not be
completely effective.

While our extension of the simple coinfection model
has provided insight into how stochasticity might affect
coinfections, this simple model does not capture all bio-
logical processes during the infection. More complex ODE
models that include cell regeneration [29] and superin-
fection [30] have been proposed and reproduce a broader
range of behaviors observed during viral coinfections.
Stochastic versions of these models can also be devel-
oped in the future to examine how stochasticity affects
behaviors such as chronic coinfections. Other limitations
include the lack of an explicit immune response, which
will likely increase the probability of extinction of the
coinfection [34], and the inclusion of realistic delays to
account for intracellular replication [56]. Despite these
shortcomings, this stochastic implementation of a viral
coinfection model has shown the extent of variability
in the time course of coinfections when stochasticity is
introduced.
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Conclusions

While ODE models are useful for giving a broad picture of
possible dynamical behaviors of infection, in reality each
infection is distinct with disease outcome dependent on
early stochastic events. This is particular important when
considering interactions between viruses during coinfec-
tion since stochasticity can drive one or both viruses to
extinction before the infection has time to take hold. Our
models show that for viral coinfections, this sometimes
leads to a less fit virus out-competing a more fit virus.

Methods

Continuous-time Markov chain model

The previously [27] proposed ODE coinfection model
considers the mean concentrations of viruses and cells
in a large population. Here, we formulate the probabilis-
tic counterpart of the ODE model, a time-homogeneous
CTMC model of two competing viruses with particu-
lar account for stochastic effects in the early infection
processes. This model considers variability in each viral
replication event (for example, infectivity of target cells,
transition to eclipse phase, activation of infectious phase
and its lifespan, virus production and virus clearance) and
takes values on a set of states collectively known as the
state space 2. The states of the full system are defined as
m = (nr,ng, 11, Ay, NE,, NI, 1y,) where the state vec-
tors denote the integer numbers of target cells, eclipse
cells, infected cells, virions for virus 1 and 2 respectively.
The states are discrete, and the stochastic process is time-
homogeneous. The CTMC model that we implement is
similar to that of Pearson et al. [33]. Figure 7 illustrates the
model diagram. The model is

T+wv 5 E T+, 2 E,
05 B2
L% w L2 v
n% L%
i o vy, 30,
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where T is the number of susceptible target cells, E;
and Ej are the number of eclipse cells or non-infectious
infected cells, I and Iy are the number of active infec-
tious cells and V7 and V; are the number of virus particles.
Viruses of each type infect the target cells, which are lim-
ited, at infection rates, 81 and B,. Each type of infected cell
transitions into eclipse phases where viruses undertake
intracellular processes for progeny virus production. After
the time durations of % and k—12, eclipse cells become pro-
ductive infectious cells, /; and I, which produce viruses
at production rates p; and py over their lifespans of %

and % respectively. While viruses are being produced by
the infectious cells, some of the cell free viruses are being
cleared with clearance rates ¢; and ¢3. Thus the number
of transitions involved in the model is 10 with respective
transition rates (propensities) defined in Table 1. In our
model assumption, we have ignored virus particle loss due
to absorption into the cells since this amount is negligi-
ble compared to free virus particles produced. Finally, no
specific immune interactions are considered in this model.

It has been shown that, the stochastic representations of
chemical reactions converge to the differential equations
as the number of particles goes to infinity when we can
assume that the probability of a reaction depends on
the density of the reactants [57-59]. We make a similar
assumption for the “reactions” involved in viral replica-
tion where infection of a cell, for example, depends on
the density of both cells and virus. Since biological pro-
cesses, particularly at the microscopic level, are really a
series of chemical reactions, there is an inherent stochas-
ticity to the system that is not simply averaged out because
we are not specifically considering the detailed chemical
reactions in the model. For instance, the infection of a
cell in this model includes binding of the virus to the cell
receptor, fusion of the virus with the cell membrane, and
opening of the virus membrane to release the contents,
among other steps. These are all chemical reactions that
can be assumed to occur with probability proportional
to density of the reacting chemicals. It seems reasonable
then to assume that the overall infection process is also
dependent on the density of the larger entities (viruses and

Time of Infection

Infection states

Transition to infectious phase

Target cell ‘ Eclipse phase l Infectious phase‘

Time of death

Dead cell Time

*

target cells

Duration of eclipse phaseTTime of virus production

Fig. 7 Stochastic states and their transitions during coinfection. All infection states are the same for each virus and viruses share the same pool of
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Table 1 State transitions and propensities for the CTMC
coinfection model

Description Transition Propensity
Infection by V4 T—>T—1E—E+1 Bi1TV4
Infection by V> T—>T—-16—E+1 BTV,
Infection to infectious EE—-E-11=+1 k14
Infection to infectious E—=E—=1h—h+1 koE>
Death of /; =1 =1 Sl
Death of I h—h—1 82
Production of V; Vi— Vp+1 p1h
Production of V, Vo — Vo 41 2l
Decay of V; Vi— V=1 aVy
Decay of V; Vo — Vo —1 (1%

cells) that contain these chemicals and we can expect a
similar convergence of the Markov chain to the differen-
tial equation when there are large numbers of viruses and
cells.

Stochastic simulation algorithm

The direct method popularized by Gillespie [60], in gen-
eral, is used for solving trajectories of time-homogeneous
CTMC models. Bartlett [61] first applied this method for
epidemic modeling of measles. However, since the com-
puting time of the direct method scales linearly with the
initial number of target population [34], the direct method
becomes infeasible to simulate viral infection models with
realistic number of target cells, i.e. of order 1 x 10%. Due
to the increased simulation efficiency with some accuracy
trade off, Gillespie tau-leap algorithms are getting more
attention. In the tau-leap method a small time interval
is chosen such that the number of times each transition
occurs in this interval is drawn from a Poisson distribution
with mean equal to the expected number of transitions
during that interval. The time step is fixed for the most
basic tau-leap method. However, the time step should
be small enough that the rate at which transitions occur

Table 2 Parameter values for the CTMC coinfection model

Parameter Value? Units

B 32 %107 cell™" (TCIDsg/mL)~" d~!
k 46 d-!

B 52 d-!

p 46 x 1072 TCIDsp/mL d~!

c 52 d-!

To 40 x 108 cell

Vo 7.5 x 1072 TCIDso/mL

a 1% 10 —

9Parameter values are taken from [19] for influenza A virus
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remains approximately constant during the fixed inter-
val. For numerical implementation of the CTMC model,
we use the Gillespie tau-leaping method with time step
equal to 1073 day. The transitions involved in the stochas-
tic process and their rates are summarized in Table 1. The
parameter values for numerical simulation are taken from
[19] and are given in Table 2. Viral load is usually mea-
sured as concentration with units such as TCIDsy/mL,
PFU/mL or EID5g/mL rather than as the total number of
virus in the host, while the CTMC model uses discrete val-
ues for each of its state variables. In order to convert viral
concentration measurements to the number of infectious
virus particles, studies have used a conversion factor, «
[31, 62, 63]. Although there is no standard value for «, pre-
vious estimates suggest that 1 TCID5o/mL of nasal wash
corresponds to 1 x 102 —1x10° [62] or 3x 10*—3x 10°[63]
virus particles at the site of infection. So we take « equal
to 1 x 102 to convert the concentrations of virus into num-
bers of virus particles according to the method mentioned
in [31].
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