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Abstract

Background: Computational approaches for the determination of biologically-active/native three-dimensional
structures of proteins with novel sequences have to handle several challenges. The (conformation) space of possible
three-dimensional spatial arrangements of the chain of amino acids that constitute a protein molecule is vast and high-
dimensional. Exploration of the conformation spaces is performed in a sampling-based manner and is biased by the
internal energy that sums atomic interactions. Even state-of-the-art energy functions that quantify such interactions
are inherently inaccurate and associate with protein conformation spaces overly rugged energy surfaces riddled with
artifact local minima. The response to these challenges in template-free protein structure prediction is to generate
large numbers of low-energy conformations (also referred to as decoys) as a way of increasing the likelihood of having
a diverse decoy dataset that covers a sufficient number of local minima possibly housing near-native conformations.

Results: In this paper we pursue a complementary approach and propose to directly control the diversity of
generated decoys. Inspired by hard optimization problems in high-dimensional and non-linear variable spaces, we
propose that conformation sampling for decoy generation is more naturally framed as a multi-objective optimization
problem. We demonstrate that mechanisms inherent to evolutionary search techniques facilitate such framing and
allow balancing multiple objectives in protein conformation sampling. We showcase here an operationalization of this
idea via a novel evolutionary algorithm that has high exploration capability and is also able to access lower-energy
regions of the energy landscape of a given protein with similar or better proximity to the known native structure than
several state-of-the-art decoy generation algorithms.

Conclusions: The presented results constitute a promising research direction in improving decoy generation for
template-free protein structure prediction with regards to balancing of multiple conflicting objectives under an
optimization framework. Future work will consider additional optimization objectives and variants of improvement
and selection operators to apportion a fixed computational budget. Of particular interest are directions of research
that attenuate dependence on protein energy models.
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Background

Faster and cheaper high-throughput gene sequencing
technologies have contributed millions of uncharacterized
protein-encoding gene sequences in genomic databases
[1]. Wet-laboratory efforts on resolving three-dimensional
(tertiary) biologically-active/native structures of proteins
have contributed an order of magnitude less [2]. This
disparity and the recognition that tertiary structure deter-
mines to a large extent biological function and molecular
mechanisms in the cell [3] motivate the development
of complementary, computational approaches to tertiary
protein structure prediction (PSP) [4].

Due to hardware and algorithmic improvements,
template-free PSP methods, which focus on the most chal-
lenging setting of obtaining biologically-active structures
of a protein from knowledge of its amino-acid sequence
(in absence of a structural template from a close or remote
homologous sequence), have made steady improvements
in their capabilities [5]. Despite the success of hallmark
protocols, such as Rosetta [6], Quark [7], and others [5],
most notably due to domain-specific insight, template-
free PSP presents outstanding computational challenges.
The space of possible three-dimensional spatial arrange-
ments of the chain of amino acids that constitute a protein
molecule is vast and high-dimensional; we refer to this
space as conformation space to recognize choices in the
computational representation of a structure!. Exploration
of such complex spaces is performed in a sampling-based
manner (most commonly under the Metropolis Monte
Carlo — MMC framework) and is biased by the inter-
nal energy that sums atomic interactions. The goal is to
generate low-energy conformations that have a higher
likelihood of being near-native conformations (and pop-
ulating thermodynamically-stable regions of the energy
surface) [8]. However, even state-of-the-art energy func-
tions that quantify atomic interactions in a conformation
are inherently inaccurate; they result in overly rugged
energy surfaces (associated with protein conformation
spaces) that are riddled with artifact local minima [9].

The key question in conformation sampling for
template-free PSP is how to obtain a broad, sample-based
representation of the vast and high-dimensional confor-
mation spaces (and in turn the associated energy surface)
and not miss possibly diverse local minima that may house
near-native conformations. The response to this question
traditionally has been by the numbers; that is, the objective
becomes to generate a large number of low-energy confor-
mations (also referred to as decoys) as a way of increasing
the likelihood of having a diverse decoy dataset that cov-
ers a sufficient number of local minima possibly housing
near-native conformations.

In this paper we pursue a complementary approach and
propose to directly control the diversity of sampled con-
formations. Inspired by hard optimization problems in
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high-dimensional and non-linear variable spaces, we pro-
pose that conformation sampling for decoy generation is
more naturally framed as a multi-objective optimization
problem. We demonstrate that mechanisms inherent to
evolutionary search techniques facilitate such framing and
allow balancing multiple competing objectives in protein
conformation sampling. We showcase an operationaliza-
tion of this idea via a novel evolutionary algorithm that
has high exploration capability and is additionally able to
access lower-energy regions of the energy landscape of
a given protein with similar or better proximity to the
known native structure than state-of-the-art algorithms.

The rest of this article is organized as follows. Related
work is summarized in the following section. The pro-
posed algorithm is described in the “Methods” section and
evaluated in the “Results” section. The article concludes
with a summary and discussion of future directions of
work in the “Conclusion” section.

Related work

Key features are behind advances over the past decade
in template-free PSP. The conformation space is simpli-
fied and reduced in dimensionality. The atoms of the side
chain in each amino acid are compressed into a pseudo-
atom, and the conformation variables are dihedral angles
on bonds connecting modeled backbone atoms and side-
chain pseudo-atoms. Note that even this representation
yields hundreds of dihedral angles (thus, a conformation
space of hundreds of dimensions) even for chains not
exceeding 150 amino acids. Additionally, the molecular
fragment replacement technique is used to discretize the
conformation space by bundling backbone dihedral angles
together. Values are assigned for a consecutive number
of angles simultaneously according to structural pieces
or fragment configurations that are pre-compiled over
known native protein structures [6].

Despite these two key developments, the conformation
space demands powerful optimization algorithms under
the umbrella of stochastic optimization. These algorithms
have to balance limited computational resources between
exploration of a space through global search with exploita-
tion of local minima in the energy surface (the confor-
mation space lifted by the internal energy of each con-
formation) through local search. The common approach,
in Rosetta and others [10], achieves exploitation through
intensive localized MMC search, while using multi-start
or random-restart for global search or exploration. There
are no explicit controls in these MMC-based treatments
to balance between exploration and exploitation, which
is key when the search space is high-dimensional and
highly non-linear (rich in local minima). Moreover, to
account for the fact that computational resources may be
wasted on exploiting false local minima (artifacts of the
particular energy function used)?, the recommendation
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from developers is to generate a large number of decoys
(e.g., run the Rosetta abinitio protocol for conformation
sampling tens of thousands of times).

MMC-based treatments do not address the core issue
of balancing exploration with exploitation. Evolutionary
algorithms (EAs) are inherently better equipped at
addressing this balance for complex optimization
problems [11]. A growing body of research shows
that, when injected with domain-specific insight (as
in Rosetta), EAs outperform Rosetta in exploration
capability [12-16]. EAs carry out stochastic optimiza-
tion inspired by natural selection. In particular, in
population-based EAs, a fixed-size population of indi-
viduals (conformations in our context) evolves over a
number of generations. At every generation, individuals
are selected to serve as parents. Selected parents are sub-
jected to variation operators that produce new offspring.
In memetic/hybrid EAs, this global search is interleaved
with local search, as offspring are additionally subjected
to an improvement operator, so that they can better
compete with parents. A selection operator implements
the concept of natural selection, as it pares down the
combined parent and offspring population down to the
fixed-size population. The interested reader is pointed
to work in [14] for a review of EAs for template-free PSP
over the years.

EAs easily allow for framing conformation sampling
for template-free PSP as a multi-objective optimization
problem. The latter may not seem immediately obvious,
but the rise of false local minima is due to lack of knowl-
edge on how to combine competing atomic interactions
(electrostatic, hydrogen-bonding, and others) and how
much to weight each category of interactions in an energy
function. These categories are often conflicting; that is,
a change in a conformation may cause an increase in
the value of one energetic term (e.g., electrostatics) but a
decrease in the value of another (e.g., hydrogen bonding).
Rather than combining such terms in one energy function
that is used as an aggregate optimization objective,
proof-of-concept work has pursued a multi-objective
optimization setting by treating different terms in an
energy function as separate optimization objectives
[16, 17]. It is worth noting that algorithmic ingredi-
ents in an EA (its various operators) naturally allow
pursuing a multi-objective optimization treatment for
decoy generation. Moreover, as we show in this paper,
such mechanisms allow to control the diversity of sampled
conformations and thus yield a broader, sample-based
representation of the conformation space (and its energy
surface).

Methods
The proposed algorithm is a memetic EA that controls
the diversity of the conformations it computes via the
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selection operator that determines individual survival.
The algorithm builds over expertise in our laboratory
on EAs for decoy generation; namely, how to inject
Rosetta domain-specific insight (structure representation,
molecular fragment replacement technique, and scoring
functions for conformation evaluation) in evolutionary
search mechanisms. The methodological contribution in
this paper is a novel, sophisticated selection operator
to control conformation diversity and handle conflicting
optimization objectives.

Summary of main ingredients

We provide a summary of the main computational
ingredients first. The proposed EA evolves a fixed-size
population of N conformations over generations. Great
care is taken so the initial population Py contains N
physically-realistic, yet diverse conformations. Each con-
formation is initialized as an extended backbone confor-
mation, and a series of fragment replacements randomize
each conformation while adding secondary structure. This
process is conducted as a Monte Carlo search, guided
by two different scoring functions that first encourage
avoidance of steric clashes (self-collisions) and then the
formation of secondary structure.

In the proposed EA, at the beginning of each generation,
all conformations in the population are selected as parents
and varied so that each yields one offspring conformation.
The variation makes use of the popular molecular frag-
ment replacement technique (described in greater detail
below), effectively selecting a number of consecutive dihe-
dral angles starting at some amino acid selected at random
and replacing the angles with new ones drawn from a
pre-compiled fragment library. This process and the vari-
ation operator are described in greater detail below. The
variation operator contributes to exploration. To addi-
tionally improve exploitation (digging deeper into the
energy surface), each offspring is further subjected to an
improvement operator. This operator maps each offspring
to a nearby local minimum in the energy surface via a
greedy local search (that again utilizes fragment replace-
ments), detailed below. At the end of the variation and
improvement operators, the algorithm has now computed
N new (offspring) conformations that will fight for sur-
vival among one another and the N parent conformations.
The winners constitute the next population.

We now describe each of the operators in further detail.

Fragment replacement

In molecular fragment repacement, an amino acid in
the segment [1,/ — f + 1] (where [ is the number of
amino acids in the protein chain) over the chain of
amino acids is selected at random, effectively picking
at random a fragment [i,i + f — 1] of f consecutive
amino acids in the sequence. This sequence of amino
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acids exists in some fragment configuration in some cur-
rent conformation Ccyyr. The entire configuration of 3 x f
backbone dihedral angles (¢, v, and @ per amino acid)
in Ceurr is replaced with a new configuration of 3 x f
backbone dihedral angles to obtain Cyeyw. The new config-
uration is obtained from pre-compiled fragment libraries.
These libraries are computed over known native struc-
tures of proteins (deposited, for instance, in the Protein
Data Bank) and are organized in such a way that a
query with the amino-acid sequence of a fragment returns
200 configurations; one is selected at random to replace
the configuration in the selected fragment in Ceyyr. The
described process is the molecular fragment replacement
in Rosetta. The reader is referred to Ref. [6] for further
information on fragment libraries.

Initial population operator

Recall that a population contains a fixed number of
conformations N. Given the amino-acid sequence of
[ amino acids, the Pose construct of the Rosetta
framework is utilized to obtain an extended chain of
backbone atoms, with the side-chain of each amino acid
reduced to a centroid pseudo-atom (this is known as
the centroid representation in Rosetta). This process is
repeated N times to obtain N (identical) extended confor-
mations. Each extended conformation is then subjected
to two consecutive stages of local search. Each one is
implemented as an MMC search, but the stages use differ-
ent scoring functions and different values for the scaling
parameter « that controls the acceptance probability in
the Metropolis criterion. In both stages, an MC move
is a fragment replacement; a fragment of length 9 (9
consecutive amino acids) is selected at random over
the chain of amino acids and replaced with a fragment
configuration drawn at random from 9 amino-acid (aa)
long fragment libraries. The latter are pre-built given
a target sequence by making use of the online Robetta
fragment server [6].

In the first stage, the goal is to randomize each extended
chain via fragment replacements but still avoid self col-
lisions. The latter are penalized in the score0 scoring
function, which is a Rosetta scoring function that consists
of only a soft steric repulsion. This scoring function is uti-
lized in stage one to obtain a diverse population of random
conformations free of self collisions. A scaling parameter
a = 0 is used in the Metropolis criterion; this effectively
sets the acceptance probability to 0, which guarantees
that a move is only accepted if it lowers score0. This
strict constraint is necessary to avoid carrying through
self-colliding conformations.

In the second stage, the goal changes from obtain-
ing randomized, collision-free conformations to confor-
mations that resemble protein structures in that they
have secondary structure elements that are packed rather
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than stretched out in space. This is achieved by switch-
ing from score0 to scorel, which imposes more
constraints than collision avoidance and allows formation
of secondary structure. In addition, the scaling param-
eter is set to a higher value of 2, which increases the
acceptance probability, increasing the diversity of con-
formations. This stage, also implemented as an MMC
search where moves are fragment replacements, pro-
ceeds on a conformation until / consecutive moves (/
is number of amino acids in a given protein sequence)
fail per the Metropolis criterion. We note that score0
and scorel are members of a suite of Rosetta scoring
functions that are weighted sums of 13 distinct energy
terms. The process employed in the initial population
(utilizing fragment length of 9 and different scoring
functions at different substages) mirrors that in Rosetta
(though the length of the MMC trajectories in the sub-
stages in the simulated annealing algorithm employed
for decoy generation in Rosetta is much longer). The
final ensemble of conformations obtained by the initial
population operator now contains credible, protein-like
conformations.

Variation operator

The variation operator is applied onto a parent individ-
ual to obtain offspring. This operator implements asexual
reproduction/mutation, making use of fragment replace-
ment to vary a parent and obtain a new, offspring confor-
mation. We note that in the variation operator, one does
not want to institute too much of a (structural) change
from the parent in the offspring, so that good properties
of the parent are transferred to the offspring, but enough
change to obtain a conformation different from the par-
ent. For this reason, a fragment length f = 3 is used in the
variation operator. Note that the fragment replacement
in the variation operator is not in the context of some
MMC search; that is, one fragment replacement is car-
ried out, and the result is accepted, yielding an offspring
conformation obtained from a thus-varied parent.

Improvement operator

This operator maps an offspring to a nearby local mini-
mum via a greedy local search that resembles stage two
in the initial population operator. The search carries out
fragment replacements (utilizing f = 3) that terminates
on an offspring when k consecutive moves fail to lower
energy. The latter is measured via Rosetta’s score3. This
scoring function upweights energetic constraints (terms)
that favor formation of compact tertiary structures [18].
The utilization of score3 in the proposed algorithm mir-
rors the fact that in Rosetta, the majority of the search is
done with score3. That is, most of the computational
budget (in terms of fitness evaluations) is expended on the
local improvement operator.
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Selection operator

The selection operator is the mechanism leveraged to
pursue a multi-objective optimization setting and directly
control the diversity of computed conformations. We
first describe how the selection operator allows a multi-
objective optimization setting.

Multi-objective optimization under Pareto dominance

Let us consider that a certain number of optimization
objectives is provided along which to compare conforma-
tions. A conformation C, is said to dominate another con-
formation C,, if the value of each optimization objective in
C, is lower than the value of that same objective in Cp; this
is known as strong dominance. If equality is allowed, the
result is soft dominance. The proposed algorithm makes
use of strong dominance. Utilizing the concept of dom-
inance, one can measure the number of conformations
that dominate a given conformation Cp. This measure is
known as Pareto rank (PR) or, equivalently, domination
count. In contrast, the number of conformations domi-
nated by a given conformation C, is known as the Pareto
count (PC) of C,. If no conformation in a set dominates a
given conformation Cp, then C, has a domination count
(PR) of 0 and is said to be non-dominated. Non-dominated
conformations constitute the Pareto front.

The concept of Pareto dominance can be operational-
ized in various ways. In early proof-of-concept work
[16, 17], the Rosetta score4 (which includes both short-
range and long-range hydrogen bonding terms) was
divided into three optimization objectives along which
parents and offspring can be compared in the selection
operator: short-range hydrogen bonds (objective 1), long-
range hydrogen bonds (objective 2), and everything else
(summed together in objective 3). This categorization rec-
ognizes the importance of hydrogen bonds for formation
of native structure [18]. Using these three objectives, work
in [16] utilizes only PR in the selection operator, first sort-
ing the N parent and N offspring conformations from low
to high PR, and then further sorting conformations with
the same PR from low to high score4 (total energy that
sums all three objectives). PC can be additionally consid-
ered to obtain a sorted order, as in [17]. Conformations
with the same PR are sorted from high to low PC, and con-
formations with the same PC are further sorted from low
to high score4. The selection operator then selects the
top N conformations (out of the combined 2N conforma-
tions of parents and offspring) according to the resulting
sorted order.

Non-dominated Fronts The proposed algorithm truly
considers a multi-objective setting and does not utilize an
aggregate energy value (the sum of the objectives). Specif-
ically, the algorithm considers non-dominated fronts in
its selection operator. A fast, non-dominated sorting
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algorithm (originally proposed in [19]) is used to gener-
ate these fronts as follows. All the conformations in the
combined parent and offspring population that have a
domination count of 0 (thus, are non-dominated) make
up the first non-dominated front F;. Each subsequent,
non-dominated front F; is generated as follows. For each
conformation C € F;_j, the conformations dominated by
C constitute the set Sc. The domination count of each
member in Sc is decremented by 1. Conformations in
Sc¢ that have their domination count reduced to 0 make
up the subsequent, non-dominated front F;. This process
of generating non-dominated fronts terminates when the
total number of conformations over the generated fronts
equals or exceeds the population size N. In this way, the
selection operator is accumulating enough good-quality
conformations from which it can further draw based on
additional non-energy based objectives. Moreover, this
allows generating Pareto-optimal solutions over the gen-
erations and achieving better convergence to the true,
Pareto-optimal set.

Density-based conformation diversity

Borrowing from evolutionary computation research [19]
on optimization problems of few variables ranging from
1 to 30 (as opposed to hundreds of variables in our set-
ting), we leverage crowding distance to retain diverse
conformations. Crowding distance estimates the den-
sity of the conformations in the population space and
guides the selection process over generations towards
less crowded regions [19]. We use the crowding distance
assignment technique to compute the average distance
of a conformation from other conformations in the same
non-dominated front along each of the optimization
objectives. First, the crowding distance of each con-
formation is initialized to 0. Then, for each objective,
conformations are sorted based on their corresponding
score (value of that objective) in ascending order and
assigned infinite distance value to conformations with
the highest and lowest scores; this ensures that confor-
mations with the highest and lowest scores (effectively
constituting the boundaries of the population space) are
always selected. For all other conformations C, the abso-
lute normalized difference in scores between the two
closest conformations on either side of C is added to
the crowding distance. Finally, when all the objectives
are considered, the crowding distance of a conforma-
tion is the sum of the individual distances along each
objective.

Putting it all together: Conformation diversity in a
multi-objective optimization setting

To obtain the next population, the selection operator
selects r conformations from the non-dominated fronts
Fy,F,...,F sequentially, where r is Zie{l,z,...,t} F; until
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r + |Fyy1| reaches or exceeds N. If r < N, which is usu-
ally the case, the crowding distance of conformations in
Fi11 is computed and used to sort them in descending
order. The selection operator then selects the top N — r
conformations in this order.

It is worth noting that in our earlier operationalizations
of multi-objective optimization for template-free PSP, all

conformations ever computed were retained for the cal-
culation of PR and PC values for each conformation. This
introduces a significant computational overhead, which
the proposed algorithm circumvents. The proposed algo-
rithm instead uses only the current combined population
of parents and offspring to perform selection, thus saving
such overhead.
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cases of the benchmark dataset is shown here, using different colors to distinguish the algorithms under comparison
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Implementation details

The population size is N = 100 conformations, in keep-
ing with earlier work on multi-objective EAs. Instead of
imposing a bound on the number of generations, the
proposed algorithm is executed for a fixed budget of
10,000,000 energy evaluations. The algorithm is imple-
mented in Python and interfaces with the PyRosetta
library. The algorithm takes 1 — 4 h on one Intel Xeon E5-
2670 CPU with 2.6GHz base processing speed and 64GB
of RAM. The range in running time depends primarily
on the length of the protein. As further described in the
“Results” section, the algorithm is run 5 times on a test
case (a target amino-acid sequence) to remove differences
due to stochasticity.

Results

Experimental setup

The evaluation is carried out on two datasets, a bench-
mark dataset of 20 proteins of varying folds («, 8, + 8,
and coil) and lengths (varying from 53 to 146 amino
acids), and a dataset of 10 hard, free-modeling targets
from the Critical Assessment of protein Structure Predic-
tion (CASP) community experiment. The first dataset was
first presented partially in [20] and then enriched with
more targets in [12, 13, 16, 21, 22]. Our second dataset
consists of 10 free-modeling domains from CASP12 and
CASP13.

The proposed algorithm is compared with Rosetta’s
decoy sampling algorithm, a memetic EA that does not
utilize multi-objective optimization [15], and two other
memetic EAs that do so (one utilizing only Pareto Rank
[16], and the other utilizing both Pareto Rank and Pareto

Table 1 Comparison of the number of test cases of the
benchmark dataset on which the algorithms achieve the lowest
energy value. Comparison of the number of test cases of the
benchmark dataset on which the algorithms achieve the lowest
IRMSD value

(@)

Evo-Diverse vs. others: 9 vs. 3 (MEA), 4 (MEA-PR), 3 (MEA-PR+PC), and
1 (Rosetta)

Evo-Diverse vs. mEA: 14 vs. 6
Evo-Diverse vs. mEA-PR: 11 vs.9
Evo-Diverse vs. mEA-PR+PC: 12 vs. 8
Evo-Diverse vs Rosetta: 16 vs. 4

(b)

Evo-Diverse vs. others: 10 vs. 1 (mEA), 2 (MEA-PR), 1 (mEA-PR+PC),
and 9 (Rosetta)

Evo-Diverse vs. mEA: 15 vs. 5
Evo-Diverse vs. mEA-PR: 14 vs. 6
Evo-Diverse vs. mEA-PR+PC: 15 vs. 5

Evo-Diverse vs Rosetta: 11 vs. 9
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Count [17], as described in the previous section). We
will correspondingly refer to these algorithms as Rosetta,
mEA, mEA-PR, and mEA-PR+PC. To aid in the com-
parisons, we will refer to the algorithm proposed in this
paper as Evo-Diverse. This comparison allows us to isolate
the impact of the selection operator in Evo-Diverse over
those in mEA-PR, and mEA-PR+PC, as well as point to
the impact of the multi-objective setting (in compari-
son with mEA) and the evolutionary computation frame-
work overall (in comparison with Rosetta). Each of these
algorithms is run 5 times on each target sequence, and
what is reported is their best performance over all 5 runs
combined. Each run continues for a fixed computational
budget of 10M energy evaluations.

In keeping with published work on EAs [14], perfor-
mance is measured by the lowest energy ever reached
and the lowest distance ever reached to the known native
structure of a target under consideration. The former
measures the exploration capability. Since lower energies
do not necessarily correlate with proximity to the native
structure, it is important to also measure the distance of
each decoy to a known native structure. We do so via
a popular dissimilarity metric, least root-mean-squared-
deviation (IRMSD) [23]. IRMSD first removes differences
due to rigid-body motions (whole-body translation and
rotation in three dimensions), and then averages the
summed Euclidean distance of corresponding atoms in
two conformations over the number of atoms compared.
Typically, in template-free PSP, the comparison focuses
on the main carbon atom of each amino acid (the CA
atoms). It is worth noting that IRMSD is non-descriptive
above 8A and increases with sequence/chain length. An
RMSD within 5 — 6A is considered to have captured the
native structure. In addition to IRMSD, our evaluation on
the CASP12 and CASP13 dataset includes two additional
measures, the "Template Modeling Score” (TM-score) [24]
and the "Global Distance Test - Total Score" (GDT_TS)
[25, 26]. Both metrics produce a score between 0 and 1,
where a score of 1 suggests a perfect match. A higher score
indicates a better proximity. In practice, TM-scores and
GDT_TS scores of 0.5 and higher are indicative of good
predictions/models.

To carry out a principled comparison, we evaluate
the statistical significance of the presented results. We
use Fisher’s [27] and Barnard’s [28] exact tests over
2x2 contingency matrices keeping track of the particu-
lar performance metric under comparison. Fisher’s exact
test is conditional and widely adopted for statistical sig-
nificance. Barnard’s test is unconditional and generally
considered more powerful than Fisher’s test on 2x2 con-
tingency matrices. We use 2-sided tests to determine
which algorithms do not have similar performance and
1-sided tests to determine if Evo-Diverse performs signifi-
cantly better than the other algorithms under comparison.



Zaman and Shehu BMC Bioinformatics (2019) 20:211 Page 8 of 17

Table 2 Comparison of Evo-Diverse to other algorithms on lowest energy via 1-sided Fisher's and Barnard's tests on the benchmark
dataset. Top panel evaluates the null hypothesis that Evo-Diverse does not achieve the lowest energy, considering each of the other
four algorithms in turn. The bottom panel evaluates the null hypothesis that Evo-Diverse does not achieve a lower lowest energy value
in comparison to a particular algorithm, considering each of the four other algorithms in turn. Comparison of Evo-Diverse to other
algorithms on lowest IRMSD via 1-sided Fisher's and Barnard’s tests on the benchmark dataset. Top panel evaluates the null hypothesis
that Evo-Diverse does not achieve the lowest IRMSD, considering each of the other four algorithms in turn. The bottom panel
evaluates the null hypothesis that Evo-Diverse does not achieve a lower lowest IRMSD value in comparison to a particular algorithm,
considering each of the four other algorithms in turn

Test mEA mEA-PR mEA-PR+PC Rosetta
(@)

Best lowest energy

Fisher's 0.04118 0.088 0.04118 0.004181
Barnard's 0.02489 0.05368 0.02489 0.001879
Better lowest energy
Fisher's 0.01282 03762 0.1715 0.00018
Barnard'’s 0.008299 03179 0.1341 0.00009139
(b)
Best lowest IRMSD
Fisher's 0.001671 0.006907 0.001671 05
Barnard's 0.000702 0.003284 0.000702 04373
Better lowest IRMSD
Fisher's 0.001924 0.01282 0.001924 0.3762
Barnard's 0.001118 0.008299 0.001118 03179

p-values less than 0.05 are marked in bold

Table 3 Comparison of Evo-Diverse to other algorithms on lowest energy via 2-sided Fisher’s and Barnard's tests on the benchmark
dataset. Top panel evaluates the null hypothesis that Evo-Diverse achieves similar performance on reaching the lowest energy,
considering each of the other four algorithms in turn. The bottom panel evaluates the null hypothesis that Evo-Diverse achieves similar
performance on reaching a lower lowest energy value in comparison to a particular algorithm, considering each of the four other
algorithms in turn. Comparison of Evo-Diverse to other algorithms on lowest IRMSD via 2-sided Fisher's and Barnard’s tests on the
benchmark dataset. Top panel evaluates the null hypothesis that Evo-Diverse achieves similar performance on reaching the lowest
IRMSD, considering each of the other four algorithms in turn. The bottom panel evaluates the null hypothesis that Evo-Diverse
achieves similar performance on reaching a lower lowest IRMSD value in comparison to a particular algorithm, considering each of the
four other algorithms in turn

Test mEA mEA-PR mEA-PR+PC Rosetta
@
Best lowest energy
Fisher's 0.08236 0.176 0.08236 0.008362
Barnard's 0.04977 0.1074 0.04977 0.003759

Better lowest energy

Fisher's 0.02564 0.7524 0.3431 0.00036
Barnard's 0.0166 0.6358 0.2682 0.0001828
(b)
Best lowest IRMSD
Fisher's 0.003342 0.01381 0.003342 1
Barnard's 0.001404 0.006567 0.001404 0.8746
Better lowest IRMSD
Fisher's 0.003848 0.02564 0.003848 0.7524
Barnard'’s 0.002236 0.0166 0.002236 0.6358

p-values less than 0.05 are marked in bold



Zaman and Shehu BMC Bioinformatics (2019) 20:211

Comparative analysis on benchmark dataset

Figure 1 shows the lowest energy obtained over combined
5 runs of mEA, mEA-PR, mEA-PR+PC, Rosetta, and Evo-
Diverse for each of the 20 target proteins; the latter are
denoted on the x axis by the Protein Data Bank (PDB) [2]
identifier (ID) of a known native structure for each target.
Figure 2 presents the comparison in terms of the lowest
IRMSD achieved on each of the test cases. Color-coding is
used to distinguish the algorithms from one another.

A summary of comparative observations is presented in
Table 1. Table 1(a) shows that lowest energy is achieved
by Evo-Diverse in 9/20 of the test cases over the other
algorithms; in comparison, mEA-PR achieves the low-
est energy in 4/20, mEA and mEA-PR+PC in 3/20, and
Rosetta in only 1 case. In a head-to-head comparison, Evo-
Diverse bests each of the other algorithms in a comparison
of lowest energy. Table 1(b) shows that lowest IRMSD
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is achieved by Evo-Diverse in 10/20 test cases over the
other algorithms; in comparison, mEA-PR achieves the
lowest energy in 2/20, mEA and mEA-PR+PC in 1/20, and
Rosetta in 9 cases. In a head-to-head comparison, Evo-
Diverse bests each of the other algorithms in a comparison
of lowest IRMSD, as well.

The above comparisons are further strengthened via
statistical analysis. Table 2(a) shows the p-values obtained
in 1-sided statistical significance tests that pitch Evo-
Diverse against each of the other algorithms (in turn),
evaluating the null hypothesis that Evo-Diverse performs
similarly or worse than its counterpart under compari-
son, considering two metrics, achieving the lowest energy
in each test case, and achieving a lower (lowest) energy
on each test case that its current counterpart. Both
Fisher’s and Barnard’s test are conducted, and p-values
less than 0.05 (which reject the null hypothesis) are

200 A
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Rosetta score4 energy (REU)

—50

0 2 4 6

Ca IRMSD to native structure (A)
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—50}

Rosetta score4 energy (REU)
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Fig. 3 Decoys are shown by plotting their Rosetta score4 vs. their CA IRMSD from the native structure (PDB ID in parentheses) to compare the
landscape probed by different algorithms (Evo-Diverse (a), mEA-PR+PC (b)) for the target with known native structure under PDB id 1ail

> 4 6 8 10 1z, 14
Ca IRMSD to native structure (A4)
(b) mEA-PR+PC (1ail)
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marked in bold. Table 2(a) shows that the null hypoth-
esis is rejected in most of the comparisons; Evo-Diverse
performs better than mEA and Rosetta; the perfor-
mance over mEA-PR and mEA-PR+PC is not statistically
significant.

Table 2(b) shows the p-values obtained in 1-sided sta-
tistical significance tests that pitch the performance of
Evo-Diverse against each of the other algorithms (in turn),
evaluating the null hypothesis that Evo-Diverse performs
similarly or worse than its counterpart under compari-
son, considering two metrics, achieving the lowest IRMSD
in each test case, and achieving a lower (lowest) IRMSD
on each test case than its current counterpart. Both
Fisher’s and Barnard’s test are conducted, and p-values
less than 0.05 (rejecting the null hypothesis) are in bold.
Table 2(b) shows that the null hypothesis is rejected in
most tests; Evo-Diverse outperforms all algorithms except
for Rosetta.
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Table 3(a) shows the p-values obtained in 2-sided sta-
tistical significance tests that pitch Evo-Diverse against
each of the other algorithms (in turn), evaluating the
null hypothesis that Evo-Diverse performs similarly to
its counterpart under comparison, considering two met-
rics, achieving the lowest energy in each test case, and
achieving a lower (lowest) energy on each test case
than its current counterpart. Both Fisher’s and Barnard’s
test are conducted, and p-values less than 0.05 (which
reject the null hypothesis) are marked in bold. Table 2(a)
shows that the null hypothesis is rejected in most of
the comparisons; Evo-Diverse does not perform sim-
ilarly to mEA and Rosetta; the dissimilarity of per-
formance compared to mEA-PR and mEA-PR+PC is
not statistically significant at 95% confidence level.
Similarly, Table 3(b) shows the p-values obtained in 2-
sided statistical significance tests that now consider the
lowest IRMSD instead of lowest energy. Table 3(b) shows

150 -
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501

Rosetta score4 energy (REU)
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Ca IRMSD to native structure (A)
(a) Evo-Diverse (1dtjA)
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1001
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Fig. 4 Decoys are shown by plotting their Rosetta score4 vs. their CA IRMSD from the native structure (PDB ID in parentheses) to compare the
landscape probed by different algorithms (Evo-Diverse (a), mEA-PR (b)) for the target with known native structure under PDB id 1dtjA

2 4« 6 8 10 12, 14
Ca IRMSD to native structure (4)
(b) mEA-PR (1dtjA)
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lail (IRMSD = 1A)

1dtjA (IRMSD = 2.6A)

3gwl (IRMSD = 3.2A)

Fig. 5 The decoy obtained by Evo-Diverse that is closest to the native structure is shown for three selected cases, the protein with known native
structure under PDB ID 1ail (top), 1dtjA (middle), and 3gwl (bottom). The Evo-Diverse decoy is in blue, and the known native structure is in orange
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Table 4 Comparison of energy of the lowest energy decoy and average energy of the 10 best decoys (measured in Rosetta Energy
Units — REUs) obtained by each algorithm on each of the 10 CASP domains

Lowest energy

Avg. of the best 10

Domain CASP Length Rosetta Evo-Diverse Rosetta Evo-Diverse
T1008-D1 13 77 —164.2 —-1664 —162 —166.3
T095751-D1 13 108 -1215 — 1126 -115 — 1126
T0892-D2 12 110 —101.8 —-1123 — 941 —-1123
T0953s2-D3 13 93 —531 —67.6 —49.8 —66.3
T0960-D2 13 84 —79.7 —823 —794 —823
T0898-D2 12 55 —655 —66.7 —628 —66.7
T0859-D1 12 129 —995 —856 -90.7 —856
T0897-D1 12 138 — 1414 —1474 — 1374 —1474
T0886-D1 12 69 —892 —854 —84 —854
T0953s1-D1 13 67 —-51.8 —59 —49.1 —59

Lowest values for each target are marked in bold

that the null hypothesis is rejected in most tests; Evo-
Diverse does not perform similarly to all algorithms
except for Rosetta at 95% confidence level.

Taken altogether, these results indicate that Evo-Diverse
has a high exploration capability, decidedly outperforming
mEA and Rosetta in terms of its ability to wisely use a fixed
computational budget to reach lower-energy levels, and
performing similarly or better than mEA-PR and mEA-
PR+PC. The latter result is not surprising, as mEA-PR,
mEA-PR+PC, and Evo-Diverse use a multi-objective opti-
mization framework, which delays a premature conver-
gence, thus allowing them to reach lower energies within
the same computational budget provided to mEA and
Rosetta. Interestingly though, the head-to-head IRMSD
comparisons show that, while mEA-PR and mEA-PR+PC
achieve lower energies than Rosetta, this does not help
them achieve the same performance as Rosetta in terms
of lowest IRMSDs. In contrast, Evo-Diverse effectively

retains the best of both. It is able to reach lower ener-
gies than Rosetta and comparable or lower IRMSDs than
Rosetta, thus constituting a clear advantage over the cur-
rent state-of-the-art multi-objective optimization EAs.
When analyzing the performance of decoy generation
algorithms, it is additionally informative to visualize the
energy landscape that they probe one decoy at a time. We
do so by plotting decoy-energy pairs, representing a decoy
with its lowest IRMSD coordinate to the known native
structure of each test case. Figures 3 and 4 juxtapose such
landscapes for two selected test cases, the protein with
known native structure under PDB ID 1ail, and that with
known native structure under PDB ID 1dtjA, respectively.
The comparison is limited here to landscapes probed
by Evo-Diverse, mEA-PR, and mEA-PR+PC, as prior
work comparing mEA-PR and mEA-PR+PC to Rosetta
and mEA shows that these two algorithms achieve bet-
ter funneling (better correlation between low energies

Table 5 Comparison of IRMSD to the native structure of the lowest IRMSD decoy and average IRMSD to the native of the 10 best
decoys (measured in Angstroms — A) obtained by each algorithm on each of the 10 CASP domains

Lowest IRMSD

Avg. of the best 10

Domain CASP Length Rosetta Evo-Diverse Rosetta Evo-Diverse
T1008-D1 13 77 32 35 34 38
T0957s1-D1 13 108 69 7.1 8.1 76
T0892-D2 12 110 8 74 8.5 76
T0953s2-D3 13 93 8.7 79 93 83
T0960-D2 13 84 72 73 76 76
T0898-D2 12 55 6.5 59 6.7 63
T0859-D1 12 129 10.6 924 1.3 929
T0897-D1 12 138 9 93 10.8 929
T0886-D1 12 69 6.3 62 6.8 6.6
T0953s1-D1 13 67 7 57 74 6.1

Lowest values for each target are marked in bold
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and low IRMSDs to the native structure), and that mEA-
PR+PC does so the best for 1ail, while mEA-PR does so
for 1dtjA.

Figure 3 shows that Evo-Diverse reveals better fun-
neling of the landscape than mEA-PR+PC (higher cor-
relation between low energies and low IRMSDs) and
multiple non-native local minima, visually confirming
its high exploration capability. Figure 4 shows that
Evo-Diverse and mEA-PR reveal similar correlation
between low energies and low IRMSDs (higher than
both Rosetta and mEA) and multiple non-native local
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Figure 5 superimposes the best decoy (lowest IRMSD to
the known native structure) over the known native struc-
ture for three selected proteins (PDB IDs 1ail, 1dtjA, and
3gwl). Rendering is performed with the CCP4mg molecu-
lar graphics software [29]. In the case of 1ail, Evo-Diverse
obtains the lowest IRMSD to the native structure (1A).
On 1dtjA, Evo-Diverse reaches a similar lowest IRMSD
(2.6A) as Rosetta and mEA-PR (confirmed in Fig. 2). On
3gwl, Evo-Diverse achieves a dramatic improvement of
lowest IRMSD to the native structure over all other algo-
rithms; while none of the other algorithms reach below
5A, Evo-Diverse reaches 3.2A, almost a 2A improvement.

minima.
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Fig. 6 The best (lowest IRMSD to the known native structure) decoy obtained by Evo-Diverse (left) and Rosetta (right) is shown for each of the
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Comparative analysis on CASP 12-13 dataset

Table 4 shows the lowest energy and the average energy of
the 10 best decoys obtained by Evo-Diverse and Rosetta
on each of the 10 target domains denoted by their iden-
tifiers in column 1. The lower energy values between
the two algorithms on each target domain are marked in
bold. Table 4 shows that lower energy values are obtained
by Evo-Diverse in 7/10 cases compared to Rosetta’s 3/10
cases. When the average of the best 10 decoys is consid-
ered instead, Evo-Diverse achieves lower energy values in
8/10 cases compared to Rosetta’s 2/10 cases.

The above comparisons are further strengthened via
statistical analysis. Table 8(a) shows the p-values obtained
in 1-sided statistical significance tests that pitch Evo-
Diverse against Rosetta, evaluating the null hypothe-
sis that Evo-Diverse performs similarly or worse than
Rosetta. Both Fisher’s and Barnard’s test are conducted,
and p-values less than 0.05 (which reject the null hypoth-
esis) are marked in bold. Table 8(a) shows that the null
hypothesis is rejected when the average of the best 10
decoys is considered, and Evo-Diverse performs signifi-
cantly better than Rosetta with 95% confidence. When the
focus is on the lowest energy reached, the performance
improvement of Evo-Diverse over Rosetta is not statisti-
cally significant at 95% confidence level, although p-values
are very close to the 0.05 threshold.

Table 5 shows the lowest IRMSD to the native structure
and the average IRMSD of the 10 best decoys obtained
by Evo-Diverse and Rosetta on each of the 10 target
domains denoted by their identifiers in column 1. The
lower IRMSD values between the two algorithms on each
target domain are marked in bold. Table 4 shows that
lower IRMSDs are obtained by Evo-Diverse in 6/10 cases
compared to Rosetta’s 4/10 cases. When the average of
the best-IRMSD 10 decoys is considered, Evo-Diverse
achieves lower IRMSD in 9/10 cases compared to 2/10
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cases of Rosetta. Figure 6 shows the best decoy (lowest
IRMSD to the known native structure) obtained on each target
domain by Evo-Diverse and Rosetta. Rendering is per-
formed with the CCP4mg molecular graphics software [29].

The above comparisons are further strengthened via
statistical analysis. Table 8(b) shows the p-values obtained
in 1-sided statistical significance tests that pitch Evo-
Diverse against Rosetta, evaluating the null hypothe-
sis that Evo-Diverse performs similarly or worse than
Rosetta. Again, both Fisher’s and Barnard’s test are con-
ducted, and p-values less than 0.05 (which reject the
null hypothesis) are marked in bold. Table 8(b) shows
that the null hypothesis is rejected when the average of
the best 10 decoys is considered and Evo-Diverse per-
forms significantly better than Rosetta with 95% confi-
dence. When the focus is on the lowest IRMSD reached,
the performance improvement of Evo-Diverse over
Rosetta is not statistically significant at 95% confidence
level.

Table 6 shows the highest TM-score to the native struc-
ture and the average TM-score of the 10 best (in terms of
TM-scores) decoys obtained by Evo-Diverse and Rosetta
on each of the 10 target domains denoted by their iden-
tifiers in column 1. The higher TM-score values between
the two algorithms on each target domain are marked in
bold. Table 6 shows that higher TM-scores are obtained
by Evo-Diverse and Rosetta on 5/10 cases. When the
focus is on the average TM-score of the best (in terms of
TM-scores) 10 decoys is considered, Evo-Diverse achieves
higher TM-score in 6/10 cases compared to Rosetta’s 5/10.

Table 8(c) shows the p-values obtained in 1-sided sta-
tistical significance tests that pitch Evo-Diverse against
Rosetta, evaluating the null hypothesis that Evo-Diverse
performs similarly or worse than Rosetta. Both Fisher’s
and Barnard’s test are conducted, and p-values less than
0.05 (which reject the null hypothesis) are marked in bold.

Table 6 Comparison of TM-score of the highest TM-score decoy and average TM-score of the 10 best decoys obtained by each

algorithm on each of the 10 CASP domains

Highest TM-score

Avg. of the best 10

Domain CASP Length Rosetta Evo-Diverse Rosetta Evo-Diverse
T1008-D1 13 77 0.61 0.59 057 0.55
T095751-D1 13 108 049 042 042 0.40
T0892-D2 12 110 045 050 042 047
T0953s2-D3 13 93 028 0.25 025 025
T0960-D2 13 84 037 039 035 038
T0898-D2 12 55 039 037 037 0.36
T0859-D1 12 129 0.30 034 0.29 033
T0897-D1 12 138 0.35 036 0.31 032
T0886-D1 12 69 042 045 040 041
T0953s1-D1 13 67 047 041 043 0.39

Highest values for each target are marked in bold
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Table 7 Comparison of GDT_TS score of the highest GDT_TS score decoy and average GDT_TS score of the 10 best decoys obtained

by each algorithm on each of the 10 CASP domains

Highest GDT_TS score

Avg. of the best 10

Domain CASP Length Rosetta Evo-Diverse Rosetta Evo-Diverse
T1008-D1 13 77 062 061 061 0.58
T095751-D1 13 108 043 0.39 0.39 0.37
T0892-D2 12 110 042 045 0.39 044
T0953s2-D3 13 93 0.31 0.31 0.27 0.27
T0960-D2 13 84 037 042 0.36 0.39
T0898-D2 12 55 046 0.44 045 043
T0859-D1 12 129 0.29 032 0.27 0.31
T0897-D1 12 138 030 031 0.26 028
T0886-D1 12 69 047 0.49 045 0.46
T0953s1-D1 13 67 0.50 0.46 048 0.45

Highest values for each target are marked in bold

Table 8(c) shows that the null hypothesis is not rejected
with 95% confidence and the performance improvement
of Evo-Diverse over Rosetta is not statistically significant.

Table 7 shows the highest GDT_TS score to the native
structure and the average GDT_TS score of the 10 best (in
terms of GDT_TS scores) decoys obtained by Evo-Diverse
and Rosetta on each of the 10 target domains denoted by
their identifiers in column 1. The higher GDT_TS scores
between the two algorithms on each target domain are
marked in bold. Table 7 shows that higher values (on both
the highest GDT_TS score and the average GDT_TS score
over the 10 best decoys) are achieved by Evo-Diverse in
6/10 cases compared to Rosetta’s 5/10.

Table 8(d) shows the p-values obtained in 1-sided
statistical significance tests that pitch Evo-Diverse against
Rosetta, evaluating the null hypothesis that Evo-Diverse

performs similarly or worse than Rosetta. Both Fisher’s
and Barnard’s test are conducted, and p-values less than
0.05 (which reject the null hypothesis) are marked in
bold. Table 8(d) shows that the null hypothesis is not
rejected with 95% confidence and the performance
improvement of Evo-Diverse over Rosetta is not statisti-
cally significant.

Conclusion

This paper presents a novel conformation sampling
algorithm, Evo-Diverse, that operationalizes the multi-
objective, stochastic optimization framework. The algo-
rithm does not use total energy as a basis of selec-
tion but instead makes use of non-domination rank and
crowding distance in its selection operator to encourage
conformation diversity.

Table 8 p-values obtained by 1-sided Fisher's and Barnard’s tests on the CASP dataset for head-to-head comparison of the algorithms
on lowest energy and average energy of the best 10 decoys (a), lowest IRMSD and average IRMSD of the best 10 decoys (b), highest
TM-score and average TM-score of the best 10 decoys (c), and highest GDT_TS score and average GDT_TS score of the best 10 decoys (d)

(@) Test Lowest energy Avg. energy of the best 10
Fisher's 0.08945 0.01151
Barnard's 0.05789 0.005909

(b) Test Lowest IRMSD Avg. IRMSD of the best 10
Fisher's 0.3281 0.002739
Barnard's 0.2617 0.001288

(@] Test Highest TM-score Avg. TM-score of the best 10
Fisher's 0.6719 0.5
Barnard's 0.9991 04119

(d) Test Highest GDT_TS score Avg. GDT_TS score of the best 10
Fisher's 0.5 0.5
Barnard'’s 04119 04119

All tests evaluate the null hypothesis that Evo-Diverse does not perform better than Rosetta, p-values less than 0.05 are marked in bold
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Yet, the results show that Evo-Diverse reaches regions
of lower total energy in the energy landscape of the
benchmark dataset used here for evaluation, showcasing
its higher exploration capability over the Rosetta decoy
generation protocol and other, state-of-the-art multi-
objective EAs that use total energy as an additional opti-
mization objective. In addition, Evo-Diverse is able to
reach comparable or lower IRMSDs than Rosetta, thus
constituting a clear advantage over the current state-of-
the-art multi-objective EAs.

It is worth noting that Evo-Diverse does not make use
of an archive of decoys ever sampled, unlike other multi-
objective EAs that do so to update the Pareto metrics
for use in the selection operator. Evo-Diverse uses only
the current population and their offspring to perform
selection, thus saving storage overhead.

The presented results constitute a promising research
direction in improving decoy generation, and future work
will consider additional optimization objectives and vari-
ants of improvement and selection operators to apportion
a fixed computational budget. Of particular interest are
directions of research that attenuate dependence on pro-
tein energy models and permit as optimization objectives
learned rather than physics-based models of structural
integrity and nativeness.

Endnotes

!The term conformation, though often interchanged
with structure, refers to an assignment of values to vari-
ables selected to represent a spatial arrangement of the
chain of amino acids. These variables can be Cartesian
coordinates, angles, or others.

2Work in [9] analyzes Rosetta energy/scoring functions
and reports that, while these functions have improved,
false minima are found on generated conformation/decoy
datasets.
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