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Abstract

Background: The large biological databases such as GenBank contain vast numbers of records, the content of
which is substantively based on external resources, including published literature. Manual curation is used to establish
whether the literature and the records are indeed consistent. We explore in this paper an automated method for
assessing the consistency of biological assertions, to assist biocurators, which we call BARC, Biocuration tool for
Assessment of Relation Consistency. In this method a biological assertion is represented as a relation between two
objects (for example, a gene and a disease); we then use our novel set-based relevance algorithm SaBRA to retrieve
pertinent literature, and apply a classifier to estimate the likelihood that this relation (assertion) is correct.

Results: Our experiments on assessing gene—disease relations and protein—protein interactions using the PubMed
Central collection show that BARC can be effective at assisting curators to perform data cleansing. Specifically, the
results obtained showed that BARC substantially outperforms the best baselines, with an improvement of F-measure
of 3.5% and 13%, respectively, on gene-disease relations and protein-protein interactions. We have additionally carried
out a feature analysis that showed that all feature types are informative, as are all fields of the documents.

Conclusions: BARC provides a clear benefit for the biocuration community, as there are no prior automated tools for
identifying inconsistent assertions in large-scale biological databases.
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Background

The large biological databases are a foundational, criti-
cal resource in both biomedical research and, increas-
ingly, clinical health practice. These databases, typified by
GenBank! and UniProt,? represent our collective knowl-
edge of DNA and RNA sequences, genes, proteins, and
other kinds of biological entities. The main databases
currently contain hundreds of millions of records, each
directly or indirectly based on scientific literature or mate-
rial produced by a reputable laboratory. Each record is
contributed by an individual research team, or is derived
indirectly from such a contribution, and thus the contents
of these databases represent decades of manual effort
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by the global biomedical community. The databases are
used by researchers to infer biological properties of organ-
isms, and by clinicians in disease diagnosis and genetic
assessment of health risk [1].

Manual biocuration is used with some of the databases
to ensure that their contents are correct [2]. Biocuration
consists of organizing, integrating, and annotating biolog-
ical data, with the primary aim of ensuring that the data is
reliably retrievable. Specifically, a biocurator derives facts
and assertions about biological data, and then verifies
their consistency in relevant publications. PubMed? [3], as
the primary index of biomedical research publications, is
typically consulted for this purpose.

For example, given a database record with the asser-
tion “the BRCA gene is involved in Alzheimer’s disease’, a
biocurator may search for articles that support or deny
that assertion, typically via a PubMed keyword search, and

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2801-x&domain=pdf
http://orcid.org/0000-0003-1807-430X
mailto: mrb@mie.utoronto.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Bouadjenek et al. BMC Bioinformatics (2019) 20:216

Page 2 of 22

140

120 /

100

50 el

10 =

20

Millions of entries
[e)}
O
—

Fig. 1 Growth of the number of sequences in UniProt databases. The green and pink lines shows the growth in UniProtKB for TrEMBL and Swiss-Prot
respectively entries from January 2012 to January of 2019. The sharp drop in TrEMBL entries corresponds to a proteome redundancy minimization
procedure implemented in March 2015 [5]. a Growth of TrEMBL. b Growth of Swiss-Prot
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then manually review the articles to confirm the infor-
mation. Biocuration is, therefore, time-consuming and
expensive [4, 5]; curation of a single protein may take up to
a week and requires considerable human investment both
in terms of knowledge and effort [6].

However, biological databases such as GenBank or
UniProt contain hundreds of millions of uncurated nucleic
acid and protein sequence records [7], which suffer from a
large range of data quality issues including errors, discrep-
ancies, redundancies, ambiguities, and incompleteness
[8, 9]. Exhaustive curation on this scale is utterly infea-
sible; most error detection occurs when submitters re-
examine their own records, or occasionally when reported
by a user, but it is likely that the rate of error detection is
low. Figure 1 illustrates the growth of the curated database
UniProtKB/Swiss-Prot against the growth of the uncu-
rated database UniProtKB/TrEMBL (which now contains
roughly 89M records). Given the huge gap shown in Fig. 1,
it is clear that automated and semi-automated error-
detection methods are needed to help and assist biocu-
rators to provide reliable biological data to the research
community [10, 11].

In this work, we seek to use the literature to develop
an automated method for assessing the consistency of
biological assertions. This research builds on our previ-
ous work, in which we used the scientific literature to
detect biological sequences that may be incorrect [12], to
detect literature-inconsistent sequences [13], and to iden-
tify biological sequence types [14]. In our previous work
on data quality in biological databases, we formalized the
quality problem as a characteristic of queries (derived
from record definitions); in the discipline of information
retrieval there are metrics for estimating query quality. In

contrast, in this work we consider the consistency of bio-
logical assertions. Previously, we formalized the problem
as a pure information retrieval problem, whereas here we
also consider linguistic features.

To demonstrate the scale of the challenge we address
in this paper, consider Fig. 2, which shows the dis-
tribution of literature co-mentions (co-occurrences) of
correct or incorrect gene-disease relations and correct
or incorrect protein—protein interactions, where correct-
ness is determined based on human-curated relational
data (described further in “Experimental data” section).
For example, a gene-disease relation represents an asser-
tion of the form Gene-Relation—Disease, where Relation
is a predicate representing the relationship between the

gene and the disease, such as “causes’, “involved in’, or

T
o | Correct relations
B Incorrect relations

Gene-Disease
relations

Protein-Protein
interactions

Fig. 2 Distribution of co-mention frequencies for in/correct relations
described in “Experimental data” section. It is apparent that even
when two entities are not known to have a valid relationship (an
incorrect relation), these entities may often be mentioned together in
a text (co-mentioned)
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“related to” This analysis shows that, despite the fact
that entities that are arguments of correct relations tend
to be co-mentioned more often than those in incor-
rect relations, simplistic filtering methods based on a
frequency threshold are unlikely to be effective at distin-
guishing correct from incorrect relations. Moreover, for
many incorrect relations, the entities that are arguments
of the relation are often mentioned together in a text
(co-mentioned) despite not being formally related. There-
fore, more sophisticated techniques are needed to address
this problem.

We have developed BARC, a Biocuration tool for
Assessment of Relation Consistency.* In BARC, a biolog-
ical assertion is represented as a relation between two
entities (such as a gene and a disease), and is assessed
in a three-step process. First, for a given pair of objects
(objecty, objecty) involved in a relation, BARC retrieves
a subset of documents that are relevant to that relation
using SaBRA, a document ranking algorithm we have
developed. The algorithm is based on the notion of the
relevant set rather than an individual relevant document.
Second, the set of retrieved documents is aggregated to
enable extraction of relevant features to characterise the
relation. Third, BARC uses a classifier to estimate the like-
lihood that this assertion is correct. The contributions of
this paper are as follows:

1 We develop a method that uses the scientific
literature to estimate the likelihood of correctness of
biological assertions.

2 We propose and evaluate SaBRA, a ranking
algorithm for retrieving document sets rather than
individual documents.

3 We present an experimental evaluation using
assertions representing gene—disease relations and
protein—protein interactions on the PubMed Central
Collection, where BARC achieved, respectively, 89%
and 79% of accuracy.

Our results show that BARC, which compiles and inte-
grates the methods and algorithms developed in this
paper, outperforms plausible baselines across all met-
rics, on a dataset of several thousand assertions eval-
uated against a repository of over one million full-text
publications.

Problem definition

Biocuration can be defined as the transformation of
biological data into an organized form [2]. To achieve
this, a biocurator typically manually reviews published
literature to identify assertions related to entities of
interest with the goal of enriching a curated database,
such as UniProtKB/Swiss-Prot. However, there are also
large databases of uncurated information, such as
UniProtKB/TrEMBL, and biocurators would also need

Page 3 of 22

to check the assertions within these databases for their
veracity, again with respect to the literature. Biological
assertions that biocurators check are of various types. For
example, they include:

e Genotype-phenotype relations (OMIM db): these
include assertions about gene—disease relations or
mutation-disease or gene-disease relations [15]. A
biocurator will then have to answer questions such as:
“is the BRCA gene involved in Alzheimer’s disease?”

¢ Functional residue in protein (Catalytic Site Atlas
or BindingMOAD databases): these include
assertions about sub-sequences being a functional
residue of a given protein [16, 17]. An example
question is: “is Tyr247 a functional residue in cyclic
adenosine monophosphate (cAMP)-dependent
protein kinase (PKA)?”

e Protein-protein interaction (BioGRID db): these
include assertions about interactions between
proteins. An example question is: “is the protein
phosphatase PPH3 related to the protein PP2A?” [18].

e Drug-treats-disease (PharmGKB database):
which includes assertions about a drug being a
treatment of a disease. An example question is: “can
Tamoxifen be used to treat Atopy”?” [19].

e Drug-causes-disease (CTD database): these
include assertions about drugs causing a disease [20].
An example question is: “can paracetamol induce
liver disease?”.

The biocuration task is time-consuming and requires
a considerable investment in terms of knowledge and
human effort. A supportive tool has the potential to save
significant time and effort.

In this work, we focus on the analysis of only two type
of relations, namely gene-disease and gene-gene relations.
We leave the analysis of other relations to future work.

We propose to represent and model a relation, defined
as follows:

Definition 1 Let O; and O, be respectively a set of
objects of type 1 and a set of objects of type 2. A relation R
is a triplet of the form (object,, predicate, objecty), where
object; € O1 and objecty € Oy are entities that have some
relationship between them as indicated by the predicate.

For example, the assertion “The gene CFTR causes the
disease cystic fibrosis” is represented by the gene—disease
relation R:

R = (CFTR, causes,Cystic fibrosis) where CFTR is of
type gene and Cystic fibrosis is of type disease.

Note that the transformation of an assertion from
its linguistic declarative form to the relational form is
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undertaken by the biocurator, and is out of the scope of
this paper.

We formally define the problem we study as follows.
Given

e A collection of documents that represents the
domain literature knowledge D =< di,ds, . .., dy >;

o A setof nrelation types T = {T1, T, ..., Ty}, where
Ry, € T, defines a relation between two objects that
holds in the context of the assertion type T),;

e A set of annotated relations R, for a particular
assertion type T, such as Rt, =< (R1,¥1), (R2,¥2)
yeoor (Rypy Ym) >, where Ry, € T, and
ym € {correct, incorrect};

we aim to classify a new and unseen relation R, of type
T; as being correct or incorrect given the domain litera-
ture knowledge D. In other words, we seek support for
that assertion in the scientific literature. The resulting tool
described in the next sections is expected to be used at
curation time.

Method

Figure 3 describes the logical architecture of our tool,
BARC, a Biocuration tool for Assessment of Relation Con-
sistency. The method embodied in BARC uses machine
learning, and thus relies on a two-step process of learning
and predicting. At the core of BARC are three components
that we now describe.
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Retrieval (“SaBRA for ranking documents” section):
This component handles the tasks of processing a relation
and collecting a subset of the documents that are used
to assess the validity of that assertion. The inputs of this
component are a relation and the document index built
for the search task. The internal search and ranking algo-
rithm implemented by this component is described later.
Indexing of the collection is out of the scope of this paper,
but is briefly reviewed in “Experimental data” section.

Aggregation & feature extraction (“Relation consis-
tency features” section): This component takes as an
input the set of documents returned by the retrieval
component and is responsible for the main task of
aggregating this set of documents to allow extraction
of relevant features. Three kinds of features are then
computed and produced, (i) inferred relation words, (ii)
co-mention based, and (iii) context similarity-based. These
features are discussed in “Relation consistency features”
section.

Learning and prediction (“Supervised learning algo-
rithm” section): This component is the machine-learning
core of BARC. It takes as input feature vectors, each
representing a particular relation. These feature vectors
are processed by two sub-components depending on the
task: the learning pipeline and the prediction pipeline. The
learning pipeline is responsible for the creation of a model,

Database of

biological relations
(correct and incorrect)
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Correct Incorrect

relation
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which is then used by the prediction pipeline to classify
unseen assertions as being correct or incorrect.

SaBRA for ranking documents

In typical information retrieval applications, the objective
is to return lists of documents from a given document
collection, ranked by their relevancy to a user’s query. In
the case of BARC, the documents being retrieved are not
intended for individual consideration by a user, but rather
with the purpose of aggregating them for feature extrac-
tion for our classification task. Hence, given a relation
R = (objecty, predicate, objecty), we need to select docu-
ments that mention both object; and object; at a suitable
ratio, to allow accurate computation of features; a set of
documents that is biased towards documents containing
either object; or objecty will result in low-quality features.
Standard IR models such as the vector-space model TF-
IDF [21] or the probabilistic model BM25 [22] are not
designed to satisfy this constraint.

Given the settings and the problem discussed above,
we developed SaBRA, a Set-Based Retrieval Algorithm, as
summarized in Algorithm 1. In brief, SaBRA is designed to
guarantee the presence of a reasonable ratio of mentions
for object; and object; in the top k documents retrieved,
to extract features for a relation R = (objecty, predicate,
objecty).

SaBRA takes in input an IndexSearcher that implements
search over a single index, a query in the form of a rela-
tion assertion R = (o1, p,02), where k the number of
documents to return (choice of k is examined later). First,
SaBRA initializes three empty ordered lists ¢, 61, and 6,
(line 1; these sets are explained below), and sets the sim-
ilarity function the IndexSearch used (line 2). Given a
relation R and a document d, the scoring function used to
compute the similarity is the following:

log[ 1 + count(o1,d)]
(1—b) +b x [dlo,

log[ 1 + count(0y,d)]

R,d =
J&d (1 —0) + b x|dlo,

1)

where count(o, d) is the number of time o occurs in d, the
value |d|, is the number of mentions of objects of the same
type as o in document d, and b is a weighting parameter
empirically determined and set to 0.75 in our experiments.
The intuition behind the denominator for the two terms
is to penalize documents that mention other objects of
the same type as o [23], such as other genes or diseases
other than those involved in the relational assertion being
processed. The numerator acts provides term frequency
weighting.

Next, SaBRA retrieves: (i) documents that mention both
01 and o3 in the ordered list ¢ (line 3), (ii) documents that
mention 07 but not 0y in the ordered list 6; (line 4), and
(iii) documents that mention 0y but not 07 in the ordered
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Algorithm 1: SuBRA: Set-Based Retrieval Algorithm
input : IndexSearcher is; A query RS = (01, p, 02); k;
/% IndexSearcher implements
search over a single index; A
query is composed of two objects
involved in a relation; k 1is the
number of documents to return.
output: Top-k documents;

*/

/* Initialize empty lists that

maintain ordering.
1 Initialize lists ¢, 61, 6;

/* Set Eq. 1 as the Similarity
function used by this
IndexSearcher.

2 is.setSimilarity(Eq. 1);

/+ Find documents that contain both o0

and 0y . */
3 ¢ < is.search(o1 A 03);

/+ Find documents that contain o7 but

not o. */
4 01 < is.search(o1 A —02);

/+* Find documents that contain oy but

not oj. */
5 Oy < is.search(—o1 N 03);

/* The following loop will
alternately insert documents of 6;
and 6, in ¢. */

*/

*/

6 for i < 0 to max(6;.size(), 03.size()) do
7 if i < 0;.size() then

s | | cadd@li);

9 end

10 if i < 0y.size() then

11 | ¢.add(6a[i]);

12 end

13 end

/x Return the top k documents in the
ordered list ¢.
14 return ¢.subList(0, k);

*/

list 6 (line 5). Then, SaBRA alternately inserts documents
of 01 and 6, at the end of ¢ (lines 6 to 13). Documents
in ¢ are considered to be more significant as they con-
tain documents that mention and may link the two objects
involved in the relation being processed. Finally, SaBRA
returns the top-k documents of the ordered list ¢ (line 14).

Relation consistency features
We now explain the features that BARC extracts from

the set of documents retrieved by its retrieval component
through SaBRA.
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Inferred relation word features

Given a correct relation R = (object;, predicate, objecty),
we expect that object; and object; will co-occur in sen-
tences in the scientific literature (co-mentions), and that
words expressing the predicate of the target relation
between them will also occur in those sentences. This
assumption is commonly adopted in resources for and
approaches to relation extraction from the literature, such
as in the HPRD corpus [24, 25]. Following this intuition,
we have automatically analyzed correct relations of the
training set described in “Experimental data” section to
extract words that occur in all sentences where the two
objects of each correct relation are co-mentioned. Tables 1
and 2 show the top 5 co-occurring words for the correct
relations we have considered, their frequencies across all
sentences, and example sentences in which the words co-
occur with the two objects involved in a relevant relation
in the data set. For example, the most common word that
occurs with gene—disease pairs is the word “mutation”;
it may suggest the relation between them. These words
can be considered to represent the relation predicate R.
Hence, these inferred relation word features can capture
the predicate.

For each relation type we have curated a list of the top
100 co-occurring words as described above. Then, for
each relation R = (objecty, predicate, objects) of type T,
a feature vector is defined with values representing the
frequency of appearance of that word in sentences where
object; and object, occur. Hence, our model will inherently
succeed in capturing different predicates between the
same pair of objects. We separately consider the three dif-
ferent fields of the documents (title, abstract and body). In
total, we obtain 300 word-level features for these inferred
relation words.

Co-mention-based features

Following the intuition that for a correct relation R =
(objecty, predicate, objecty), object; and object; should
occur in the same sentences of the scientific literature, we
have tested several similarity measures that compute how
often they occur in the same sentences. These co-mention
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similarity measures — Dice, Jaccard, Overlap, and Cosine
[26] — are computed as defined in Table 3. These similarity
measures are also computed while considering separately
the title, the abstract, and the body of the documents,
giving a total of 12 features.

Context similarity-based features

Given a relation R = (object1, predicate, object,), the
strength of the link associating the two objects can be
estimated in a set of documents by evaluating the sim-
ilarities of their context mentions in the text, following
the intuition that two objects tend to be highly related if
they share similar contexts. Hence, to evaluate the sup-
port of a given relation R that associates two objects given
a set of documents, we define a context similarity matrix
as follows:

Definition 2 A context similarity matrix M©°? asso-
ciated with a set of documents D is a matrix that reports
the similarity between the context of two objects 01 and 0y
such that each entry (i,]) estimates the similarity between
the " mention of the object o1 in the set D, and the j
occurrence of the object 0, in the set D.

Figure 4 shows the context similarity matrix for two
objects, the gene “CFTR” and the disease “Cystic fibrosis
(CF)” This matrix indicates, for example, that the con-
text of the first occurrence of the gene “CFTR” in the
first returned document has a similarity of 0.16 with
the context of the first occurrence of the disease CF in
the same document. Similarly, the context of the first
occurrence of the gene in that document has a similar-
ity of 0.22 with the context of the first occurrence of the
disease CF in the fourth returned document. Essentially,
the concept—concept matrix captures the lexical similarity
of the different occurrences of two objects in the docu-
ments returned by SaBRA. Once this matrix is built, we
can calculate aggregate values based on the sum, stan-
dard deviation, minimum, maximum, arithmetic mean,
geometric mean, harmonic mean, and coefficient of varia-
tion of all computed similarities. These aggregated values

Table 1 Examples of the top 5 words that occur in sentences where genes and diseases of the relations described in “Experimental

data” section also occur

Term Frequency  Example
1 Mutation 26,020 Mutations of the PLEKHM1 gene have been identified as the cause of the osteopetrotic ia/ia rat. [PMID:22073305]
2 Express 5,738 RAD51 was reported to have a significantly increased expression in breast cancer. [PMID: 23977219]
3 Result 5,151 HTTAS results in homozygous HD cells. [PMID: 25928884]
4 Activate 4454 FGFR2 has been shown to activate signal transduction leading to transformation in breast cancer. [PMID: 25333473]
5 Risk 4,423 RNF213 was recently identified as a major genetic risk factor for moyamoya disease. [PMID: 25964206 ]

These words can be seen as approximating the semantics of the predicates linking the genes and the diseases. The PubMed ID (PMID) of the source article for each example

is provided in brackets

Words in bold represent entities involved in an assertion, i.e, the entities and the predicate
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Table 2 Examples of the top 5 words that occur in sentences where two proteins that interact also occur

Term Frequency Example
1 Interact 33,128 As reported previously we also confirmed PHD2 interaction with FKBP38. [PMID: 21559462]
2 Activ 30,241 Another known protein that modulates PHD2 activity is FKBP38. [PMID: 20178464 ]
3 Express 29,863 BMP2 may promote PHD?2 stabilization by down-modulating FKBP38 expression. [PMID: 19587783]
4 Bind 29,468 mliL-5 showed similar, high-affinity binding profiles to both gplL-5r and hIL-5r. [PMID: 11132776]
5 Regulator 15,939 As a regulator of JNK, POSH is mainly implicated in the activation of apoptosis. [PMID: 17420289]

These words can be seen as approximating the semantics of the predicates linking the two proteins
Words in bold represent entities involved in an assertion, i.e., the entities and the predicate

can be used as summaries of the link strength of the two
objects.

In the following, we first describe how we estimate the
context distribution of a given object (word) in an article.
Then, we describe different probabilistic-based metrics
that we use to estimate the similarity between the contexts
of the different occurrences of two objects.

Based on the method proposed by Wang and Zhai [27],
who defined the context of a term based on a left and
a right window size, we empirically found (results not
shown) that the context of a word is best defined using
sentence boundaries, as follows:

Definition 3 The context (C) of a document term w is
the set of words that occur in the same sentence than w.

For example, in the sentence “Alice exchanged encrypted
messages with Bob”, we say that the words “Alice”,
‘encrypted”, “messages”, “with”, and “Bob” are in the con-
text C of the word ‘exchanged”.

Let C(w) denotes the set of words that are in the C con-
text of w and count(a, C(w)) denotes the number of times
that the word a occurs in the context C of w. Given a term
w, the probability distribution of its context words using

Dirichlet prior smoothing [28] is given by:

count(a, C(w)) + uP(ald)

> count(i, C(w)) +
ieC(w)

Pc(alw) =

(2)

where P(a|6) is the probability of the word a in the
entire collection and p is the Dirichlet prior parameter,
which was empirically defined and set to 1500 in all of

Table 3 Co-mention similarity measures summarization

|Sentences(o1)NSentences(07)|

Dice D(01,02) = 2 x [Sentences(o7)[+]Sentences(0)]
Jaccard or,0) = fstoug o)
Overlap 0(01,02) = i Gertenscscs T Sentencestors
Cosine COS(O],OQ) — |Sentences(o1)NSentences(02)]

|Sentences(o1)]x|Sentences(02)|

The function Sentences(o) returns from a set of documents those sentences where
the object o occurs

our experiments. Analogously, we define the double con-
ditionalprobability distribution over the contexts of two
words wi and w; as:

count(c,C(wy))+count(c,C(wy))+uP(c|0)

Plclwr, wa) = D Y (count(i,C(w1))~+count(j,C(w2)))+u
ieC(wy) jeC(wy)
(3)

The similarity model is used to capture whether two
objects of a relational statement are sharing the same con-
text. The idea is that objects that occur in similar contexts
are related to each another, and thus are highly correlated.
In the following, we describe several similarity measures
we used; these are fully described elsewhere [26].

Overlap: Overlap similarity is a similarity measure that
measures the overlap between two sets and is defined as
the size of the intersection divided by the smaller of the
size of the two sets. In a probabilistic distributional case,
it is defined as:

Z lOgP(C|W1, wo)

O(w1,wg) = ceC(w1)NC(wa)
max( Y logP(alwi), Y. logf’(b|w2)>
acC(wi) beC(wo)

(4)
where P(a|w1) and P(b|w;) are defined in Eq. 2, and the
joint probability P(c|wy, wo) is defined as in Eq. 3.

Matching: The matching similarity measure is defined as:

Mw,wy) = Y

ceC(w1)NC(wa)

log P(c|w1, wa) (5)

Jaccard: The Jaccard similarity is a statistic metric used
for comparing the similarity and diversity of sample sets.
It is defined as the size of the intersection divided by the
size of the union of the sample sets. In a probabilistic
distributional case, it is defined as:

> log P(c|wy, o)
ceC(wy)NC(wa)

> logi’(c|w1, wo)
ceC(w1)UC(wa)

(6)

J(wi, wa) =
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Dice: The Dice similarity measure is defined analogously
to the harmonic mean between two sets. It considered as a
semi-metric since it doesn’t satisfy the triangle inequality
property. In a probabilistic distributional case, it is defined
as follows:

logf’(c|w1, w2)

2 x >

ceC(w1)NC(wa)

> logPalwi) + Y. logP(blwy)
acC(wy) beC(wy)
7)

D(wi,wq) =

Cosine: The cosine similarity measure is defined as the
inner product space that measures the cosine of the angle
between vectors. In a probabilistic distributional case, it is
defined as follows:

> log P(c|w1) log P(c|w2)
ceC(w1)NC(wa)

> [logl~’(a|w1)]2 X

aeC(wy)

Cos(wy, wy) =

Y [logP@blwn]’
beC(wy)

(8)

We apply these five similarity measures to build context
similarity matrices, with each column constructed sepa-
rately based on the title, the abstract, and the body of the
returned documents. Once these matrices are built, we
calculate for each matrix aggregation values based on the
sum, standard deviation, minimum, maximum, arithmetic
mean, geometric mean, harmonic mean, and coefficient of
variation. In total, we have defined 120 context similarity-
based features.

Summary

In summary, we have defined 300 word-level features for
the inferred relation words, 12 co-mention-based features,
and 120 context similarity-based features. Therefore, for
each relational statement we have a total of 432 feature
values, which can be represented as a feature vector x,, =

[Xm1s Xm2s - - - s Xmaz2].

Supervised learning algorithm

Given as input a set of features for each relation to assess,
our goal is to combine these inputs to produce a value
indicating whether this relation is correct or incorrect
given the scientific literature. To accomplish this, we use
SVMs [29], one of the most widely-used and effective
classification algorithms.

Each relation R, is represented by its vector of 432 fea-
tures x,,; =[%m1,%m2, . - - »%ma32] and its associated label
ym € {correct, incorrect}. We used the SVM imple-
mentation available in the LibSVM package [30]. Both
Linear and RBF kernels were considered in our exper-
iments. The regularization parameter C (the trade-off
between training error and margin), and the gamma
parameter of the RBF kernel are selected from a search
within the discrete sets {107°,1073,. .., 103,10}, and
{10-12,10713,...,10%, 103}, respectively. Each algorithm
is assessed using a nested cross validation approach, which
effectively uses a series of 10 train—test set splits. The
inner loop is responsible for model selection and hyperpa-
rameter tuning (similar to a validation set), while the outer
loop is for error estimation (test set), thus, reducing the
bias.

In the inner loop, the score is approximately maximized
by fitting a model that selects hyper-parameters using 10-
fold cross-validation on each training set. In the outer
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loop, efficiency scores are estimated by averaging test set
scores over the 10 dataset splits. Although the differences
were not substantial, initial experiments with the best RBF
kernel parameters performed slightly better than the best
linear kernel parameters for the majority of the validation
experiments. Unless otherwise noted, all presented results
were obtained using an RBF kernel, with C and gamma set
to the values that provide the best accuracy.

Experimental data

We first describe the collection of documents we have
used for the evaluation, then describe the two types of
relations we have considered.

Literature: We used the PubMed Central Open Access
collection® (OA), which is a free full-text archive of
biomedical and life sciences journal literature at the
US National Institutes of Health’s National Library of
Medicine. The release of PMC OA we used contains
approximately 1.13 million articles, which are provided
in an XML format with specific fields corresponding to
each section or subsection in the article. We indexed
the collection based on genes/proteins and diseases that
were detected in the literature while focusing on human
species. To identify genes or proteins in the documents
we used GNormPlus [31]. (Note that the namespace for
genes and proteins overlaps significantly and this tool does
not distinguish between genes or proteins.) GNormPlus
has been reported to have precision and recall of 87.1%
and 86.4%, respectively, on the BioCreative II GN test set.
To identify disease mentions in the text, we used DNorm
[32], a tool reported to have precision and recall of 80.3%
and 76.3%, respectively, on the subset of the NCBI disease
corpus. The collection of documents is indexed at a con-
cept level rather than on a word level, in that synonyms,
short names, and long names of the same gene or disease
are all mapped and indexed as the same concept. Also,
each component of each article (title, abstract, body) is
indexed separately, so that different sections can be used
and queried separately to compute the features [33].

Gene-disease relations: The first type of relation that
we used to evaluate BARC is etiology of disease, that is,
the gene-causes-disease relation. To collect correct gene—
disease relations (positive examples), we used a curated
dataset from Genetics Home Reference provided by the
Jensen Lab [34]7. Note that we kept only relations for
which GNormPlus and DNorm identified at least a sin-
gle gene and disease respectively. To build a test set of
incorrect relations (negative examples), we used the Com-
parative Toxicogenomics Database (CTD), which contains
both curated and inferred gene—disease associations [20].

The process for generating negative examples was as
follows: (i) We determined the set of documents from
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which the CTD dataset has been built, using all PubMed
article identifiers referenced in the database for any rela-
tion. (ii) We automatically extracted all sentences in which
a gene and a disease are co-mentioned (co-occur) that
appear in the set of documents, and identified the unique
set of gene—disease pairs across these sentences. (iii) We
removed all gene—disease pairs that are known to be valid,
due to being in the curated CTD dataset. (iv) We manually
reviewed the remaining gene—disease pairs, and removed
all pairs for which evidence could be identified that sug-
gested a valid (correct) gene—disease relation (10% of the
pairs were removed at this step by reviewing about 5—
10 documents for each relation). The remaining pairs are
our set of negative examples. We consider this data set
to consist of reliably incorrect relations (reliable nega-
tives), based on the assumption that each article that is
completely curated, that is, that any relevant gene—disease
relationship in the article is identified. This is consistent
with the article-level curation that is performed by the
CTD biocurators [20].

Protein-protein interactions: The second kind of rela-
tion we used to evaluate BARC is protein—protein interac-
tions (PPIs). We used the dataset provided by BioGRID as
the set of correct relations [35].% We kept only associations
for which the curated documents are in our collection.
To build a test set of incorrect relational statements, we
proceeded similarly to the previous case, again under the
assumption that all documents are exhaustively curated;
if the document is in the collection, all relevant relations
should have been identified.

We describe our dataset in Table 4. For example, arti-
cles cite 6.15 genes on average; the article PMC100320°
cites 2040 genes. A gene is cited on average 24.6 times,
while the NAT21? is the most cited gene. GNormPlus and
DNorm identified respectively roughly 54M genes and
55M diseases in the collection.

Finally, in the experimental evaluation, we consider a
total of 1991 gene—disease relations, among which 989
are correct and 1002 are incorrect. On average each men-
tion is in 141.9 documents, with a minimum of 1 and
a maximum of 12,296. Similarly, we consider a total of
4,657 protein—protein interactions among which 1758 are
correct and 2899 are incorrect. Hence, our test set has
reasonable balance.

Results

Our experiments address the following questions, in the
context of the task of classifying whether or not a given
relational assertion is supported by the literature:

1 How well does SaBRA perform the task of building a
relevant set for feature extraction, compared to other
retrieval methods?
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Table 4 Dataset statistics
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Articles statistics

Mentions
# articles Mention Avg Max Max entity
1,135,611 Gene 6.15 2040 PMC100320
Disease 11.01 1272 PMC100785
Object mentions in #documents
Mention # unig men. Avg Max Max entity
Gene 54,447,840 24.56 61,248 NAT2
Disease 55,850,078 1402 273,007 Heavy chain
Relational statements
Type Avg Min Max Correct Incorrect
Etiology 141.86 1 12,296 989 1002
PPIs 1411 1 1626 1758 2899

2 How well does SaBRA perform on relations with
different document support values for the two
objects involved in these relations?

3 How does BARC compare with other approaches to
the same task?

Evaluation of SaBRA

Given that SaBRA is designed to retrieve documents
for a specific task of classification, standard evaluation
approaches and metrics of information retrieval are not
applicable. Therefore, we chose to evaluate the perfor-
mance of SaBRA by examining the general performance of
the classification task, that is, the performance of BARC.
As baselines, we compared SaBRA with two well-known
scoring functions: TF-IDF and Okapi BM25. Note that
we also use named entities for the retrieval step and that
we use these two functions for ranking only.!! Specif-
ically, TE-IDF and BM25 are applied in place of lines
6-13 in Algorithm 14, to order the documents previously
retrieved on lines 3-5. The performance is assessed using
conventional metrics used to evaluate a classifier, namely:
precision, recall, accuracy, Receiver Operating Character-
istic curve (ROC curve), and Area Under the ROC curve
(ROC AUCQ).

The results of the comparison are shown in Figs. 5
and 6 for gene—disease relations and protein—protein
interactions respectively. We also show results obtained
for values of k € {1,2,3,5,10,15,20, 25,30}, which is
the number of top documents returned by the retrieval
algorithms. From the results, we make the following
observations.

In general, the method works well. BARC achieves
an accuracy of roughly 89% and 79%, respectively, for
the gene—disease relations and protein—protein interac-
tions. The higher the value of k, the higher the per-
formance of the classification. This is almost certainly

due to the fact that the higher the number of aggre-
gated documents, the more likely it is that the features
are informative, and thus, the higher the performance of
the classification. However, we note that performance is
more or less stable above k = 10 for both gene—disease
relations and protein—protein interactions. Considering
more documents in both cases results in only marginal
improvement.

While the performance obtained when varying k on the
gene—disease relations is smooth (the performance keeps
increasing as k increases), the performance while vary-
ing k on the protein—protein interactions is noisy. For
example, for k = 3 SaBRA achieved 65% recall, but for
k = 5 the recall dropped to 56%, which means the two
documents added are probably irrelevant for building a
relevant set of documents. Similar observations can also
be made for the two baselines. For almost all values of k,
SaBRA outperforms the two retrieval baselines BM25 and
TE-IDFE. While SaBRA clearly outperforms BM25 (roughly
13% for recall, 6% for accuracy, 5% ROC AUC for gene—
disease relations), the improvement over TF-IDF is lower.
In the next section, we explore how SaBRA performs
on different statements with respect to the two retrieval
algorithms.

Overall, the performance obtained on the gene—disease
relations is higher than that obtained for protein—
protein interactions. This is probably because genes
and diseases that are related tend to be more often
associated in the literature than are proteins that inter-
act; indeed, gene—disease relations attract more atten-
tion from the research community. Therefore, there is
more sparsity in the protein—protein interactions test
set. This is also reported in Table 4, where on aver-
age each gene—disease relation has a support of 141.9,
whereas each protein—protein interaction relation has a
support of 14.1.
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Performance on different relations

Relational statements may be analyzed using the support
criteria to identify the most important or frequent rela-
tionships. We define the support as a measurement of how
frequently the relations appear in the same documents in
the literature. Clearly, correct relations with low support
values are of weaker association evidence than correct
relations with high support values. Analogously, incor-
rect relations with high support values may be of stronger
association evidence than incorrect relations with low

support values. Therefore, we perform an evaluation anal-
ysis based on relations with different document support
values.

In order to evaluate BARC in general and SaBRA in
particular on relations with document support values, we
first group all the relations based on the document sup-
port values in the dataset, and then evaluate the accuracy
of different relation groups. Results comparing SaBRA
against the other retrieval methods are shown in Fig. 7.
For gene—disease relations, we build eight classes: “1
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“2—5’ “6— 14, “15—29’, “30— 60’ “61— 125, “126— 335,
and “> 335’ denoting the document support values for
each group. As for the protein—protein interactions, rela-
tions are grouped in 6 classes: : “17, “2— 37, “4— 87, “9— 307,
“31— 100’ and “> 100"

Figure 7b and d summarize the distributions of, respec-
tively, the gene—disease relations and the protein—protein
interactions according to the groups defined. For example,
in Fig. 7b, there are a total of 135 gene—disease relations
evaluated in for which the document support values equal

to 1. The performance is evaluated in terms of accuracy
in Fig. 7a and c. SaBRA generally performs better than the
other methods.

The conclusions drawn are different for the two rela-
tional statements evaluated. For gene—disease relations
with low document support values (“1”), SaBRA performs
much better than TF-IDF and BM25, and increases the
performance with roughly 10% and 18% respectively. As
the document support values increase, the performances
of all the algorithms increase and converge, but SaBRA



Bouadjenek et al. BMC Bioinformatics (2019) 20:216

Page 13 of 22

SaBRA EEEEE TF-IDF s BM25 =3

o
°

Accuracy

Document support

a)

SaBRA HEEEE TF-IDF I BM25 EEd

o
°

Accuracy

Document support

c)

350

300
250

200

100

# of associations

Document support

1400
1200
1000 |
800
600
400
200 |

# of associations

Document support

d)
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still generates better predictions than the other methods
at all levels.

For protein—protein relations with high document sup-
port values (“>100”), SaBRA performs much better than
TF-IDF and BM25, and increases the performance with
roughly 12% and 19% respectively. However, as the
document support values decrease, the performance of
SaBRA is consistent but the performances of TF-IDF
and BM25 increase. TE-IDF is even doing slightly bet-
ter than SaBRA for relations with document support
values in the range “1-3” yielding an improvement of
roughly 1%.

Classification performance

In the previous sections we focused on the evaluation of
SaBRA, the ranking algorithm used in BARC. Here, we
evaluate BARC itself with respect to straightforward base-
lines (noting that there is no prior published method for
our task). For the baselines, we used both an SVM clas-
sifier as well as the C4.5 decision tree algorithm [36].
We have chosen to use a decision tree for the base-
lines as it can be linearized into decision rules, which
may reflect the decisions taken manually by a biocura-
tor who wishes to assess the correctness of relations.
We argue that a decision-tree algorithm represents

the closest algorithmic analog to a human biocura-
tor who is assessing relations. We used different co-
mention-based features to train several decision trees as
follows:

¢ Baseline 1: Trained using document support values.
The idea is that the higher the document support
value, the higher the probability that the relationship
is correct.

e Baseline 2: Trained using mutual information (MI)
values based on co-mention of the two objects
involved in a relation I(01; 02). We recall that MI is a
measure of the mutual dependence between the two
variables.

¢ Baseline 3: Trained using document support values
computed for each document field (three features are
used). This baseline can be seen as a more elaborated
version of Baseline 1.

e Baseline 4: Trained using mutual information (MI)
values computed for each document field (three
features are used). This baseline can be seen as a
more elaborated version of Baseline 2.

e WordEmb: This baseline method relies on word
embeddings,'? which may effectively allow




Bouadjenek et al. BMC Bioinformatics (2019) 20:216

Page 14 of 22

I BARC

@ Baselinel-SVM [ Baseline2-SVM 0 Baseline3-SVM 1 Baseline4-SVM
I RBaselinel-DT [ Baseline2-DT HEEEM Baseline3-DT EEEM Baseline4-DT [ WordEmb

1 T
0.8 [ ] B - ] s
0.6 N
0.4 B
0.2 ( :
O |
Precision Recall F-Measure Accuracy
a)
BN BARC @@ Baselinel-SVM 1 Baseline2-SVM T Baseline3-SVM 1 Baseline4-SVM
I Baselinel-DT [ Baseline2-DT B Baseline3-DT [ Baseline4-DT [ WordEmb
1
0.8
0.6 N
0.4 N
0.2 i
O u i

Precision Recall

Performance comparison on protein—protein interactions

b)

Fig. 8 Performance comparison of BARC for k = 30. DT: Decision Tree-based classification. a Performance comparison on gene—disease relations. b

F-Measure Accuracy

consideration of indirect relations between pairs of
objects. We developed several features extracted
from the embeddings, including vector dot products
and element-wise multiplication.

Results are shown in Fig. 8a and b for the gene—disease
relations and the protein—protein interactions, respec-
tively. Comparing the baselines, we first observe that
the best results are those based on SVM as we may
expect. This is because SVM tries to maximize the margin
between the closest support vectors while Decision Trees
maximize the information gain. Thus, SVM finds a solu-
tion which separates the two categories as far as possible
while Decision Trees do not have this capability. BARC
clearly outperforms the baselines on the two test sets.
We also note that for the two test sets, the performance
of BARC is stable compared to the other baselines; for
example, Baseline 4 has a high recall value on gene-—
disease relations and thus is ranked second on that test
set, but a low recall value on the protein—protein inter-
actions and thus is ranked fourth on that test set. Finally,
we observe that the word-embedding baseline is the
best performing baseline on the gene-disease relations,
and nearly as effective as BARC (which achieves only

3.5% improvement in F-Measure over the word embed-
ding baseline). However, the word-embedding baseline is
much less effective than BARC on the protein-protein
interaction dataset. After a thorough investigation, we
find that, compared to all baselines over the two datasets,
the word-embedding approach has stable performance
between the two tasks. However, BARC achieves higher
performance on the protein—protein interactions dataset
than on the gene—disease interactions dataset. We explain
this primarily by the fact that the tool that we used to
identify genes and proteins in the literature has a higher
accuracy than the tool we used to identify diseases. There-
fore, BARC could more accurately capture the context of
the protein—protein interactions to correctly classify the
corresponding relations.

Discussion

In this section, we first provides a discussion on the infor-
mativeness of features and then we discuss the limitations
of our method.

Features analysis
To explore the relationship between features and the rela-
tion consistency labels, we undertook a feature analysis.
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Table 5 Ranking of the most important features using Ml

Rank Type Field Feature
Gene-disease relations

1 Dict. Body Mutation

2 Dict. Body Gene

3 Co-men. Body Jaccard

4 Co-men. Body Dice

5 Co-men. Body Cosine

6 Context Title SumOverlap

7 Context Title SumJaccard

8 Context Title SumCosine

9 Context Title SumDice

10 Context Title SumMatching
Protein-protein interactions

1 Dict. Body Interact

2 Co-men. Body Overlap

3 Co-men. Body Cosine

4 Co-men. Body Jaccard

5 Co-men. Body Dice

6 Dict. Body Protein

7 Dict. Body Complex

8 Dict. Body Bind

9 Dict. Body Cell

10 Dict. Body Figur

Specifically, we performed a mutual information analy-
sis at the level of individual features and feature ablation
analysis at the level of feature category.

Mutual information analysis

A general method for measuring the amount of informa-
tion that a feature x; provides with respect to predicting
a class label y (“correct” or “incorrect”) is to calculate its
mutual information (MI) I(x,y). In Table 5, we present
the list of 10 top-ranked features, and in Fig. 9, we show a
complete overview of MI values obtained for each feature
using a heatmap.

This analysis led us to make the following observa-
tions. On both relations, the top features are the inferred
relation words. Specifically, as we may expect, the words
“mutation” and “interact” are the most discriminative for
respectively gene—disease relations and protein—protein
interactions. However, based on Fig. 9, all feature kinds are
informative, as well as all document fields. Features com-
puted on the body of documents are the most informative,
particularly for inferred relation word and co-mention
based features. For context-based features on the gene—
disease relations, the titles of documents seem to be more
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informative than the other fields. This indicates that cor-
rect gene—diseases relations tend to be mentioned in the
title of articles.

Given the large number of features and similarity met-
rics we have defined, we show in Table 6 the correlation
between similar features for the different types of features
using PCA. This table shows the most related and inde-
pendent features. Also, this analysis shows which feature
inside each feature group is most important. Based on
the results we obtained, we make the following observa-
tions: correlated features come usually from similar fields
of documents; all documents fields are useful for extrac-
tion of informative features; similar aggregation functions
generate correlated features.

Feature ablation analysis

A feature ablation study typically refers to removing some
“feature group” of the model, and observing how that
affects performance. Hence, we propose to study the
impact of each feature group individually on the global
performance. The results obtained are shown in Fig. 10
for both gene-disease relations and protein—protein
interactions.

We make the following observations: For gene—disease
relations, the best feature groups are in the following
order: inferred relation word features followed by context
features and then by co-mention features. For the protein—
protein interactions, the best feature groups are in the
following order: inferred relation word features followed
by co-mention features and then by context features.
On the protein—protein interactions, all features lead
to similar performance, yielding only marginal improve-
ments on each other. The combination of the three fea-
ture groups on the gene—disease relations is producing
marginal improvements. However, their combination
slightly improves the performance on the protein—protein
interactions, boosting precision from 76% for inferred
relation word features to 84% (an improvement of
roughly 10.5%).

Limitations

There are limitations in our approach. Currently, BARC
incorrectly identifies negative sentences, expressing that
two objects do not interact in a given relation, as posi-
tive instances of their interaction. For example, given a
document that contains a sentence such as: “Gene X does
not affect the expression in Syndrome Y”, may count as a
support of the relation (geneX, affect, SyndromeY). How-
ever, given the positivity bias of research publications,
we expect such negative statements to be outweighed by
positive statements of true interactions. The issue could
be addressed by explicit treatment of negation, either
through a naive approach of removing sentences contain-
ing negation key terms, or through analysis of sentence
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structure to identify negated relations, for instance as
done in the BioNLP Shared Task [37].

Second, BARC relies on the capability and accuracy
of named-entity-recognition tools to extract object men-
tions from the literature. Even though the tools we have
used to extract gene and disease mentions from the liter-
ature have reasonable accuracy, we assumed in this work
that they are highly reliable. Thus, we have not consid-
ered the impact of their errors on the results that we have
reported.

Finally, BARC also relies on the fact that valid and
correct relationships are expected to occur in the same
documents and sentences. Indeed, if a given relationship
between two entities is supported by the literature, they
should be discussed in individual documents, and more-
over in the same sentences, to be correctly classified by
BARC. Conversely, a valid relationship that is not directly
stated in the literature will not be correctly classified by
BARC. This could be addressed by enhancing BARC with
external sources of knowledge.

Related work

There is a substantial body of research related to named
entity recognition, relation extraction, and the use of
structured or unstructured knowledge for checking state-
ments and answering questions. Hence, we review below
the major works related to these aspects.

Named entity recognition (NER)

Recognition of named entities and concepts in text, such
as genes and diseases, is the basis for most biomedi-
cal applications of text mining [38]. NER is sometimes
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divided into two subtasks: recognition, which consists of
identifying words of interest, and normalization, which
consists of mapping the identified entities to the correct
entries in a dictionary. However, as noted by Pletscher-
Frankild et al. [34], because recognition without normal-
ization has limited practical use the normalization step is
now often implicitly considered part of the NER task.

In brief, the main issues with NER in the biologi-
cal literature occur because of the poor standardization
of names and the fact that a name of an entity may
have other meanings [39]. To recognize names in text,
many systems make use of rules that look at features of
names themselves, such as capitalization, word endings
and the presence of numbers, as well as contextual infor-
mation from nearby words. In early methods, rules were
hand-crafted [40], whereas newer methods make use of
machine learning and deep learning techniques [41, 42],
relying on the availability of manually annotated training
datasets.

Dictionary-based methods instead rely on matching a
dictionary of names against text. For this purpose the
quality of the dictionary is obviously very important; the
best performing methods for NER according to blind
assessments rely on carefully curated dictionaries to elim-
inate synonyms that give rise to many false positives
[43, 44]. Moreover, dictionary-based methods have
the crucial advantage of being able to normalize
names. Whether or not use is made of machine
learning, a high-quality, comprehensive dictionary of
gene and disease names is a prerequisite for min-
ing disease—gene associations from the biomedical
literature.

Co-mention Context
Inferred relation word features features features
Title
Abstract
=ocy [ ) B
Wy oL Y100
a)
Co-mention Context
Inferred relation word features features features
Title
Abstract
Body I
Wi ... W100
b)
Fig. 9 Feature analysis using MI. The higher the density color, the higher the Ml value. a Gene-Disease relations. b Protein-Protein interactions
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Table 6 Top correlated features within each group of features obtained using PCA

Dictionary Co-mention Context
Field Feature Field Feature Field Feature
Gene-disease relations

1 Body study Abstract jaccard Abstract MeanQverlap
Body found Abstract dice Abstract MaxCosine
Body analysis Abstract cosine Abstract MeanMatching
Body report Abstract matching Abstract MeanDice
Body result Body cosine Body CoeffVarJaccard

2 Body susceptible Title matching Title Geo.MeanJaccard
Body associated Title jaccard Title Harm.MeanDice
Abstract susceptible Title dice Title Harm.MeanCosine
Body risk Title cosine Title Harm.MeanMatching
Abstract associated Body matching Title Harm.MeanJaccard

3 Body cell Abstract cosine Abstract Harm.MeanCosine
Body interact Abstract dice Abstract Geo.MeanCosine
Body complex Abstract jaccard Abstract MinMatching
Body bind Body dice Abstract Geo.MeanDice
Body figure Body jaccard Abstract Geo.MeanJaccard
Protein-protein interaction

1 Body result Abstract Dice Title MaxCosine
Body study Abstract Cosine Title MaxDice
Body cell Abstract Matching Title MaxOverlap
Body show Body Jaccard Title MaxJaccard
Body shown Body Dice Title MaxMatching

2 Abstract express Title Jaccard Abstract Harm.MeanDice
Body yeast Title Dice Abstract Harm.MeanCosine
Body termin Title Cosine Abstract Geo.MeanJaccard
Abstract receptore Title Matching Abstract Geo.MeanDice
Body complex Body Cosine Abstract Geo.MeanCosine

3 Title residue Abstract Matching Title Geo.MeanDice
Title receptore Title Matching Title Harm.MeanCosine
Title hla Body Matching Title MinCosine
Body hla Title Jaccard Title Harm.MeanMatching
Abstract hla Body Dice Title MinDice

Relation extraction

Relation extraction is the task of extracting semantic rela-
tionships between named entities mentioned in a text.
Relation extraction methods are usually divided into two
categories [45, 46], namely: feature-based and kernel-
based supervised learning approaches. In feature-based
methods, for each relation instance in the labelled data, a
set of features is generated and a classifier is then trained
to classify any new relation instance [47-49]. On the other
hand, kernel based methods use kernel functions to com-
pute similarities between representations of two relation

instances and SVM is employed for classification. Two
major kernel approaches are used: bag-of-features kernels
[50, 51] and tree or graph kernels [52-54, 54—56].

With the rise of deep learning, several neural net-
work models have been used for relation extraction
while achieving obtained state-of-the-art performance.
Two major neural architectures were used including
convolutional neural networks (CNNs) [57-63] and
recurrent neural networks (RNNs) [64—-67]. Combi-
nations of these two architectures have also been
proposed [68-70].
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Methods for assessing statements

Identifying correct and incorrect statements is a problem
that has been widely explored in the literature using var-
ious techniques ranging from pure information retrieval
to crowdsourcing, and used in many applications such as
fact-checking in journalism and the support of biomedical
evidence from the literature. We review below the major
work related to our paper.

Fact-checking

Several approaches have been recently proposed to check
the truthfulness of facts, particularly in the context of
journalism [71]. Most of the methods proposed assume
the availability of structured knowledge modeled as a
graph, which is then used to check the consistency of facts.
Hence, recent works addressed this problem as a graph
search problem [72, 73], a link prediction problem [74], or
a classification and ranking problem [75].

However, the aforementioned methods rely on the avail-
ability of a knowledge graph, which limits and reduces
the scope and the impact of any method as: it requires
a specific knowledge graph for each domain (eventually
sub-domain), and may fail in real-time assessment of facts,
as it requires continuous update of the knowledge graph,
a task generally done by domain-specialists. BARC may
overcome these two limitations as it uses a standard index,
which can easily be updated to address new facts.

Supporting biomedical evidence

In the context of biocuration, the information retrieval
task that consists of finding relevant articles for the cura-
tion of a biological database is called triage [76—80]. Triage
can be seen as a semi-automated method for assessing
biological statements; it assists curators in the selection of
relevant articles, which then must be manually reviewed
to decide their correctness. As mentioned in the Introduc-
tion, this triage process is time-consuming and expensive
[4, 5]; curation of a single protein may take up to a
week and requires considerable human investment both
in terms of knowledge and effort [6]. Rather, BARC is a
fully automated method that directly helps biocurators to
assess biological database assertions using the scientific
literature.

Also, in the biomedical context, Light et al. [81] used a
handcrafted list of cues to identify speculative sentences
in MEDLINE abstract by looking for specific keywords
which imply speculative content. However, it is unclear
how this method generalizes to relations that are men-
tioned in both speculative and non-speculative sentences.
Leach et al. [82] proposed a knowledge-based system
that combines reading, reasoning, and reporting meth-
ods to facilitate analysis of experimental data, which was
then applied to the analysis of a large-scale gene expres-
sion array data sets relevant to craniofacial development.
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This method combines and integrates multiple sources of
data into a knowledge network through a reading and a
reasoning component; as it requires complex mappings
to identify and link entities in order to get a consistent
knowledge graph, it may fail to scale to large datasets.
Zerva et al. [83] proposed the use of uncertainty as
an additional measure of confidence for interactions in
biomedical pathway network supported by evidence from
literature for model curation. The method is based on
using a hybrid approach that combines rule induction
and machine learning. This method focuses on biomed-
ical pathways and uses features specifically designed to
detect uncertain interactions. However, its generalisation
for assessment other statements is unclear and is not dis-
cussed in the paper. Several other papers [84, 85] have
focused on extracting relations from text using distant
supervision multi-instance learning to reduce the amount
of manual effort for labeling. Such work demonstrates that
the approach can be successfully used to extract relations
from literature about a biological process with little or no
manually annotated corpus data. This method might be
complementary to BARC; it may allow the extraction of
new relevant features that characterize the relationships
between entities. Note that BARC is capable of overcom-
ing all the drawbacks mentioned for these approaches, as
it does not require any data integration or complex map-
pings and it has been designed in such a way to assess
multiple types of statements.

Crowdsourcing-based methods

Crowdsourcing has attracted interest in the bioinformat-
ics domain for data annotation [86]. It has been suc-
cessfully applied in the biomedical and clinical domains
[87]. This research has demonstrated that crowdsourc-
ing is an inexpensive, fast, and practical approach for
collecting high quality annotations for different BiolE
tasks [88], including NER in clinical trial documents
[89], disease mention annotation in PUBMED literature
[90], relation extraction between clinical problems and
medications [91], etc. Different techniques have been
explored to improve the quality and effectiveness of
crowdsourcing, including probabilistic reasoning [92] to
make sensible decisions on annotation candidates and
gamification strategies [93] to motivate the continuous
involvement of the expert crowd. More recently, a method
called CrowdTruth [94] was proposed for collecting med-
ical ground truth through crowdsourcing, based on the
observation that disagreement analysis on crowd anno-
tations can compensate lack of medical expertise of the
crowd. Experiments with the use of CrowdTruth for a
medical relation extraction task show that the crowd
performs just as well as medical experts in terms of
quality and efficacy of annotation, and also indicate that
at least 10 workers per sentence are needed to get the
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Fig. 10 Feature ablation analysis (k = 30). a Performance on gene-disease relations. b Performance on protein—protein interactions
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highest quality annotation for this task. Crowdsourcing
holds promise for biocuration tasks as well and could
be combined with prioritisation methods such as BARC
provides.

Information retrieval-based methods

In the context of information retrieval, despite the devel-
opment of sophisticated techniques for helping users to
express their needs, many queries still remain unanswered
[95]. Hence, to tackle these issues, other types of question-
answering (QA) systems have emerged to allow people to
help each other to answer questions [96]. Community QA
systems provide a means for answering several types of
questions such as recommendation, opinion seeking, fac-
tual knowledge, or problem solving [96]. ( Therefore, QA
systems can help to answer specific and contextualised
questions, and hence, could potentially be used by biocu-
rators for seeking answers to questions like those given as
examples in “Problem definition” section.

A challenge facing such systems is in the response time
as well as the quality of the answers [95, 97-99]. However,
the time factor is critical in the context of biocuration as
there is a huge quantity of information to be curated. Such
waiting times to answer questions probably disqualify this
body of work for their usage in biocuration.

These methods that use unstructured knowledge (that
is, the literature) for fact-checking and query answering
address the problem as a pure information retrieval prob-
lem. In other words, these methods rank documents (or
sentences) relevant to a given information need, and it is
up to the user to read and search for a support to a given
assertion or question. In contrast, BARC allows spotting
of potentially incorrect assertions, and presents them to
the user with, in our experiments, a high classification
accuracy.

Conclusions
We have described BARC, a tool that aims to help biocu-
rators in checking the correctness of biological relations

using the scientific literature. Specifically, given a new
biological assertion represented as a relation, BARC first
retrieves a list of documents that may be used to check
the correctness of that relation. This retrieval step is done
using a set-based retrieval algorithm (SaBRA). This list
of documents is aggregated in order to compute fea-
tures for the relation as a whole, which are used for a
prediction task.

We evaluated BARC and retrieval algorithm SaBRA
using publicly available datasets including the PubMed
Central collection and two types of relational assertions,
gene—disease relations, and protein—protein interactions.
The results obtained showed that BARC substantially
outperforms the best baselines, with an improvement of
F-measure of 3.5% and 13%, respectively, on gene-disease
relations and protein-protein interactions. We have addi-
tionally carried out a feature analysis that showed that
all feature types are informative, as are all fields of the
documents. A limitation of this work is that it relies
on the accuracy of the GNormPlus [31] and DNorm
[32] entity recognition tools; these are automated tools
and hence subject to error. We note further that in this
paper BARC has been evaluated on only two kinds of
relations; we leave the analysis of its generalization to
future work, such as drug-disease or drug-drug inter-
actions. However, the results show that the methods
are effective enough to be used in practice, and we
believe they can provide a valuable tool for supporting
biocurators.

Endnotes
Uhttps://www.ncbi.nlm.nih.gov/genbank/
2 http://www.uniprot.org/
3 http://www.ncbi.nlm.nih.gov/pubmed/
*https://github.com/rbouadjenek/DQBioinformatics
> Atopy refers to the genetic tendency to develop aller-
gic diseases such as allergic rhinitis, asthma and atopic

dermatitis (eczema).
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6 http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/,
downloaded October 2015.

" https://figshare.com/articles/DISEASES_v1/1367457

8 https://thebiogrid.org/download.php (Release 3.4.150)

% http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC100320/

19 https://www.ncbi.nlm.nih.gov/gene/?term=10

T\e used the Lucene implementation of TF-IDF and Okapi BM25,
https://lucene.apache.org/.

12We used word vectors induced from PMC by Pyysalo
et al. [100]: http://bio.nlplab.org/
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