
RESEARCH Open Access

Conventionally used reference genes are
not outstanding for normalization of gene
expression in human cancer research
Jihoon Jo1†, Sunkyung Choi2†, Jooseong Oh1, Sung-Gwon Lee1, Song Yi Choi3*, Kee K. Kim2* and Chungoo Park1*

From International Workshop on Data and Text Mining in Biomedical Informatics
Turin, Italy. 22 - 26 October 2018

Abstract

Background: The selection of reference genes is essential for quantifying gene expression. Theoretically they should
be expressed stably and not regulated by experimental or pathological conditions. However, identification and
validation of reference genes for human cancer research are still being regarded as a critical point, because cancerous
tissues often represent genetic instability and heterogeneity. Recent pan-cancer studies have demonstrated the
importance of the appropriate selection of reference genes for use as internal controls for the normalization of gene
expression; however, no stably expressed, consensus reference genes valid for a range of different human cancers have
yet been identified.

Results: In the present study, we used large-scale cancer gene expression datasets from The Cancer Genome Atlas
(TCGA) database, which contains 10,028 (9,364 cancerous and 664 normal) samples from 32 different cancer types, to
confirm that the expression of the most commonly used reference genes is not consistent across a range of cancer
types. Furthermore, we identified 38 novel candidate reference genes for the normalization of gene expression,
independent of cancer type. These genes were found to be highly expressed and highly connected to relevant gene
networks, and to be enriched in transcription-translation regulation processes. The expression stability of the newly
identified reference genes across 29 cancerous and matched normal tissues were validated via quantitative reverse
transcription PCR (RT-qPCR).

Conclusions: We reveal that most commonly used reference genes in current cancer studies cannot be appropriate to
serve as representative control genes for quantifying cancer-related gene expression levels, and propose in this study
three potential reference genes (HNRNPL, PCBP1, and RER1) to be the most stably expressed across various cancerous
and normal human tissues.
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Background
To understand how genetic alterations driving tumori-
genesis lead to the formation of complex cellular
networks and induce biological process variation, recent

research into cancer genetics has focused on the identifi-
cation of molecular differences between cancerous and
normal tissues [1, 2]. Recent high-throughput transcrip-
tomic studies [3] have offered the opportunity to explore
the molecular complexity of human cancer, and have
provided evidence for classifying human cancer data into
normal, benign, and malignant classes, based on their
gene expression patterns. Nevertheless, the expression
levels of transcriptionally identified candidate cancer
genes require experimental verification via molecular
methods such as quantitative reverse transcription PCR
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(RT-qPCR). One of the most important factors ensuring
the accuracy of RT-qPCR analyses is the normalization
of the identified target-gene expression level to that of a
consistently expressed reference gene. To date, cancer
researchers have predominantly used the GAPDH and
β-actin reference genes as internal reference controls,
because their mRNA expression levels are established to
be high and constant in many different cells and tissues
[4, 5]. However, cancerous tissues often exhibit a higher
level of gene expression variability than normal tissues,
due to tumor heterogeneity, genetic instability, and the
fact that genetic alterations in diverse cancer types may
differentially affect cellular processes at the transcrip-
tome level. Thus, it is a challenging to determine which
reference genes would best serve as internal reference
controls for a range of different human cancers. In-
deed, an increasing number of researches have shown
the striking expression variability of known reference
genes in human cancers, and subsequently recom-
mended novel reference genes for gene expression
studies in each specific human cancer type [6, 7].
These efforts with in silico analysis (e.g., geNorm,
NormFinder, and Bestkeeper [8–10]) are ongoing;
however, to date, no transcriptome-wide analysis for
the identification of the most stably expressed con-
sensus reference genes has been reported.
The primary objective of the present study was to

conduct a screen for the most stable reference genes for
the study of cancer gene expression. We exploited
large-scale gene expression data from The Cancer
Genome Atlas (TCGA) database, which contains 10,028
(9,364 cancerous and 664 normal) samples from 32

different cancer types. We identified novel reference
genes that exhibited both a high expression and low
expression-variation level across various cancerous and
normal tissue types, and then demonstrated the effect-
iveness of these newly identified reference genes for use
in RT-qPCR. Thus, the results of the present study
promote a better understanding of gene expression
changes in different cancer types, and will be of consid-
erable use in facilitating the normalization of target-gene
expression levels in future cancer research.

Methods
Data collection and bioinformatics analysis
The overall workflow of the present study is shown in
Fig. 1. We downloaded RNA-sequence (RNA-seq) V2
data (level 3) of 34 different cancer types from the
TCGA database (http://tcga-data.nci.nih.gov/tcga/). The
TCGA RNA-seq pipeline has used two distinct measure-
ment methods, comprising RPKM (Reads Per Kilobase
per Million mapped reads) [11] and TPM (Transcripts
Per Million) [12, 13], to obtain expression levels from
RNA-seq data. Given that TPM is established to produce
more comparable results across various sample types
than RPKM [13, 14], we used TPM-generated data for
32 of the 34 cancer types for further analyses [esopha-
geal carcinoma (ESCA) and stomach adenocarcinoma
(STAD) were excluded, since only RPKM-generated data
were available for these cancer types]. Unless otherwise
stated, all gene expression levels used in our analyses
represent the unit of transformed (multiplied by 106)
normalized read counts (extracted from TCGA files with
the extension “rsem.genes.normalized_results”).

Fig. 1 The overall workflow of the present study
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The human protein interaction network data were
collected from the Human Protein Reference Database
(HPRD release 9, http://www.hprd.org) [15], which in-
cludes 30,047 protein entries and 41,327 protein-protein
interactions (PPIs). We extracted all binary PPIs from
the HPRD, and counted the number of interactions for
each protein without redundancy to estimate the size of
the protein complex.
We categorized the selected reference genes according

to gene ontology groups using PANTHER (http://www.
pantherdb.org/) [16] and DAVID (http://david.abcc.
ncifcrf.gov/) [17] tools.

Human specimens
The validity of all matched human cancerous and nor-
mal tissues was confirmed via patient clinical diagnosis.
In total, 58 matched sample pairs were obtained for
analysis, of which the cancerous tissue sample in each
was isolated from patient breast (n = 18), colon (n = 12),
thyroid (n = 8), lung (n = 8), liver (n = 8), kidney (n = 2),
or cervical (n = 2) cancer tissues. All human tissue was
trimmed to 0.5 cm2 immediately after removal from the
patient and stored in 5 volumes of RNAlater solution
(ThermoFisher Scientific, USA) at − 80 °C. For the ex-
periment, samples were used within 3 years of storage.
These all utilized human specimens and data were
provided by the Biobank of Chungnam University
Hospital (Korea Biobank Network).

RNA preparation and RT-qPCR
Total RNA was extracted using a eCube Tissue RNA
Mini Kit (PhileKorea, Korea) according to the manufac-
turer’s instructions, and reverse-transcribed using M-MLV
reverse transcriptase (Promega, USA) with random hex-
amers. RT-qPCR was performed with a SYBR-Green fluor-
escent dye (GENET BIO, Korea) and the AriaMx PCR

System (Agilent, USA). All reactions occurred under iden-
tical cycling conditions, comprising 40 cycles of amplifica-
tion with denaturation (95 °C, 20 s), annealing (58 °C, 20
s), and elongation (72 °C, 20 s). The specificity of the
products generated by each primer set was confirmed
by both gel electrophoresis and a melting curve ana-
lysis (Additional file 1: Table S1 and Additional file 2:
Figure S1).

Results and discussion
Commonly used reference genes exhibit a high level of
expression variation in both tumorous and normal tissue
samples
To assess the gene expression variability within human
cancerous and normal tissues, we collected gene expres-
sion data from the TCGA database, which contains 10,028
(9,364 cancerous and 664 normal) samples isolated from
32 different cancer types. We used TPM-generated data
to calculate the coefficient of variation (CV, calculated as
the standard deviation divided by the mean), for target
gene expression levels across the analyzed samples. We
initially evaluated the gene expression variability of com-
monly used reference genes (Table 1) [18], and found all
12 analyzed genes to exhibit a CV-value greater than 45%
(Table 1). Most (23/31, 74%; Tables 2 and 3) of the experi-
mentally selected reference genes expressed in cancer
tissues were observed to exhibit a similar level of gene ex-
pression variability. We repeated this process to separately
analyze cancerous and normal samples, so as to eliminate
potential error caused by sample size bias (since 9,364
cancerous, but only 664 normal tissue samples were
analyzed). The results of this second analysis showed the
same trends in each cancer and normal group, whereby all
12 commonly used reference genes and 74% (23/31) of
the experimentally selected reference genes were found to
exhibit a CV value greater than 45% in both groups

Table 1 List of commonly used reference genes and their gene expression variability in 10,028 analyzed samples from TCGA
database

Gene name Description Mean TPM value CV(%)

ACTB Actin Beta 4713.56 45.03

PGAM1 Phosphoglycerate Mutase 1 239.83 56.36

ALDOA Aldolase, Fructose-Bisphosphate A 1576.45 57.97

TUBA1B Tubulin Alpha 1b 974.69 62.63

HPRT1 Hypoxanthine Phosphoribosyltransferase 1 46.04 63.46

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 5445.97 67.55

B2M Beta-2-Microglobulin 5083.41 69.57

PGK1 Phosphoglycerate Kinase 1 365.70 69.98

LDHA Lactate Dehydrogenase A 575.04 79.40

PFKP Phosphofructokinase, Platelet 94.20 102.74

VIM Vimentin 1405.17 117.90

G6PD Glucose-6-Phosphate Dehydrogenase 64.06 138.24
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together (Additional file 3: Table S2). These results suggest
that the reference genes most commonly used in current
cancer studies may not be appropriate to serve as repre-
sentative reference genes, and thus, their use may lead to
erroneous quantification of cancer-related gene expression
levels.

Selection of novel reference gene candidates from the
TCGA database
Because genetic alterations in diverse cancer types may
differentially affect cellular processes at the transcrip-
tome level, we investigated whether reference genes de-
fined by analysis of a single type of cancerous tissue
could be applied to other cancer types. Thus, we calcu-
lated and compared the CV values of > 40 samples (and
their matched normal tissue samples) from nine cancer
types (BRCA, COAD, HNSC, LUAD, LUSC, LIHC,
PRAD, THCA, and KIRC; Additional file 4: Figure S2),
that were contained within the TCGA database. Among
a total set of 20 top-ranked (by CV) genes from each
cancer type, no genes (1) were included in the list of
commonly used reference genes, and (2) were found in
more than 50% (5 out of 9) of cancer types (Fig. 2 and
Additional file 5: Table S3), indicating the dependency of
reference genes on cancer types.
To newly determine suitable novel genes appropriate

to act as internal controls for the normalization of target
gene expression in cancer research, we selected a num-
ber of genes identified (1) to exhibit unvarying expres-
sion levels across both cancerous and normal tissue
samples, (2) to have a CV value < 35%, (3) a minimum
TPM> 0, (4) and an average of TPM value ≥1 across all
tissue samples. Of the 10,028 analyzed samples from
the 32 different cancer types, we identified 38 candi-
date novel cancer-research reference genes (Fig. 3a,
Additional file 1: Table S4). We subsequently evaluated
whether these newly identified reference genes had the
same functional characteristics as the previously

established, commonly used reference genes. We found
the average expression level of the newly identified refer-
ence genes to be significantly higher than that of the
others (115.06 versus 42.93; P < 0.0413, using an empirical
permutation test with 10,000 replications). This result is
consistent with previously reported expression levels for
the established reference genes [4]. Next, we determined
that, as expected [4, 5, 19], the newly identified reference
genes were significantly enriched in functional categories
associated with transcription-translation processes, such
as polyA-RNA, ribonucleoprotein, and RNA-binding
(FDR < 5%, Fig. 3b). The established reference genes have
been previously demonstrated to act as the ‘hubs’ of the

Table 2 List of experimentally selected reference genes

Tissues Experimentally selected reference genes References

Breast PUM1, TBP, RPLP0, MRPL19, ACTB, SDHA,
RPS23, HUWE1, EEF1A1, SF3A1, PPIA

[23–26]

Colon B2M, PPIA, HPRT1, IPO8, HSP90AB1,
YWHAZ, RPS13

[7, 27, 28]

Liver HMBS, UBC, TBP, HPRT1, CTBP1 [29–33]

Lung HPRT1, RPLP0, UBC, GAPDH, CASC3, PES1,
POLR2A, YAP1, ACTB, EEF1A1, FAU, RPS9,
RPS11, RPS14

[34–37]

Kidney PPIA, RPS13, TBP [38, 39]

Prostate HPRT1, GAPDH, SDHA [40, 41]

Thyroid ACTB [42]

HNS a GAPDH, RPS18, SDHA, ALAS1 [43]
aHNS: Head and Neck squamous cell

Table 3 Gene expression variability of experimentally selected
reference genes in 10,028 TCGA database

Gene name Mean TPM STDEV CV (%)

FAU 1392.44 538.16 38.65

CTBP1 114.52 44.26 38.65

RPS13 1571.26 675.69 43.00

UBC 1320.33 569.84 43.16

PUM1 35.09 15.17 43.22

RPS11 3969.12 1752.48 44.15

TBP 12.82 5.72 44.60

SF3A1 45.63 20.37 44.65

ACTB 4713.56 2122.56 45.03

RPS23 299.30 135.68 45.33

MRPL19 34.12 15.71 46.04

RPS14 2799.60 1316.81 47.04

IPO8 21.25 10.10 47.54

RPS9 2121.51 1065.24 50.21

PES1 66.70 34.82 52.20

RPLP0 1869.13 976.37 52.24

HUWE1 69.01 36.87 53.43

HMBS 28.07 15.41 54.91

POLR2A 60.70 33.65 55.43

HSP90AB1 1004.81 560.40 55.77

PPIA 187.35 108.62 57.98

EEF1A1 2661.35 1585.93 59.59

HPRT1 46.04 29.22 63.46

SDHA 103.74 66.11 63.72

YWHAZ 490.69 321.32 65.48

RPS18 5059.90 3336.16 65.93

GAPDH 5445.97 3678.69 67.55

B2M 5083.41 3536.78 69.57

CASC3 45.64 36.59 80.17

ALAS1 53.97 66.85 123.86

YAP1 44.89 66.00 147.04
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highly connected protein-protein interaction (PPI)
networks [20–22]. In the present study, we observed the
newly identified reference genes to be characterized by a
greater number of PPI network-interaction partners than
the other genes (8.42 versus 3.67; P < 0.0185, using an
empirical permutation test with 10,000 replications), indi-
cating their functional importance for biological systems.

RT-qPCR validation of the newly identified reference
genes in human cancer tissues
We next sought to confirm the validity of the newly
identified candidates as reference genes for the
normalization of RT-qPCR expression data in the con-
text of human cancer. Therefore, we compared the

RT-qPCR analysis results for two commonly used refer-
ence genes (GAPDH and β-actin) with those for the 11
most highly expressed of the newly identified reference
genes (PCBP1, HNRNPC, HNRNPL, EMC4, SNX17,
MRPL43, IST1, FAM32A, PFDN1, RNF10, and RER1)
across 29 patient samples including breast, colon, liver,
lung, and/or thyroid cancer types. Each human tissue
was immersed in RNAlater solution immediately after
extraction from the patient and stored at -80 °C to
minimize RNA degradation. In addition, 2 μg of total
RNA extracted from tissues was electrophoresed on
1.5% denaturing agarose gel and only 28S/18S ratio of
> 2 confirmed RNA was used in the experiment. The
specificity of the products generated by each primer

Fig. 2 Distribution of coefficient of variation (CV) of gene expression levels in nine cancer data sets. Red color indicates top-ranked (by CV) 20
genes. Green and Blue colors indicate commonly used and experimentally selected reference genes (Tables 1 and 2), respectively
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Fig. 3 a Distribution of the coefficient of variation (CV) of gene expression levels in the analyzed cancerous and normal tissues. Red color
indicates newly identified reference genes that have a CV value < 35%. Blue color indicates commonly used reference genes (Table 1). b Gene
Ontology (GO) analysis of the newly identified reference genes

Fig. 4 Validation of the gene expression variability of the novel reference genes by RT-qPCR. RT-qPCR analyses for two commonly used reference
genes (GAPDH and β-actin, light blue-colored box), and 11 newly identified reference genes (PCBP1, HNRNPC, HNRNPL, EMC4, SNX17, MRPL43, IST1,
FAM32A, PFDN1, RNF10, and RER1) that were highly ranked among the 38 analyzed genes according to their expression levels (indicated by their
calculated CV values). ΔCT indicates average difference of CT value between cancerous and normal tissue samples (i.e., CT [cancer] - CT [normal]).
Newly identified reference genes whose ΔCT value was found to be lower than that of both β-actin and GAPDH in all samples are highlighted
(red-colored box). *Samples from seven types of cancerous tissues, including breast (n = 9), colon (n = 6), liver (n = 4), lung (n = 4), thyroid (n = 4),
kidney (n = 1), and cervical (n = 1) were combined. Note that kidney and cervical tissues have not been separately represented in the box plot
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set was confirmed by both gel electrophoresis and a
melting curve analysis (Additional file 1: Table S1 and
Additional file 2: Figure S1).
Since optimal references genes for cancer-transcriptome

analysis should exhibit a low level of expression variability
between cancerous and normal tissue samples, we isolated
total RNA from each cancerous and normal sample
from a single patient and compared their CT values
(where, CT is the “Cycle Threshold”, defined as the
number of cycles required for the fluorescence signal
to exceed background level, and is inversely corre-
lated with the amount of target nucleic acid in the
sample). Of the 11 newly identified genes, HNRNPL
(ΔCT = 0.37), PCBP1 (ΔCT = 0.42), PFDN1 (ΔCT =
0.46), and RER1 (ΔCT = 0.48) were found to have a
lower average CT difference (ΔCT = CT [cancer] - CT

[normal]) between cancerous and normal tissue samples
than β-actin (ΔCT = 0.58) and/or GAPDH (ΔCT =
0.60), suggesting their suitability for use as consensus
reference genes for gene expression studies in human
cancer (Fig. 4). To ensure the reliability and robust-
ness of these results, we reconfirmed whether these
reference genes had lower ΔCT values than β-actin
and/or GAPDH in each cancer sample. HNRNPL was
identified to have a ΔCT value lower than that of
both β-actin and GAPDH in four (breast, colon, liver,
and lung) of five cancer sample types. Similarly,
PCBP1 and RER1 had lower ΔCT values than β-actin
and GAPDH in all cancer sample types except liver
cancer tissue, and PFDN1 exhibited a lower ΔCT

value than β-actin and GAPDH in two cancer sample
types (breast and lung, Fig. 4).

Conclusion
In summary, cancer is a disease characterized by complex
molecular networks, in which highly heterogeneous and
multifocal tumor cells cooperate with host cells within
their microenvironment. Recent gene expression studies
have been conducted to investigate the intricate interplay
of gene expression patterns that regulate cancer invasion
and metastasis at the transcriptional level; however, their
accurate quantification of gene expression level is
dependent upon the selection and use of reliable and ap-
propriate reference genes for the normalization of target
gene expression levels. Thus, in the present study, we
performed in silico bioinformatics analyses and experi-
mental validation to identify HNRNPL, PCBP1 and RER1
as novel candidate reference genes, whose expression is
predominantly consistent, independent of cancer type,
stage, and treatment status, and of patient age and gender.
Although a larger sample size and more cancer types are
needed for more reliable results, these novel reference
genes will be invaluable for diagnosis and the prediction
of patient prognosis, in a wide range of human cancers.
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