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Abstract

Background: In the string correction problem, we are to transform one string into another using a set of prescribed
edit operations. In string correction using the Damerau-Levenshtein (DL) distance, the permissible edit operations are:
substitution, insertion, deletion and transposition. Several algorithms for string correction using the DL distance have
been proposed. The fastest and most space efficient of these algorithms is due to Lowrance and Wagner. It computes
the DL distance between strings of length m and n, respectively, in O(mn) time and O(mn) space. In this paper, we
focus on the development of algorithms whose asymptotic space complexity is less and whose actual runtime and
energy consumption are less than those of the algorithm of Lowrance and Wagner.

Results: We develop space- and cache-efficient algorithms to compute the Damerau-Levenshtein (DL) distance
between two strings as well as to find a sequence of edit operations of length equal to the DL distance. Our
algorithms require O(s min{m, n} + m + n) space, where s is the size of the alphabet and m and n are, respectively, the
lengths of the two strings. Previously known algorithms require O(mn) space. The space- and cache-efficient
algorithms of this paper are demonstrated, experimentally, to be superior to earlier algorithms for the DL distance
problem on time, space, and enery metrics using three different computational platforms.

Conclusion: Our benchmarking shows that, our algorithms are able to handle much larger sequences than earlier
algorithms due to the reduction in space requirements. On a single core, we are able to compute the DL distance and
an optimal edit sequence faster than known algorithms by as much as 73.1% and 63.5%, respectively. Further, we
reduce energy consumption by as much as 68.5%. Multicore versions of our algorithms achieve a speedup of 23.2 on
24 cores.
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Background
Introduction
In the string correction problem, we are given two strings
A and B and are required to find the minimum number
of edit operations needed to transform A into B. The per-
mitted edit operations are: (a) substitute a character in A
to a different character, (b) insert a character into A, (c)
delete a character of A, and (d) transpose two adjacent
characters of A. When all four edit operations are per-
mitted, the length of the optimal edit sequence is known
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as the Damerau-Levenshtein (DL) distance [1, 2]. Some
applications limit the permissible edit operations to a sub-
set of the stated four operations. As a result, string correc-
tion has been studied using other distance metrics as well.
For example, the Levenshtein distance [1] is the length
of the shortest sequence of substitutions, insertions, and
deletions needed to transform A into B. This distance is
used in the longest common subsequence problem [3], for
example. When only substitutions are allowed, the length
of the minimum edit sequence is the Hamming distance
[4] and when only transpositions are allowed, this length
is the Jaro distance [5].

The cost of an edit sequence may be generalized by
using weights for the various operations. For example, in
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Fig. 1 DL trace example

sequence alignment using the methods of Needleman and
Wunsch [6] and Smith and Waterman [7], transpositions
are not permitted, the cost of a substitution depends on
the two characters involved, and there is a gap penalty.
The string-to-string correction algorithm of Lowrance
and Wagner [8] uses a cost of S for a substitution, I for an
insertion, D for a deletion, and T for a transposition and
requires 2T ≥ I + D. We note that the costs used in com-
puting the DL distance are S = I = D = T = 1 and
that these costs satisfy the 2T ≥ I + D requirement of the
algorithm of Lowrance and Wagner [8]. In fact, the best
algorithm currently known for the DL distance is the one
in [8] with edit operation costs set to 1.

Spelling error correction [9–11], data clustering and
data mining [12], comparing packet traces [13], quantify-
ing the similarity of DNA/RNA/protein sequences, gene
finding, and gene function prediction [14] are some of the
applications of the DL distance. While, in spelling error
correction, the strings A and B are relatively short, in other

applications, these strings may be quite long. For example,
the length of a protein sequence may exceed 300,000 [15].

Bard [10] has shown that the DL distance is a
true metric; that is, it satisfies 1) non-negativity, 2)
identity, 3) symmetry, and 4) triangle inequality. The
algorithm of Bard [10] computes the DL distance in
O(mn ∗ max{m, n}) time, where m is the length of string
A and n is the length of B. This algorithm uses O(mn)

space. Hyyro [16] has developed a bit-parallel algorithm to
determine whether the DL distance between two strings
is less than a specified threshold. This bit-parallel algo-
rithm was tested using DNA sequences of length up
to 10,000.

In an effort to reduce time complexity, Oommen and
Loke [17] consider restricting edit sequences so that no
substring is edited more than once. We illustrate this
restriction using the example given in [18]. The string CA
may be transformed into ABC using the edit sequence
CA (transposition)→ AC (insertion)→ ABC. So, the DL

Fig. 2 DL trace recurrence. a substitution b insertion c deletion d translate A[k:i] to B[l:j] where (ak,bj) and (bl,ai) form a transposition opportunity
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Fig. 3 Computing H by strips

distance between CA and ABC is 2. With the restric-
tion of [17], the second operation in this edit sequence is
not permitted as it involves re-editing AC, which resulted
from the first edit operation. The restricted DL distance is
3, which corresponds to the restricted edit sequence CA

(deletion)→ A (insertion)→ AB (insertion)→ ABC. The
restricted DL distance is not a metric as it does not satisfy
the triangle inequality.

The algorithm of Lowrance and Wagner [8] computes
the DL distance in O(mn) time while also using O(mn)

Fig. 4 DL trace splitting opportunities. a No center crossing b With center crossing
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Fig. 5 Cache misses for DL distance algorithms on Xeon4

space. This is the fastest and most space efficient algo-
rithm known for string correction using the DL distance.

Neither the algorithm of Bard [10] nor that of Lowrance
and Wagner [8] is practical when m and n are large due
to their excessive space requirement. The former algo-
rithm becomes impractical also due to its excessive run
time. In this paper, we focus on the development of
algorithms that are more space, time, and energy effi-
cient than that of Lowrance and Wagner [8]. To obtain
space efficiency, we observe that the DL distance can
be computed by retaining only O(sm) or O(sn) data,
where s is the size of the alphabet. We note that,
when m and n are large, s is much smaller than m
and n. In fact, s = 4 for RNA and DNA sequences
and s = 20 for protein sequences and the length

Table 1 Cache misses for DL distance algorithms, in millions, on
Xeon4

A B DL LS_DL Strip_DL L vs D S vs D S vs L

40000 40000 201 265 6 -31.8% 97.5% 97.9%

80000 80000 1267 715 16 43.6% 98.8% 97.8%

120000 120000 4006 2180 42 45.6% 99.0% 98.1%

160000 160000 ** 10,652 63 99.4%

200000 200000 ** 19,751 147 99.3%

240000 240000 ** 24,257 133 99.5%

280000 280000 ** 38,119 188 99.5%

320000 320000 ** 44,815 242 99.5%

360000 360000 ** 61,296 1352 97.8%

400000 400000 ** 160,118 2407 98.5%

** =⇒ insufficient memory

of these sequences is often orders of magnitude larger
than s.

Cache model
To analyze the cache performance of our algorithms, we
use the rather simple cache model which has been used
by us successfully in our past work [19]. In this model we
have a single-level cache that has l cache lines of size w,
where w is the number of data items that can be stored
in one cache line. So, when the data size is 4 bytes and
w = 8, each cache line is 32 bytes. The size (i.e., capac-
ity) of our one-level cache is lw. In accordance with this
cache model, we assume that main memory is divided into
blocks whose size is the same as that of a cache line (i.e., w
words each). When we attempt to read a piece of data that
is not in the cache, a read miss occurs. A read miss causes

Table 2 Run time of DL distance algorithms on Xeon4

A B DL LS_DL Strip_DL L vs D S vs D S vs L

40000 40000 0:00:27 0:00:17 0:00:13 34.3% 53.0% 28.4%

80000 80000 0:01:40 0:01:02 0:00:50 37.8% 50.1% 19.7%

120000 120000 0:04:50 0:02:40 0:01:52 44.8% 61.3% 29.9%

160000 160000 ** 0:05:37 0:03:19 40.8%

200000 200000 ** 0:09:38 0:05:14 45.7%

240000 240000 ** 0:13:37 0:07:28 45.1%

280000 280000 ** 0:18:34 0:10:10 45.2%

320000 320000 ** 0:24:13 0:13:17 45.1%

360000 360000 ** 0:33:10 0:17:22 47.6%

400000 400000 ** 0:37:55 0:20:46 45.3%
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Fig. 6 Run time of DL distance algorithms, in seconds, on Xeon4

the corresponding block of main memory to be read into a
cache line. When the cache is full, this read miss requires
us to first evict the block that is in the least recently used
(LRU) cache line. This eviction results in a write of the
evicted block to main memory in case the evicted block
has changed. A write miss occurs when we attempt to
write data that is not in a cache line. At this time, the cor-
responding block of main memory is read into a cache
line and the data we wish to write is written to this cache
line.

Notice that every read and write miss results in a read
access of main memory; some read and write misses also
result in the writing of a cache line to main memory.

Today’s computers actually employ multiple levels of
cache and a far more sophisticated and proprietary cache

Table 3 CPU and cache energy consumption of DL distance
algorithms on Xeon4

A B DL LS_DL Strip_DL L vs D S vs D S vs L

40000 40000 158.77 107.1 76.73 32.5% 51.7% 28.4%

80000 80000 598.12 383.88 305.12 35.8% 49.0% 20.5%

120000 120000 2180.59 996.9 686.54 54.3% 68.5% 31.1%

160000 160000 ** 2088.01 1212.27 41.9%

200000 200000 ** 3576.52 1905.54 46.7%

240000 240000 ** 5058.27 2714.47 46.3%

280000 280000 ** 6905.74 3711.18 46.3%

320000 320000 ** 9000.26 4852.4 46.1%

360000 360000 ** 12286.83 6365.86 48.2%

400000 400000 ** 14218.28 7615.16 46.4%

servicing policy combined with prefetching to hide mem-
ory latency. As a result, it is extremely difficult to analyze
cache performance using a realistic cache model. The
described simple cache model is amenable to analysis and
our experiments establish its usefulness for this purpose
as algorithms with reduced cache misses using this model
actually run faster on computers with more sophisticated
cache architectures, replacement policies, and prefetching
techniques.

Classical DL distance algorithm
Wagner and Fischer [20] developed the notion of a trace,
which is useful in reasoning about edit sequences that
are limited to substitutions, insertions, and deletions.
Lowrance and Wagner [8] extended this notion to include
the transposition operation. A trace for the strings A =

Table 4 Cache misses for DL trace algorithms, in millions, on
Xeon4

A B DL_TRACE LSDL_TRACE Strip_TRACE L vs D S vs D S vs L

40000 40000 220 423 24 -92.0% 89.3% 94.4%

80000 80000 1537 1970 29 -28.1% 98.1% 98.5%

120000 120000 4852 5100 66 -5.1% 98.6% 98.7%

160000 160000 ** 16,350 115 99.3%

200000 200000 ** 33,998 513 98.5%

240000 240000 ** 42,252 268 99.4%

280000 280000 ** 70,370 358 99.5%

320000 320000 ** 91,501 453 99.5%

360000 360000 ** 146,103 2120 98.5%

400000 400000 ** 221,690 6032 97.3%
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Fig. 7 CPU and cache energy consumption of DL distance algorithms, in joules, on Xeon4

a1 · · · am and B = b1 · · · bn is a set T of lines, where the
endpoints u and v of a line (u, v) denote positions in A and
B, respectively. A set of lines T is a trace iff:

1 For every (u, v) ∈ T , u ≤ m and v ≤ n.
2 The lines in T have distinct A positions and distinct

B positions. That is, no two lines in T have the same
u or the same v.

A line (u, v) is balanced iff au = bv and two lines (u1, v1)
and (u2, v2) cross iff (u1 < u2) and (v1 > v2). As an exam-
ple, consider A = dafac and B = fdbbec. The set of lines
T = {(1, 2), (3, 1), (4, 3), (5, 6)} satisfies the requirements
for a trace. Line (4,3) is not balanced as a4 �= b3. The
remaining 3 lines in the trace are balanced. The lines (1,2)
and (3,1) cross. This trace may be depicted as a diagram as
in Fig. 1.

Table 5 Run time of DL trace algorithms on Xeon4

A B DL_TRACE LSDL_TRACE Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:27 0:00:30 0:00:26 -11.3% 3.5% 13.3%

80000 80000 0:01:40 0:01:54 0:01:40 -14.5% -0.4% 12.4%

120000 120000 0:04:53 0:04:42 0:03:44 3.6% 23.5% 20.6%

160000 160000 ** 0:09:21 0:06:37 29.2%

200000 200000 ** 0:15:58 0:10:30 34.2%

240000 240000 ** 0:23:42 0:14:52 37.3%

280000 280000 ** 0:33:41 0:20:13 40.0%

320000 320000 ** 0:45:26 0:26:24 41.9%

360000 360000 ** 1:04:18 0:34:01 47.1%

400000 400000 ** 1:15:14 0:41:11 45.3%

In a trace, an unbalanced line denotes a substitu-
tion operation and a balanced line denotes retaining
the character of A. If ai has no line attached to it, ai
is to be deleted and when bj has no attached line, it
is to be inserted. When two balanced lines (u1, v1)
and (u2, v2) cross, au1+1 · · · au2−1 are to be deleted
from A making au1 and au2 adjacent, then au1 and
au2 are to be transposed, and finally, bv2+1 · · · bv1−1
are to be inserted between the just transposed
characters of A.

The edit sequence corresponding to the trace of Fig. 1 is
delete a2, transpose a1 and a3, substitute b for a4, insert
b4 = b and b5 = e, retain a5. The cost of this edit sequence
is 5.

Table 6 CPU and cache energy consumption of DL trace
algorithms on Xeon4

A B DL_TRACE LSDL_TRACE Strip_TRACE L vs D S vs D S vs L

40000 40000 158.56 181.40 156.95 -14.4% 1.0% 13.5%

80000 80000 597.27 703.09 610.70 -17.7% -2.2% 13.1%

120000 120000 2,256.99 1,736.86 1,365.32 23.0% 39.5% 21.4%

160000 160000 ** 3,443.83 2,407.86 30.1%

200000 200000 ** 5,843.56 3,818.68 34.7%

240000 240000 ** 8,665.30 5,403.60 37.6%

280000 280000 ** 12,275.03 7,372.25 39.9%

320000 320000 ** 16,536.93 9,609.56 41.9%

360000 360000 ** 23,396.41 12,439.71 46.8%

400000 400000 ** 27,551.90 15,167.76 44.9%
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Fig. 8 Cache misses for DL trace algorithms on Xeon4

Lowrance and Wagner [8] have proved the following
properties:

P1: The cost of a trace equals the number of unbalanced
lines plus the number of positions in A and B not
touched by a line plus the number of line crossings.

P2: There is a trace whose cost equals that of an optimal
edit sequence (Theorem 2 of [8]). Since every trace
corresponds to an edit sequence, it follows that the
edit sequence that corresponds to a minimum cost
trace is optimal.

P3: There is a minimum cost trace in which each line
crosses at most one other line and in which every line
that crosses another is balanced (Theorem 4 of [8]).

P4: There is trace T that satisfies property P3 and for
every pair of crossing lines (u1, v1), (u2, v2), u1 < u2
in T, (a) ai �= au1 = bv1 , u1 < i < u2 and (b)
bj �= bv2 = au2 , v2 < j < v1. In words, u1 is the last
(i.e., rightmost) occurrence of bv1 in A that precedes
position u2 of A and v2 is the last occurrence of au2
in B that precedes position v1 of B. We refer to these
positions as lastA[u2] [bv1 ] and lastB[v1] [au2 ],
respectively (Theorem 5 of [8]).

Let Hij be the DL distance between A[1 : i] to B[1 : j].
So, Hmn is the DL distance between A and B. The fol-
lowing dynamic programming recurrence follows from
properties P1-P4 of a trace.

Hi,0 = i, H0,j = j, 0 ≤ i ≤ m, 0 ≤ j ≤ n (1)

When i > 0 and j > 0,

Hi,j =min

⎧
⎪⎪⎨

⎪⎪⎩

Hi−1,j−1 + c(ai, bj)
Hi,j−1 + 1
Hi−1,j + 1
Hk−1,l−1 + (i − k − 1) + 1 + (j − l − 1)

(2)

where c(ai, bj) is 1 if ai �= bj and 0 otherwise, k =
lastA[i] [bj] and l = lastB[j] [ai]. If k or l do not exist, then
case 4 of the recurrence does not apply.

Figure 2 illustrates the four cases of this recurrence.
These cases correspond to the four possibilities for an
optimal trace that transforms A[1 : i] into B[1 : j] and sat-
isfies properties P2-P4. Such a trace may (a) contain the

Table 7 Cache misses of parallel DL distance algorithms, in
millions, on Xeon4

A B PP_DL PP_LS_DL PP_Strip_DL L vs D S vs D S vs L

40000 40000 259 235 3 9.2% 99.0% 98.9%

80000 80000 1417 500 6 64.7% 99.6% 98.8%

120000 120000 4746 1857 24 60.9% 99.5% 98.7%

160000 160000 ** 4028 26 99.4%

200000 200000 ** 6243 43 99.3%

240000 240000 ** 9101 66 99.3%

280000 280000 ** 12,636 112 99.1%

320000 320000 ** 16,267 202 98.8%

360000 360000 ** 40,741 1020 97.5%

400000 400000 ** 66,469 1644 97.5%
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Fig. 9 Run time of DL trace algorithms, in seconds, on Xeon4

line (i, j), (b) contain no line that touches bj, (c) contain
no line that touches ai, or (d) have crossing balanced lines
that involve ai and bj. Figure 2a illustrates the first case,
which is a substitution between ai and bj; we optimally
transform A[1 : i − 1] into B[1 : j − 1] and then substitute
bj for ai. If ai = bj, the substitution cost is 0, otherwise it
is 1. Figure 2b shows the second case. Here, bj is inserted
at the end of B[1 : j − 1] following an optimal transforma-
tion of A[1 : i] into B[1 : j − 1]. Figure 2c shows the third
case in which ai is deleted from A[ 1 : i] following an opti-
mal transformation of A[1 : i − 1] into B[1 : j]. Figure 2d
shows the case of crossing balanced lines (i, l) and (k, j).
Here, A[1 : k − 1] must be optimally transformed into
B[1 : l − 1]. Note that to perform the crossing operation,
we must delete i − k − 1 characters from A, do an adjacent
character transposition in A, and then insert j− l−1 char-
acters from B between the two just transposed positions.
So, the cost is (i − k − 1) + 1 + (j − l − 1).

Algorithm 1 is the pseudocode to compute H using
Eqs. 1 and 2. This is a simplification of the pseudocode
given in Lowrance and Wagner [8] to the case when
each edit operation has unit cost. In this algorithm,
last_row_id[ c] keeps track of the last occurrence of char-
acter c in A (note that this is a row index of H) and
last_col_id keeps track of the last occurrence of ai in B.

We shall refer to Algorithm 1 as algorithm DL. Its time
and space complexities are readily seen to be O(mn). Once
H has been computed using algorithm DL, an optimal
trace may be obtained in O(m + n) additional time using
a standard dynamic programming traceback. We refer to
the combination of DL and the traceback as algorithm
DL_TRACE.

Algorithm 1 Damerau-Levenshtein distance
1: DL(A[1 : m] , B[1 : n] )

2: for j ← 0 to n do
3: H[−1] [ j] ← maxVal; H[0] [ j] ← j
4: end for
5: for i ← 1 to m do
6: H[i] [−1] ← maxVal; H[i] [0] ← i
7: last_col_id ← −1
8: for j ← 1 to n do
9: diag ← H[i − 1] [j − 1] +c(A[i] , B[ j] )

10: left ← H[i] [j − 1] +1
11: up ← H[i − 1] [j] +1
12: k = last_row_id[B[ j] ] , l = last_col_id
13: transpose ← H[k − 1] [l − 1] +(i − k − 1) + 1 +

(j − l − 1)

14: H[i] [j] ← min{diag, left, up, transpose}
15: if A[i] = B[ j] then
16: last_col_id ← j
17: end if
18: end for
19: last_row_id[A[i] ] ← i
20: end for
21: return H[m] [n]

The total number of cache misses is dominated by the
read and write misses of the array H. So, we count only
these misses. In each iteration of the loop for computing
row i of H, we need the elements of rows i and i − 1 of H
in left-to-right order as in Algorithm 1 lines 9-11 and 14.
Since these rows are read from main memory in blocks
of size w and row i is written to main memory in blocks
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Table 8 Run time of parallel DL distance algorithms on Xeon4

A B PP_DL PP_LS_DL PP_Strip_DL L vs D S vs D S vs L

40000 40000 0:00:08 0:00:05 0:00:03 33.4% 59.0% 38.4%

80000 80000 0:00:29 0:00:20 0:00:13 30.7% 56.7% 37.5%

120000 120000 0:03:00 0:00:56 0:00:28 68.9% 84.2% 49.2%

160000 160000 ** 0:01:49 0:00:50 54.1%

200000 200000 ** 0:02:55 0:01:19 55.2%

240000 240000 ** 0:04:09 0:01:53 54.5%

280000 280000 ** 0:05:48 0:02:34 55.9%

320000 320000 ** 0:07:21 0:03:20 54.5%

360000 360000 ** 0:10:13 0:04:24 57.0%

400000 400000 ** 0:11:41 0:05:13 55.3%

of this size, lines 9-11 and 14 result in 2n/w read accesses
and n/w write accesses for each i. These lines, therefore,
result in 3mn/w cache misses over the entire execution
of DL. Line 13 makes one read access of H per iteration
and so contributes at most mn to the total cache-miss
count. Hence, the cache-miss count for algorithm DL is
approximately mn(1 + 3/w).

Methods
Single-core algorithms
In this section, we develop four linear-space single-core
algorithms for string correction using the DL distance.
All four run in O(mn) time. The first two (LS_DL and
Strip_DL) compute only the score Hmn of the optimal
trace; they differ in their cache efficiency. The last two
(LSDL_TRACE and Strip_TRACE) compute an optimal
trace.

The linear space algorithm LS_DL
Let s be the size of the alphabet. Instead of using the array
H used in DL, algorithm LS_DL uses a one-dimensional
array U[−1 : n] and a two-dimensional array T[1 : s]

Table 9 Speedup of parallel DL distance algorithms on Xeon4

A B DL/PP LS_DL/PP Strip_DL/PP

40000 40000 3.45 3.40 3.96

80000 80000 3.44 3.09 3.97

120000 120000 1.62 2.87 3.96

160000 160000 ** 3.08 3.98

200000 200000 ** 3.30 3.99

240000 240000 ** 3.29 3.96

280000 280000 ** 3.20 3.97

320000 320000 ** 3.30 3.98

360000 360000 ** 3.24 3.95

400000 400000 ** 3.24 3.98

[−1 : n]. These two arrays have a space requirement of
O((s + 1)n) = O(n) for constant s. When m < n, one
may swap A and B to reduce the required memory. Adding
the memory needed for A and B, the space complexity is
O(s min{m, n} + m + n) = O(m + n) when s is a constant.

As in algorithm DL, the Hij values are computed by
rows. The one-dimensional array U is used to save the
H[i] [∗] values computed by algorithm DL when row i

Algorithm 2 Linear-space Damerau-Levenshtein distance
1: LS_DL(A[1 : m] , B[1 : n] )

2: for j ← -1 to n do
3: U[j] ← j
4: for each character c in the alphabet do
5: T[c] [j] ← maxVal;
6: end for
7: end for
8: U[−1] ← maxVal
9: for i ← 1 to m do

10: swap(T[A[i] ] , U)

11: prevU ← T[A[i] ]
12: U[0] ← i
13: for j ← 1 to n do
14: diag ← prevU[j − 1] +c(A[i] , B[j] )

15: left ← U[j − 1] +1
16: up ← prevU[j] +1
17: k = last_row_id[B[j] ] , l = last_col_id
18: transpose ← T[B[j] ] [l − 1] +(i − k − 1) + 1 +

(j − l − 1)

19: U[j] ← min{diag, left, up, transpose}
20: if A[i] = B[j] then
21: last_col_id ← j
22: end if
23: end for
24: last_row_id[A[ i] ] ← i
25: end for
26: return U[n]
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Fig. 10 CPU and cache energy consumption of DL trace algorithms, in joules, on Xeon4

is being computed. Let H[w] [∗] be the last row com-
puted for character c. Then, T[c] [∗] is row w − 1 of H.
Algorithm 2 gives the pseudocode for LS_DL. Its cor-
rectness follows from the correctness of algorithm DL.
Note that swap(T[ A[i] ] , U) takes O(1) time as pointers
to 2 one-dimensional arrays are swapped rather than the
content of these arrays. The cache-miss count for LS_DL
is the same as that for DL when n is suitably large as both
have the same data access pattern. However, for smaller
instances LS_DL will exhibit much better cache behavior.
For example, because of its use of much less memory, we
may have enough LLC cache to store all the data in LS_DL
but not in DL (O(sn) vs O(mn)).

The cache-efficient linear-space algorithm Strip_DL
When (s + 1)n is larger than the size of the LLC cache, we
may reduce cache misses relative to algorithm LS_DL by

computing Hij by strips of width q, for some q less than
n (the last strip may have a width smaller than q). This is
shown in Fig. 3. The strips are computed in the order 0, 1,
... using algorithm LS_DL. However, the space needed by
T and U in LS_DL is reduced to (s + 1)q as the strip width
is q rather than n. By choosing q small enough, we can
ensure that blocks of the T and U arrays used by LS_DL
are not evicted from cache once they are brought in. So, if
each entry of T and U takes 1 word, then when the cache
size is lw, we have q < lw/(s + 1). Note that, in addition to
T and U, the cache needs to hold partials of A, B and other
arrays needed to pass the data from one strip to the next.

To pass the data from one strip to next, we use an
additional one-dimensional array strip of size m and a
two-dimensional s ∗ m array V. The array strip records
the values of H computed for the rightmost column in
the strip. V [c] [ i] gives the H value in the rightmost

Table 10 CPU and cache energy consumption of parallel DL distance algorithms on Xeon4

A B PP_DL PP_LS_DL PP_Strip_DL L vs D S vs D S vs L

40000 40000 89.12 60.64 37.31 32.0% 58.1% 38.5%

80000 80000 336.87 238.15 147.82 29.3% 56.1% 37.9%

120000 120000 1800.48 657.89 334.86 63.5% 81.4% 49.1%

160000 160000 ** 1285.34 591.9 53.9%

200000 200000 ** 2063.55 926.64 55.1%

240000 240000 ** 2928.87 1332.29 54.5%

280000 280000 ** 4106.15 1818.66 55.7%

320000 320000 ** 5223.54 2385.45 54.3%

360000 360000 ** 6640.93 3164.4 52.4%

400000 400000 ** 8287.46 3727.31 55.0%
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column j of row i of H that is (a) in a strip to
the left of the one currently being computed and (b)
c = B[j].

The pseudocode for Strip_DL is given in Algorithm 3.
For clarity, this pseudocode uses two strip arrays (lines
18 and 30) and two V arrays (lines 24 and 32). One set
of arrays is used to fetch data calculated for the previous
strip and the other set for data that is to be passed to the
next strip. In the actual implementation, we use a single
strip array and a single V array overwriting values received
from the previous strip with values to be passed to the next
strip.

The time and complexity of Strip_DL are, respectively,
O(mn) and O((s + 1)m + (s + 1)q + n) = O(sm + sq + n)

= O(sm + n) as q is a constant. When m > n, we may

switch A and B to conserve memory and so the space
complexity becomes O(s min{m, n}+m+n) = O(m+n) for
constant s.

When we analyze the cache miss, we note that q is
chosen such that U and T fit into cache. We make the rea-
sonable assumption that the LRU replacement rule does
not cause any block of U or T to be evicted during the
running of algorithm Strip_DL. As a result, the total num-
ber of cache misses due to U and T is independent of m
and n and so may be ignored in the analysis. The initial-
ization of strip and V results in m/w and (s + 1)m/w read
accesses , respectively. The number of write accesses is
approximately the same as the number of read accesses.
The computation for each strip accesses the array strip in
ascending order of index. This results in (approximately)

Table 11 Cache misses for parallel DL trace algorithms, in millions, on Xeon4

A B PP_DL_TRACE PP_LSDL_TRACE PP_Strip_TRACE L vs D S vs D S vs L

40000 40000 247 636 16 -157.0% 93.6% 97.5%

80000 80000 1312 2431 15 -85.3% 98.9% 99.4%

120000 120000 4940 6814 34 -37.9% 99.3% 99.5%

160000 160000 ** 12,774 53 99.6%

200000 200000 ** 28,908 85 99.7%

240000 240000 ** 30,529 110 99.6%

280000 280000 ** 40,803 154 99.6%

320000 320000 ** 53,892 179 99.7%

360000 360000 ** 91,621 796 99.1%

400000 400000 ** 188,325 2727 98.6%
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Algorithm 3 Strip Damerau-Levenshtein distance
1: Strip_DL(A[1 : m] , B[1 : n] )

2: for i ← 1 to m do
3: strip[i] ← i
4: for each character c in the alphabet do
5: V [c] [i] ← maxVal;
6: end for
7: end for
8: for t ← 1 to n/q do
9: for j ← t ∗ q to t ∗ q + q − 1 do

10: U[j] ← j
11: for each character c in the alphabet do
12: T[c] [j] ← maxVal;
13: end for
14: end for
15: for i ← 1 to m do
16: swap(T[A[i] ] , U)

17: prevU ← T[A[i] ]
18: U[0] ← strip[i]
19: for j ← t ∗ q to t ∗ q + q − 1 do
20: diag ← prevU[j − 1] +c(A[i] , B[j] )

21: left ← U[ j − 1] +1
22: up ← prevU[ j] +1
23: k = last_row_id[B[ j] ] , l = last_col_id
24: transpose ← (l <= t ∗ q)?V [A[ i] ] [k − 1] :

T[B[ j] ] [ l − 1] ) + (i − k − 1) + 1 + (j − l − 1)

25: U[ j] ← min{diag, left, up, transpose}
26: if A[ i] = B[ j] then
27: last_col_id ← j
28: end if
29: end for
30: new_strip ← r[ t ∗ q + q − 1]
31: for each character c in the alphabet do
32: new_V [c] [ i] ← r[ last_col_id[c] −1]
33: end for
34: last_row_id[A[i] ] ← i
35: end for
36: end for
37: return U[q]

the same number of cache misses as made during the ini-
tialization phase. Hence, the total number of cache misses
due to strip is approximately (2m/w)(n/q + 1). For V,
we note that when computing the current strip, the ele-
ments in any row of V are accessed in non-decreasing
order of index (i.e., from left to right) and that we need to
retain, in cache, only the most recently read value for each
character of the alphabet (i.e., at most s values are to be
retained). Making the assumption that a V value is evicted
from cache only when a new value for the same char-
acter is accessed, the total number of read misses from
V when computing a single strip is sm/w. The number

of write misses is approximately the same. So, V con-
tributes (2sm/w)(n/q + 1). Hence, the total number of
cache misses for algorithm Strip_DL is ≈ 2(s+1)mn/(wq)

when m and n are large.
Recall that the approximate cache-miss count for algo-

rithms DL and LS_DL is mn(1 + 3/w). This is (wq +
3q)/(2s + 2) times that for Strip_DL.

The linear-space trace algorithm LSDL_TRACE
Although algorithms LS_DL and Strip_DL determine the
score (cost) of an optimal trace (and hence of an optimal
edit sequence) that transforms A into B, these algorithms
do not save enough information to actually determine an
optimal trace. To determine an optimal trace using linear
space, we adopt a divide-and-conquer strategy similar to
that used by Hirschberg [21] for the simple string editing
problem (i.e., transpositions are not permitted) and Myers
and Miller [22] for the sequence alignment problem.

We say that a trace has a center crossing iff it contains
two lines (u1, v1) and (u2, v2), u1 < u2 such that v1 > n/2
and v2 ≤ n/2 (Fig. 4).

Let T be an optimal trace that satisfies properties P2-P4.
If T contains no center crossing, then its lines may be par-
titioned into sets TL and TR such that TL contains all lines
(u, v) ∈ T with v ≤ n/2 and TR contains the remaining
lines (Fig. 4a). Since there is no center crossing, all lines
in TR have a u value greater than the u value of every line
in TL. It follows from properties P2-P4 that there is an i,
1 ≤ i ≤ m such that T is the union of an optimal trace
for A[1 : i] and B[1 : n/2] and that for A[i + 1 : m] and
B[n/2 + 1 : n]. Let H[i] be the cost the former optimal
trace and H ′[i + 1] that of the latter optimal trace. We see
that when T has no center crossing, the cost of T is

costNoCC(T) = min
1≤i≤m

{H[i] +H ′[i + 1] } (3)

When T contains a center crossing, its lines may be
partitioned into 3 sets, TL, TM, and TR, as shown in
Fig. 4b. Let (u1, v1) and (u2, v2) be the lines defining the
center crossing. Note that TL contains all lines of T with
v < v2, TR contains all lines with v > v1, and TM =
{(u1, v1), (u2, v2)}. Note also that all lines in TL have a u <

u1 and all in TR have u > u2. From property P1, it follows
that TL is an optimal trace for A[1 : u1−1] and B[1 : v2−1]
and TR is an optimal trace for A[u2+1 : m] and B[v1+1 : n].
Further, since (u1, v1) and (u2, v2) are balanced lines, the
cost of TM is (u2 − u1 − 1) + 1 + (v1 − v2 − 1). Also,
A[u1] �= A[u2] as otherwise, replacing the center-crossing
lines with (u1, v2) and (u2, v1) results in a lower cost trace.
From property P4, we know that u1 = lastA[u2] [bv1 ] and
v2 = lastB[v1] [au2 ]. Let H[i] [j] be the cost of an optimal
trace for A[1 : i] and B[1 : j] and let H ′[i] [j] be that for an
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optimal trace for A[i : m] and B[j : n]. So, when T has a
center crossing, its cost is

costCC(T)=min{H[u1−1] [v2 − 1] +H ′[u2+ 1] [v1 + 1]
+ (u2 − u1 − 1) + 1 + (v1 − v2 − 1)}

(4)

where, for the min{}, we try 1 ≤ u1 < m and for each
such u1, we set v1 to be the smallest i > n/2 for which
bi = au1 . For each u1 we examine all characters other than
au1 in the alphabet. For each such character c, v2 is set to
the largest j ≤ n/2 for which bj = c and u2 is the smallest
i > u1 for which ai = c. So, the min is taken over (s − 1)m
terms.

Let Utop and Ttop be the final U and T arrays computed
by LS_DL with inputs B[1 : n/2] and A[1 : m] and Ubot
and Tbot be these arrays when the inputs are the reverse
of B[n/2 + 1] and A[ m : 1]. From these arrays, we may
readily determine the H and H ′ values needed to evaluate
Eqs. 3 and 4. Algorithm LSDL_TRACE (Algorithm 4) pro-
vides the pseudocode for our linear space computation of
an optimal trace. It assumes that LS_DL has been modified
to return both the arrays U and T.

For the time complexity, we see that at the top level of
the recursion, we invoke LS_DL twice with strings A and
B of size m and n/2, respectively. This takes at most amn
time for some constant a. The time required to compute
Eqs. 3 and 4 is O(sn) and may be absorbed into amn by
using a suitably large constant a. At the next level of recur-
sion, LS_DL is invoked 4 times. The sum of the lengths
of the A strings across these 4 invocations is at most 2m

and the B string has length at most n/4. So, the time for
these four invocations is at most amn/2. Generalizing to
the remaining levels of recursion, we see that algorithm
LSDL_TRACE takes amn(1 + 1/2 + 1/4 + 1/8 + . . .) <

2amn = O(mn) time. The space needed is the same as that

Algorithm 4 Linear space optimal trace
1: LSDL_TRACE(A[1 : m] , B[1 : n] )

2: if m ≤ 1 or n ≤ 1 then
3: Do a linear search to find an optimal trace for A and

B
4: Return optimal trace
5: else
6: (Utop, Ttop) ← LS_DL(B[1 : n

2 ] , A[ 1 : m] )

7: (Ubot , Tbot) ← LS_DL(B[n : n
2 + 1] , A[m : 1] )

8: Compute costNoCC(T) and costCC(T) using these
U and T arrays

9: Let i′, (u′
1, u′

2), and (v′
1, v′

2) minimize Eqs. 3 and 4
10: if costNoCC(T) ≤ costCC(T) then
11: T1 = LSDL_TRACE(A[1 : i′] , B[1 : n/2] )

12: T2 = LSDL_TRACE(A[i′+1 : m] , B[n/2+1 : n] )

13: Return T1
⋃

T2
14: else
15: T1 = LSDL_TRACE(A[1 : u′

1 −1] , B[1 : v′
2 −1] )

16: T2 = LSDL_TRACE(A[u′
2+1 : m] , B[v′

1+1 : n] )

17: Return T1
⋃

T2
⋃{(u1, v1), (u2, v2)}

18: end if
19: end if
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for LS_DL (note that the parameters to this algorithm have
been switched). From the time analysis, it follows that the
number of cache misses is approximately twice that for
LS_DL when invoked with strings of size m and n. Hence
the approximate cache miss count for LSDL_TRACE is
2mn(1 + 3/w).

We note that some reduction in actual run time can be
achieved by switching A and B when A is shorter than B
thus ensuring that the shorter string is split at each level of
recursion. This enables us to get the recursion terminates
faster.

The strip trace algorithm Strip_TRACE
This algorithm differs from LSDL_TRACE in that it uses
a modified version of Strip_DL rather than a modified

version of LS_DL. The modified version of Strip_DL
returns the arrays strip and V computed by Strip_DL. Cor-
respondingly, Strip_TRACE uses Vtop and Vbot in place
of Ttop and Tbot . The asymptotic time complexity of
Strip_TRACE is also O(mn) and it takes the same amount
of space as does Strip_DL (note that the parameters to
Strip_DL are switched relative to those for Strip_TRACE).
The number of cache misses is approximately twice that
for Strip_DL.

Multi-core algorithms
In this section, we describe our parallelizations of algo-
rithm DL and the four single-core algorithms of previous
section. These parallelizations assume that the number of
processors is small relative to string length. The naming

Table 12 Run time of parallel DL trace algorithms on Xeon4

A B PP_DL_TRACE PP_LSDL_TRACE PP_Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:08 0:00:10 0:00:07 -36.1% 0.9% 27.2%

80000 80000 0:00:29 0:00:38 0:00:27 -32.7% 7.0% 29.9%

120000 120000 0:04:15 0:01:39 0:00:59 61.2% 76.8% 40.3%

160000 160000 ** 0:03:05 0:01:43 44.2%

200000 200000 ** 0:05:03 0:02:43 46.3%

240000 240000 ** 0:07:50 0:03:50 51.0%

280000 280000 ** 0:11:11 0:05:13 53.4%

320000 320000 ** 0:15:07 0:06:46 55.2%

360000 360000 ** 0:21:25 0:08:44 59.2%

400000 400000 ** 0:24:10 0:10:34 56.3%
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convention we adopt for the parallel versions is adding
PP_ as a prefix to the name of the single-core algorithm.

The algorithm PP_DL
Our parallel version of algorithm DL, PP_DL, computes
the elements in the same order as does DL. However, it
starts the computation of a row before the computation of
its preceding row is complete. Each processor is assigned
a unique row to compute and it computes this row from
left to right. Let p be the number of processors. Processor
z is initially assigned to do the outer loop computation for
i = z, 1 ≤ i ≤ p. Processor z begins after a suitable time
lag relative to the start of processor z − 1 so that the data
it needs for its computation have already been computed
by processor z − 1. In our code, the time lag between the
start of the computation of two consecutive rows is the
time needed to compute n/p elements. Upon completion
of its iteration i computation, the processor proceeds to
iteration i + p of the outer loop. The time complexity of
PP_DL is O(mn/p).

The algorithm PP_LS_DL
While the general parallelization strategy for PP_LS_DL is
the same as that used in PP_DL, extra care is needed to
ensure a computation identical to that of LS_DL. Diver-
gence in results is possible when two or more processors
are simultaneously computing different rows of H using
the same memory. This happens for example when A =
aaabc · · · and p ≥ 3. We start with processor i assigned
to compute row i of H, 1 ≤ i ≤ p. Suppose that U = x
and T[a] = y initially (note that x and y are addresses in

memory). Because of the swap(T[A[i] ] , U) statement in
LS_DL, processor 1 begins to compute row 1 of H using
memory beginning at the address y. If processor 2 begins
with a suitable time lag as in PP_DL, it will compute row
2 of H using memory beginning at the address x. With a
further lag, processor 3 will begin to compute row 3 of H
again using memory beginning at the address y. Now, both
processors 1 and 3 are using the same memory to compute
different rows of H and so we run the risk of overwriting
H values that may be needed for subsequent computa-
tions. As another example, consider A = ababa · · · and
p ≥ 4. Suppose that U = x and T[a, b] =[y, z] initially.
Processor 1 begins to compute row 1 using the memory
y, then, with a lag, processor 2 begins to compute row 2
using memory z, then processor 3 starts to compute row 3

Table 13 Speedup of parallel DL trace algorithms on Xeon4

A B DL/PP LSDL_TRACE/PP Strip_TRACE/PP

40000 40000 3.53 2.88 3.44

80000 80000 3.44 2.97 3.72

120000 120000 1.15 2.86 3.79

160000 160000 ** 3.03 3.85

200000 200000 ** 3.16 3.87

240000 240000 ** 3.02 3.87

280000 280000 ** 3.01 3.88

320000 320000 ** 3.01 3.90

360000 360000 ** 3.00 3.89

400000 400000 ** 3.11 3.90
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using memory x. Next processor 4 begins to compute row
4 using memory y. At this time processor 1 is computing
row 1 with A[1] = a and processor 4 is computing row 4
with A[4] = b and both processors are using the same row
memory y.

Let p1 and p2 be two processors that are using the same
memory to compute rows r1 < r2 of H and that no pro-
cessor is using this memory to compute a row between
r1 and r2. From the swapping assignment scheme used
in LS_DL, it follows that p1 is computing the row r1 =
lastA[r2] [ar2 ] −1. The H values in this row are needed
to compute rows r1 + 1 through r2 as r1 = lastA[i] [ar2 ]
r1 < i ≤ r2. These values are not needed for rows i > r2 as
for these rows lastA[i] [ar2 ] = r2 > r1+1 = lastA[r2] [ar2 ].

Let j1 be such that bj = ar2 = ar1+1. Then, for j > j1,
lastB[j] [ar2 ] ≥ j1. Hence, for j > j1 columns 1 through
j1 − 2 of row r1 are not needed to compute an H in rows
between r1 and r2.

Our parallel code uses a synchronization scheme that is
based on the observations of the preceding paragraph to
delay the overwriting of values that are needed for later
computations and ensure a correct computation of the DL
distance. Our synchronization scheme employs another
array W [1 : n] that is initialized to 1. Suppose that a
processor is computing row i of H and that A[i] = a.
When this processor first encounters an a in B, say at posi-
tion j1, it increments W [ 0 : j1 − 2]. When the next a is
encountered, say at j2, it increments W [j1 − 1 : j2 − 2] by

Table 14 CPU and cache energy consumption of parallel DL trace algorithms on Xeon4

A B PP_DL_TRACE PP_LSDL_TRACE PP_Strip_TRACE L vs D S vs D S vs L

40000 40000 87.39 118.74 84.85 -35.9% 2.9% 28.5%

80000 80000 334.01 449.89 310.34 -34.7% 7.1% 31.0%

120000 120000 2,433.28 1,149.61 684.28 52.8% 71.9% 40.5%

160000 160000 ** 2,149.58 1,202.52 44.1%

200000 200000 ** 3,524.59 1,898.35 46.1%

240000 240000 ** 5,410.42 2,684.72 50.4%

280000 280000 ** 7,707.41 3,657.54 52.5%

320000 320000 ** 10,384.75 4,789.03 53.9%

360000 360000 ** 14,612.39 6,200.10 57.6%

400000 400000 ** 16,559.76 7,472.52 54.9%
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1. When the processor finishes its computation of row i,
the remaining positions of W are incremented by 1. The
processor assigned to compute row q of H may compute
U[j] iff W [j] = q. From our earlier observations, it follows
that when W [j] = q, the old values in memory positions
U[1 : j] may be overwritten as these are not needed for
future computations.

This p-processor algorithm PP_LS_DL’s time complex-
ity depends on the data sets as the synchronization
delay is data dependent. We, however, expect a run-time
performance of approximately O(mn/p) when the charac-
ters in B are roughly uniformly distributed.

The algorithm PP_Strip_DL
In the parallel version PP_Strip_DL of Strip_DL, proces-
sor i is initially assigned to compute strip i, 1 ≤ i ≤ p.

Upon completion of its currently assigned strip j, the pro-
cessor proceeds to compute strip j + p. An array signal[ ]
is used for synchronization purposes. When computing
a row r in its assigned strip s, a processor needs to wait
until signal[r] = s. signal[r] is set to s by the processor
working on strip s − 1 when the values to the left of
strip s needed in the computation of row r of strip s have
been computed and there is no risk that the computa-
tions for row r of strip s will overwrite V values needed
by other processors. signal works very much like W in
PP_LS_DL.

Note that when we are working on p strips, we need p
copies of the arrays U and T used by Strip_DL.

The time complexity of PP_Strip_DL depends on the
synchronization delay and is expected to approximate
O(mn/p).

Table 15 Run time of DL distance algorithms for real DNA sequences on Xeon4

A B DL LS_DL Strip_DL PP_DL PP_LS_DL PP_Strip_DL

NZ_LRIA01000064 CYPR01000097 0:00:23 0:00:19 0:00:12 0:00:08 0:00:06 0:00:03

LNFE01000131 AGUF01000028 0:01:27 0:01:16 0:00:47 0:00:29 0:00:24 0:00:12

NZ_CYTG01000018 LVKN01000071 0:03:21 0:02:53 0:01:46 0:02:42 0:00:54 0:00:28

BX000446 BX511181 ** 0:05:01 0:03:09 ** 0:01:34 0:00:49

NZ_AMFW01000007 LYHN01000016 ** 0:07:49 0:04:54 ** 0:02:26 0:01:17

JLXA01000008 AUHZ01000004 ** 0:11:31 0:07:04 ** 0:03:38 0:01:51

NZ_FNNC01000004 NZ_APZF01000097 ** 0:15:03 0:09:37 ** 0:04:43 0:02:31

LHOK01000008 AGYI01000018 ** 0:19:44 0:12:36 ** 0:06:11 0:03:17

BAMV01000017 MIMZ01000025 ** 0:24:56 0:15:56 ** 0:07:49 0:04:09

LSMI01000030 CZBU01000005 ** 0:30:13 0:19:39 ** 0:09:34 0:05:08
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Fig. 17 Run time of DL distance algorithms, in seconds, on Xeon6

The algorithm PP_DL_TRACE
This algorithm first uses PP_DL to compute H[ ] [ ]. Then,
a single processor performs a traceback to construct
the optimal trace. For reasonable values of p, the run
time is dominated by PP_DL and so, the complexity of
PP_DL_TRACE is also O(mn/p).

The algorithms PP_LSDL_TRACE and PP_Strip_TRACE
In LSDL_TRACE (Strip_TRACE), we repeatedly partition
the problem into two and apply either LS_DL (Strip_DL)
to each partition. The parallel version PP_LSDL_TRACE
(PP_Strip_TRACE) employs the following parallelization
strategy:

• Each subproblem is solved using PP_LS_DL
(PP_Strip_DL) when the number of independent
subproblems is small; all p processors are assigned to

the parallel solution of a single subproblem. I.e., the
subproblems are solved in sequence.

• p subproblems are solved in parallel using LS_DL
(Strip_DL) to solve each subproblem serially when
the number of independent subproblems is large,

The time complexity of PP_LSDL_TRACE and
PP_Strip_TRACE is O(mn/p).

Results
Experimental platform and test data
The single-core algorithms were implemented using C
and the multi-core ones using C and OpenMP. Our codes
may be downloaded from [23]. The following computa-
tional platforms were used:

1 Xeon4: Intel Xeon CPU E5-2603 v2 Quad-Core
processor 1.8GHz with 10MB cache and 32GB
memory.

Table 16 Run time of DL trace algorithms for real DNA sequences on Xeon4

A B DL_Trace LSDL_Trace Strip_Trace PP_DL_Trace PP_LSDL_Trace PP_Strip_Trace

NZ_LRIA01000064 CYPR01000097 0:00:23 0:00:33 0:00:24 0:00:08 0:00:12 0:00:08

LNFE01000131 AGUF01000028 0:01:27 0:02:12 0:01:35 0:00:29 0:00:45 0:00:28

NZ_CYTG01000018 LVKN01000071 0:03:23 0:05:02 0:03:33 0:03:48 0:01:44 0:01:00

BX000446 BX511181 ** 0:08:45 0:06:18 ** 0:02:59 0:01:45

NZ_AMFW01000007 LYHN01000016 ** 0:13:43 0:09:51 ** 0:04:39 0:02:43

JLXA01000008 AUHZ01000004 ** 0:20:10 0:14:10 ** 0:06:50 0:03:54

NZ_FNNC01000004 NZ_APZF01000097 ** 0:26:25 0:19:18 ** 0:08:49 0:05:17

LHOK01000008 AGYI01000018 ** 0:34:41 0:25:15 ** 0:11:29 0:06:55

BAMV01000017 MIMZ01000025 ** 0:43:49 0:31:58 ** 0:14:38 0:08:44

LSMI01000030 CZBU01000005 ** 0:52:54 0:39:23 ** 0:18:14 0:10:46
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Fig. 18 Run time of DL trace algorithms, in seconds, on Xeon6

2 Xeon6: Intel I7-x980 Six-Core processor 3.33GHz
with 12MB LLC cache and 16GB memory.

3 Xeon24: Intel Xeon CPU E5-2695 v2 2xTwelve-Core
processors 2.40GHz with 30MB cache and 512GB
memory.

We compiled all codes using the gcc compiler with
the O2 option. Cache miss and energy consumption data
were obtained for our Xeon4 platform using the “perf”
[24] software and the RAPL interface. This is the only
platform for which we obtained cache miss and energy
consumption data.

For test data, we downloaded the real
DNA/RNA/protein sequences from the NCBI (National
Center for Biotechnology Information) server [25] and
PDB (Protein Data Bank) server [15]. In addition to

that, we also generated random DNA/RNA and protein
sequences.

Xeon E5-2603 (Xeon4) using random data
DL distance algorithms
The observed cache misses for our DL distance algo-
rithms on our Xeon4 platform for randomly generated
sequences of size between 40000 and 400000 are given
in Fig. 5 and Table 1. “**” in the table indicates there
was insufficient memory for the algorithm to run. The
column of Table 1 labeled LvsD (SvsD) presents the
percentage changes in cache misses reduced by LS_DL
(Strip_DL) relative to DL while that labeled SvsL gives
this percentage changes reduced by Strip_DL relative to
LS_DL.

Table 17 Run time of DL distance algorithms on Xeon6

A B DL LS_DL Strip_DL L vs D S vs D S vs L

40000 40000 0:00:17 0:00:14 0:00:08 16.2% 52.3% 43.1%

80000 80000 ** 0:00:55 0:00:32 41.3%

120000 120000 ** 0:02:12 0:01:13 44.8%

160000 160000 ** 0:05:19 0:02:09 59.5%

200000 200000 ** 0:10:16 0:03:23 67.1%

240000 240000 ** 0:16:17 0:04:50 70.3%

280000 280000 ** 0:24:19 0:06:36 72.9%

320000 320000 ** 0:33:32 0:08:36 74.4%

360000 360000 ** 0:45:50 0:10:58 76.1%

400000 400000 ** 0:55:44 0:13:27 75.9%



Zhao and Sahni BMC Bioinformatics 2019, 20(Suppl 11):277 Page 38 of 103

Fig. 19 Run time of parallel DL distance algorithms, in seconds, on Xeon6

Notice that DL runs out of memory when |A| = |B| ≥
160000. Strip_DL has fewer cache misses than LS_DL and
LS_DL has fewer cache misses than DL. Strip_DL reduces
cache misses by up to 99.0% relative to DL and by up to
99.5% relative to LS_DL.

Run times are given in seconds in Fig. 6 and using the
format hh : mm : ss in Table 2 for our random data
set. Strip_DL is the fastest followed by LS_DL and DL.
Strip_DL reduces run time by up to 61.3% relative to DL
and by up to 47.6% relative to LS_DL.

Energy consumption by the CPU and cache are gievn, in
joules, in Fig. 7 and Table 3. Strip_DL required up to 68.5%
less CPU and cache energy than DL and up to 48.2% less
than LS_DL.

DL trace algorithms
The observed cache misses for our single-core DL
trace algorithms on our Xeon4 platform are given in

Fig. 8 and Table 4. Since DL_TRACE is simply DL
with a linear time traceback added, that cache miss
count for DL_TRACE is only slightly more than that
for DL. LSDL_TRACE has a higher count than does
DL_TRACE for the instances that DL has sufficient
memory to solve though the gap narrows with increas-
ing instance size. Strip_TRACE consistently has fewer
cache misses than both DL_TRACE and LSDL_TRACE.
Strip_TRACE reduces cache misses by up to 98.6% rel-
ative to DL_TRACE and by up to 99.5% relative to
LSDL_TRACE.

Run times of the DL trace algorithms on our Xeon4
platform are given in seconds in Fig. 9 and Table 5.
Strip_TRACE is competitive with DL_TRACE on our
instances of size 40,000 and 80,000 and 23.5% faster on the
instance of size 120,000. Strip_TRACE was consistently
faster than LSDL_TRACE achieving a speedup of up to
47.1%.

Table 18 Run time of DL trace algorithms on Xeon6

A B DL_TRACE LSDL_TRACE Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:17 0:00:22 0:00:17 -26.3% 4.8% 24.6%

80000 80000 ** 0:01:24 0:01:05 22.1%

120000 120000 ** 0:03:33 0:02:26 31.2%

160000 160000 ** 0:07:20 0:04:20 41.0%

200000 200000 ** 0:13:19 0:06:46 49.1%

240000 240000 ** 0:20:51 0:09:43 53.4%

280000 280000 ** 0:31:19 0:13:14 57.7%

320000 320000 ** 0:43:24 0:17:16 60.2%

360000 360000 ** 0:59:27 0:21:55 63.1%

400000 400000 ** 1:13:51 0:26:57 63.5%
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Fig. 20 Run time of parallel DL trace algorithms, in seconds, on Xeon6

The energy consumed by the CPU and cache is
given in Fig. 10 and Table 6. Strip_TRACE required
up to 46.8% less CPU and cache energy than
LSDL_TRACE.

Parallel DL distance algorithms
The observed cache misses for our parallel DL algorithms
are given in Fig. 11 and Table 7. PP_Strip_DL has the
fewest cache misses followed by PP_LS_DL and PP_DL
(in this order). The reduction is cache misses achieved by
PP_Strip_DL is up to 99.6% relative to PP_DL and up to
99.4% relative to PP_LS_DL.

Run times for our parallel DL algorithms are given in
Fig. 12 and Table 8. PP_Strip is up to 84.2% faster than
PP_DL and up to 57.0% faster than PP_LS_DL.

Speedup numbers are given in Table 9. The column
labeled DL/PP, for example, is the time for DL divided by

that for PP_DL. PP_Strip_DL has a speedup between 3.95
and 3.99, which is quite close to the number of cores (4)
on our Xeon4 platform. The speedup for PP_DL is up to
3.45 and that for PP_LS_DL is up to 3.40.

Energy data are given in Fig. 13 and Table 10.
PP_Strip_DL used up to 81.4% less CPU and cache
energy than did PP_DL and up to 55.7% less than
PP_LS_DL.

Although the multi-core algorithms use more CPU
power than used by their single-core counterparts, the
power increase is less than the decrease in run time.
Hence, energy consumption is reduced.

Parallel DL trace algorithms
The number of cache misses incurred by our multi-
core DL trace algorithms is given in Fig. 14 and
Table 11. PP_Strip_TRACE has the fewest number of

Table 19 Run time of parallel DL distance algorithms on Xeon6

A B PP_DL PP_LS_DL PP_Strip_DL L vs D S vs D S vs L

40000 40000 0:00:03 0:00:03 0:00:03 22.2% 25.6% 4.4%

80000 80000 ** 0:00:11 0:00:06 46.7%

120000 120000 ** 0:00:32 0:00:13 59.8%

160000 160000 ** 0:01:18 0:00:23 71.1%

200000 200000 ** 0:02:34 0:00:36 76.8%

240000 240000 ** 0:03:47 0:00:52 77.2%

280000 280000 ** 0:05:25 0:01:09 78.6%

320000 320000 ** 0:06:59 0:01:32 77.9%

360000 360000 ** 0:09:23 0:01:56 79.4%

400000 400000 ** 0:11:03 0:02:23 78.5%
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Fig. 21 Run time of DL distance algorithms, in seconds, on Xeon24

cache misses. PP_Strip_TRACE reduces cache misses by
up to 99.3% and 99.6% relative to PP_DL_TRACE and
PP_LSDL_TRACE, respectively.

Run times are given in Fig. 15 and Table 12.
PP_Strip_Trace is faster than PP_LSDL_TRACE by up
to 59.2%. As in Table 13, the speedup achieved by
PP_Strip_TRACE relative to its single-core version ranges
from 3.44 to 3.90.

Energy consumption data are given in Fig. 16 and
Table 14. PP_Strip_TRACE required up to 57.6% less CPU
and cache energy than PP_LSDL_TRACE.

Xeon E5-2603 (Xeon4) using real data
Tables 15 and 16, respectively, give the run times for
our single-core and multi-core DL and DL trace algo-
rithms using real DNA sequences on our Xeon4 plat-
form. The observed times are quite comparable to those
for similarly sized random strings. Further, the speed
up achieved by our parallel algorithms relative to the
single-core algorithms is also comparable to that for
random strings. So, for our remaining test platforms,
we present only the results for our randomly generated
data sets.

I7-x980 (Xeon6) using random data
DL distance algorithms
Single core run times are given in Fig. 17 and Table 17
for our Xeon6 platform. As can be seen, Strip_DL is the
fastest followed by LS_DL and DL. Strip_DL reduces run
time by up to 52.3% relative to DL and by up to 76.1% rela-
tive to LS_DL. The classical DL algorithm ran out memory
when |A| = |B| = 8000.

DL trace algorithms
The run times for the DL trace algorithms are given in
Fig. 18 and Table 18. Strip_TRACE reduces run time by up
to 63.5% relative to LSDL_TRACE.

Parallel DL distance algorithms
Run times for the parallel DL distance algorithms are
given in Fig. 19 and Table 19. As was the case on our
Xeon4 platform, PP_Strip_DL is faster than PP_DL and
PP_LS_DL. It reduces the run time by up to 25.6% and
79.4%, respectively. The speedup of our parallel algorithm
PP_Strip_DL relative to its single-core version (Table 20)
is up to 5.71. This is quite close to the number of cores
(6). The maximum speedup achieved by PP_DL and
PP_LS_DL was 4.89 and 5.27, respectively.

Table 20 Speedup of parallel DL distance algorithms on Xeon6

A B DL/PP LS_DL/PP Strip_DL/PP

40000 40000 4.89 5.27 3.13

80000 80000 ** 5.15 5.68

120000 120000 ** 4.08 5.59

160000 160000 ** 4.07 5.71

200000 200000 ** 3.99 5.67

240000 240000 ** 4.30 5.60

280000 280000 ** 4.49 5.70

320000 320000 ** 4.80 5.58

360000 360000 ** 4.88 5.67

400000 400000 ** 5.04 5.65
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Fig. 22 Run time of DL trace algorithms, in seconds, on Xeon24

Parallel DL trace algorithms
Xeon6 run times for the parallel DL trace algorithms are
given in Fig. 20 and Table 21. PP_Strip_TRACE is faster
than PP_LSDL_TRACE and reduces the run time by up
to 68.9%. As shown in Table 22, PP_Strip_TRACE obtains
a speedup of up to 5.33 while the maximum speedup by
PP_DL_TRACE and PP_LSDL_TRACE was 5.23 and 4.55,
respectively.

Xeon E5-2695 (Xeon24) using random data
DL distance algorithms
The run times for our single-core DL distance algorithms
on the Xeon24 are given in Fig. 21 and Table 23. As on our

other test platforms, Strip_DL is the fastest followed by
LS_DL and DL. Strip_DL reduces run time by up to 73.1%
relative to DL and by up to 42.9% relative to LS_DL.

DL trace algorithms
The run times for our single-core DL trace algorithms
on the Xeon24 are given in Fig. 22 and Table 24.
Strip_TRACE reduces run time by up to 46.9% and 31.5%
relative to DL_TRACE and LSDL_TRACE, respectively.

Parallel DL trace algorithms
Parallel DL trace run times are given in Fig. 24
and Table 27. PP_Strip_TRACE is faster than

Fig. 23 Run time of parallel DL distance algorithms, in seconds, on Xeon24
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Fig. 24 Run time of parallel DL trace algorithms, in seconds, on Xeon24

PP_DL_TRACE and PP_LSDL_TRACE on large data. It
reduces the run time by up to 51.1% and 50.1%, respec-
tively. PP_Strip_TRACE achieves a speedup of up to 17.42
(Table 28); PP_DL_TRACE and PP_LSDL_TRACE have
maximum speedups of 16.98 and 12.60.

Parallel DL distance algorithms
Parallel DL distance run times are given in Fig. 23
and Table 25. PP_Strip_DL is faster than PP_DL and
PP_LS_DL and reduces the run time by up to 79.1%
and 72.8%, respectively. As can be seen from Table 26,
PP_Strip_DL scales quite well and results in a speedup of
up to 23.22. The maximum speedups provided by PP_DL
and PP_LS_DL are 18.00 and 17.88, respectively.

Discussion
Cache efficient and multi-core linear-space algorithms
to compute the DL distance between two strings as

well as to determine an optimal trace (edit sequence)
have been developed. The reduction in space pro-
vided by these algorithms enables the solution of much
larger instances than is possible using previously known
algorithms.

Conclusion
Our algorithms were empirically evaluated on 3 com-
putational platforms. Cache-misses were experimentally
measured on one of these platforms and we verified that
the algorithms analyzed to have a smaller number of cache
misses using our simple cache model actually had fewer
misses on a real computational platform. Significant run-
time improvement (relative to known algorithms) was
seen for our cache-efficient algorithms on all three plat-
forms. On all platforms, the linear-space cache-efficient
algorithms Strip_DL and Strip_TRACE were the best-

Table 21 Run time of parallel DL trace algorithms on Xeon6

A B PP_DL_TRACE PP_LSDL_TRACE PP_Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:03 0:00:05 0:00:05 -56.2% -51.2% 3.2%

80000 80000 ** 0:00:19 0:00:16 15.7%

120000 120000 ** 0:00:51 0:00:31 38.1%

160000 160000 ** 0:01:49 0:00:56 48.9%

200000 200000 ** 0:03:19 0:01:21 59.3%

240000 240000 ** 0:05:04 0:01:56 61.9%

280000 280000 ** 0:07:19 0:02:33 65.1%

320000 320000 ** 0:09:55 0:03:21 66.3%

360000 360000 ** 0:13:11 0:04:12 68.2%

400000 400000 ** 0:16:14 0:05:03 68.9%
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Table 22 Speedup of parallel DL trace algorithms on Xeon6

A B DL_TRACE/PP LSDL_TRACE/PP Strip_TRACE/PP

40000 40000 5.23 4.23 3.30

80000 80000 ** 4.49 4.15

120000 120000 ** 4.19 4.65

160000 160000 ** 4.05 4.68

200000 200000 ** 4.02 5.02

240000 240000 ** 4.12 5.04

280000 280000 ** 4.28 5.18

320000 320000 ** 4.38 5.17

360000 360000 ** 4.51 5.22

400000 400000 ** 4.55 5.33

Table 23 Run time of DL distance algorithms on Xeon24

A B DL LS_DL Strip_DL L vs D S vs D S vs L

40000 40000 0:00:24 0:00:14 0:00:10 41.5% 57.1% 26.7%

80000 80000 0:01:26 0:00:53 0:00:41 38.3% 53.0% 23.8%

120000 120000 0:03:06 0:02:01 0:01:31 35.3% 50.9% 24.2%

160000 160000 0:05:33 0:03:34 0:02:42 35.6% 51.3% 24.3%

200000 200000 0:08:32 0:06:08 0:04:15 28.2% 50.2% 30.6%

240000 240000 0:12:40 0:08:05 0:06:05 36.2% 52.0% 24.8%

280000 280000 0:19:24 0:11:32 0:08:20 40.6% 57.0% 27.7%

320000 320000 0:29:51 0:15:55 0:10:58 46.7% 63.3% 31.1%

360000 360000 0:44:44 0:26:41 0:15:11 40.4% 66.0% 43.1%

400000 400000 1:04:03 0:30:11 0:17:15 52.9% 73.1% 42.9%

Table 24 Run time of DL trace algorithms on Xeon24

A B DL_TRACE LSDL_TRACE Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:23 0:00:25 0:00:21 -6.1% 9.7% 14.9%

80000 80000 0:01:25 0:01:36 0:01:23 -12.8% 2.7% 13.8%

120000 120000 0:03:04 0:03:38 0:03:04 -18.2% -0.1% 15.3%

160000 160000 0:05:29 0:06:26 0:05:27 -17.1% 0.7% 15.2%

200000 200000 0:08:30 0:10:26 0:08:54 -22.9% -4.8% 14.7%

240000 240000 0:12:40 0:14:44 0:12:14 -16.3% 3.5% 17.0%

280000 280000 0:19:07 0:20:22 0:16:39 -6.5% 12.9% 18.2%

320000 320000 0:29:14 0:27:39 0:21:51 5.4% 25.3% 21.0%

360000 360000 0:44:52 0:41:56 0:28:55 6.6% 35.6% 31.0%

400000 400000 1:04:33 0:50:01 0:34:16 22.5% 46.9% 31.5%
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Table 25 Run time of parallel DL distance algorithms on Xeon24

A B PP_DL PP_LS_DL PP_Strip_DL L vs D S vs D S vs L

40000 40000 0:00:02 0:00:01 0:00:01 67.7% 74.7% 21.5%

80000 80000 0:00:08 0:00:04 0:00:02 53.6% 75.1% 46.4%

120000 120000 0:00:16 0:00:08 0:00:04 51.8% 72.7% 43.5%

160000 160000 0:00:28 0:00:18 0:00:08 34.8% 70.4% 54.6%

200000 200000 0:00:44 0:00:28 0:00:11 37.1% 74.6% 59.6%

240000 240000 0:01:04 0:00:37 0:00:16 42.0% 74.3% 55.8%

280000 280000 0:01:33 0:00:59 0:00:23 36.3% 75.8% 61.9%

320000 320000 0:02:11 0:01:33 0:00:30 29.1% 77.4% 68.1%

360000 360000 0:03:07 0:02:01 0:00:40 35.1% 78.5% 66.9%

400000 400000 0:03:34 0:02:44 0:00:45 23.2% 79.1% 72.8%

Table 26 Speedup of parallel DL distance algorithms on Xeon24

A B DL/PP LS_DL/PP Strip_DL/PP

40000 40000 9.86 17.88 16.69

80000 80000 10.53 13.99 19.90

120000 120000 11.39 15.29 20.51

160000 160000 12.02 11.86 19.77

200000 200000 11.51 13.14 22.57

240000 240000 11.91 13.10 22.29

280000 280000 12.51 11.68 22.19

320000 320000 13.70 10.30 22.27

360000 360000 14.39 13.21 22.73

400000 400000 18.00 11.05 23.22

Table 27 Run time of parallel DL trace algorithms on Xeon24

A B PP_DL_TRACE PP_LSDL_TRACE PP_Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:01 0:00:03 0:00:02 -153.0% -79.8% 28.9%

80000 80000 0:00:07 0:00:11 0:00:07 -58.3% -7.1% 32.3%

120000 120000 0:00:17 0:00:21 0:00:15 -25.4% 8.3% 26.9%

160000 160000 0:00:30 0:00:35 0:00:24 -18.4% 18.1% 30.8%

200000 200000 0:00:47 0:00:53 0:00:41 -11.0% 14.3% 22.8%

240000 240000 0:01:08 0:01:13 0:00:53 -8.0% 21.7% 27.5%

280000 280000 0:01:39 0:01:52 0:01:10 -13.4% 28.9% 37.3%

320000 320000 0:02:27 0:02:30 0:01:26 -1.8% 41.7% 42.7%

360000 360000 0:03:23 0:03:20 0:01:40 1.5% 50.9% 50.1%

400000 400000 0:04:22 0:04:14 0:02:08 3.3% 51.1% 49.5%
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Table 28 Speedup of parallel DL trace algorithms on Xeon24

A B DL_TRACE/PP LSDL_TRACE/PP Strip_TRACE/PP

40000 40000 16.98 7.12 8.53

80000 80000 12.59 8.97 11.43

120000 120000 11.01 10.38 12.02

160000 160000 11.14 11.02 13.51

200000 200000 10.76 11.91 13.15

240000 240000 11.20 12.06 13.81

280000 280000 11.65 10.94 14.26

320000 320000 11.92 11.08 15.28

360000 360000 13.29 12.60 17.42

400000 400000 14.77 11.83 16.04

performing single-core algorithms to determine the DL
distance and optimal trace, respectively.

Strip_DL reduced run time by as much as 73.1% relative
to the classical distance algorithm DL and Strip_TRACE
reduced run time by as much as 63.5% relative to the
classical trace algorithm. Multi-core versions of these two
algorithms scaled quite well and achieved a speedup of up
to 23.22 on a 24 core computer.

We also measured the energy efficiency of our
algorithms on one of the platforms. Our best single-
core algorithms reduced energy consumption by as
much as 68.5% (relative to the best previously known
algorithm) when computing the DL distance and
by as much as 46.8% when computing an optimal
trace. Our best multi-core algorithms achieves up
to 81.4% and 57.6% energy consumption reduction,
respectively.
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