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Abstract

challenges in finding an appropriate centrality algorithm.

through GPU parallelism.

Background: Computing centrality is a foundational concept in social networking that involves finding the most
“central” or important nodes. In some biological networks defining importance is difficult, which then creates

Results: We instead generalize the results of any k centrality algorithms through our iterative algorithm MATRIA,
producing a single ranked and unified set of central nodes. Through tests on three biological networks, we
demonstrate evident and balanced correlations with the results of these k algorithms. We also improve its speed

Conclusions: Our results show iteration to be a powerful technigue that can eliminate spatial bias among central
nodes, increasing the level of agreement between algorithms with various importance definitions. GPU parallelism
improves speed and makes iteration a tractable problem for larger networks.
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Background

The concept of centrality is fundamental to social network
theory and involves finding the most important or cen-
tral nodes in a social network. There are three core types
of path-based centrality, each with different definitions of
importance. Betweenness centrality [1] bases importance
on the number of shortest paths over all pairs of nodes
that run through a node (finding hubs in a network),
closeness [2] on the overall length of the shortest paths
towards all other nodes that start from a node (finding
nodes in the “center” of a network), and degree [3] on the
number of connections. There are also eigenvector-based
approaches, which solve a system of n equations with n
unknown centrality values for a graph of # nodes, applying
an eigensolver that eventually converges to the centrality
values. PN-centrality [4] takes into account a node’s local
degree and that of its “friends” and “enemies”. Google’s
PageRank [5] models centrality by a random walker which
probabilistically either moves to a neighbor or someplace
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random, with centrality values reflecting how often this
walker lands upon a node. PageTrust [6] extends PageR-
ank to handle signed networks by incorporating distrust
between nodes.

Many real-world networks (i.e., airports, search
engines) have a clear definition of “importance’, enabling
the appropriate centrality algorithm to be chosen. When
studying biological networks this can also be true, as
has been shown with phylogenetically older metabolites
tending to have larger degree in a metabolic network [7],
and the removal of highly connected proteins within yeast
protein interaction networks tending to be lethal [8].
Other times this is not so certain, as when studying prop-
erties such as transitivity in protein interaction networks
[9], robustness against mutations in gene networks [10],
and finding global regulators in gene regulatory networks
[11]. This latter study in particular showed large amounts
of disagreement between centrality algorithms in uncov-
ering global regulators in an E. Coli gene regulatory
network, and along with other studies [12, 13] indicates
it is necessary to apply multiple centrality algorithms in
situations where “importance” is difficult to define.

The challenge in these situations then becomes how
to unify results over multiple centrality algorithms that
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differ in their definitions of “importance” and therefore
also their results. Figure 1 shows application of the three
path-based approaches to a signed and weighted bacterial
co-occurrence network [14], with parts (al-3) demon-
strating minimal similarity between each algorithm’s top
20% most central nodes. To be certain we also tested on
the two less modular biological networks shown in Fig. 2,
including a Pacific Oyster gene co-expression network
(GEO:GSE31012, network B) and a more fully connected
bacterial co-occurrence network C. Table 1 shows Spear-
man correlations between rank vectors from the three
path-based approaches (network A is from Fig. 1). Cor-
relation with betweenness and the other two approaches
peaked for network B, but went to almost zero for network
A (modular) and network C (well-connected). Correlation
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between degree and closeness was the opposite, peaking
for the extremes but low for network B.

Figure 1al-3 makes it evident that spatial biases within
each algorithm largely contribute to this disagreement.
For network A all central nodes were mostly on the same
path with betweenness (al), in the “middle” with closeness
(a2), and in the same strongly connected component with
degree (a3). The network had 126 nodes, and the three
algorithms agreed on only five central nodes (in black)
within their top 20%. This naturally leads to the question,
if we were to somehow remove spatial bias, would we have
more consensus among the results?

We build on a prior algorithm called ATRIA [15], which
reduced bias in closeness centrality by applying itera-
tion to identify central nodes spread widely across the
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Fig. 1 Centrality results on a test microbial co-occurrence network. Top 20% most central nodes found by non-iterative betweenness (a1, red),
closeness (a2, yellow) and degree (a3, blue) centrality in a correlation network, with mutual agreements in black. Central nodes found by iterative
betweenness (b1), closeness (b2) and degree (b3) centrality on the same network, again with mutual agreements in black. € Same network with
nodes found by all (black), betweenness only (red), closeness only (yellow), degree only (blue), betweenness and closeness (orange), closeness and
degree (green), and betweenness and degree (violet). d Final network with all possible disagreements (dark) resolved. e Final centrality rankings of
nodes and supernodes produced by MATRIA, red nodes are highly ranked, violet low, white zero
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Network (B)

Fig. 2 Two other test biological networks. b Gene co-expression network from the Pacific Oyster; € Less modular microbial co-occurrence network

Network (C)

network. We used a socio-economic model with node
pairs providing a “gain” and a “loss” to each other. We will
now apply iteration to other centrality algorithms (which
we refer to as backbones), and first illustrate stronger
agreement between iterative backbones on our biological
networks compared to their non-iterative counterparts.
We next propose an algorithm MATRIA for unifying dis-
agreements between these iterative backbones, producing
a ranked set of central nodes and supernodes with mul-
tiple central node possibilities. This unified set had good
coverage for our networks, with 90-100% of the nodes
either in this set or universally agreed as unimportant. We
also demonstrate that this rank vector correlates well with
those from the iterative backbones, which by consilience
[16] supports its reliability. Since iteration is computation-
ally expensive we conclude with a discussion on improving
efficiency for large biological networks through the GPU.

Background: iteration

With ATRIA we found spatial bias within closeness cen-
trality could be fixed by iteratively finding and removing
dependencies of the most central node, then recomputing
centralities. We did this until all are zero (“unimportant”).
Social network theory [17] states that two nodes con-
nected by a mutual friend or enemy (known as a stable
triad) will tend to become friends, and thus we defined a
dependency of a node i as i itself plus any edges in a sta-
ble triad with i, illustrated by Fig. 3. In both cases if node

Table 1 Rank vector correlations between non-iterative centrality
algorithms on three signed/weighted biological networks

Algorithm Pairs A B C
Betweenness/Closeness 0.071 0.396 -0.120
Betweenness/Degree -0.170 0.106 -0.136
Closeness/Degree 0.699 0.256 0.863

A was most central we assumed edge BC to be coinciden-
tal and remove node A and edge BC before recomputing
centralities. We first generalize iterative centrality using
Algorithm 1, with X acting as a placeholder for some
backbone algorithm.

ITERCENTx(2)
begin
repeat
S={k
foreach node i from 0 to N — 1 do
‘ Compute Centralityx(i);
end
Find node m with highest Centralityx (m);
Add m to the set S of central nodes;
Remove dependencies of m ;
until Centralityx(m) = 0;

return S
end

Algorithm 1: Generalized iterative centrality algorithm.

ATRIA also extended closeness centrality to operate on
an undirected network with edge weights in the range
[—1,1] by approaching centrality from the perspective
of a node’s benefit to the network. We used a simplified
economic Payment Model [18], defining closeness (CLO)
centrality Centralitycro(i) of node i by Eq. 1.

Centralitycro(i) = | Z G, ) + LG I, (1)

J#i
where G(i,j) is the maximum positive edge weight prod-
uct over all paths between node i and node j, and L(i, )
is the maximum negative edge weight product. We com-
puted these paths using a modified Dijkstra’s algorithm
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Fig. 3 Stable triads, with (@) zero and (b) two negative edges

MOD_DIJKSTRA that used edge products and chose max-
imum path magnitudes. This is just closeness central-
ity using maximum paths, with “path length” defined as
G(i,j) + L(,j). Plugging CLO into X in Algorithm 1 rep-
resents our iterative closeness centrality algorithm ATRIA.
We now define signed versions of other path-based back-
bones.

Signed versions of other path-based approaches

Degree centrality

Degree is easiest to define, with all local computations. For
gains and losses we count incident positive and negative
edges for a node i, producing:

Centralitype(i) = | Y Wi, /), )
J#i
where W (i, )) is the signed weight of edge (i, ).

Betweenness centrality

Betweenness is more challenging, but we can use the same
MOD_DIJKSTRA algorithm to count the number of pos-
itive paths (call this yj (7)) and negative paths (call this
Ajk(9)) that include i. The equation then becomes the sum
of these terms:

Centralityper () = ) yjx(@) + A (D). (3)
jiztk

We can then plug BET or DEG for X in Algorithm 1
to respectively produce iterative betweenness or degree
centrality. Since non-iterative path-based approaches pro-
duced extremely different results on our networks, we will
use these iterative versions ITERCENTggT, ITERCENT 10,
and ITERCENTpgg to demonstrate MATRIA. Other cen-
trality algorithms can be substituted for X, and we will
in fact show that MATRIA can support any k centrality
algorithms.

Table 2 shows the updated rank vector correlations
for iterative path-based algorithms on our biological net-
works, confirming improved performance for network A
before any attempt to resolve disagreements (especially

for betweenness). The less modular networks B and C
do not show as much improvement and are sometimes
worse. We now describe MATRIA, which produces a uni-
fied ranked set that correlates well with each iterative
path-based approach.

MATria

Algorithm 2 shows our top-level MATRIA procedure that
accepts a network g and produces the sets of central
nodes SpeT, Scro and Speg, then resolves disagreements
between these sets through a procedure UNIFY to produce
a final set S.

MATRIA(g)
begin
Sper = ITERCENTRET(2);
Scro = ITERCENTc10(g);
SpeG = ITERCENTpEG(Q);
S = UNIFY(SBeT, ScrLo» SDEG);
end
Algorithm 2: Top-level MATRIA algorithm.

Universal agreements

We define universal agreements as nodes discovered by all
iterative backbones, or any x : x € Sper N Scro N Spee-
On network A the iterative backbones agreed on twelve
central nodes, colored black in Fig. 1b1-3 and labeled
A1-A12. Recall this is already an improvement upon the
non-iterative versions, which agreed on only five central

Table 2 Rank vector correlations between iterative path-based
centrality algorithms

Algorithm Pairs A B C

ITERCENTge7/ITERCENT (0 0.498 0.208 0.060
ITERCENTg7/ITERCENTpeG 0.569 0.538 0.298
ITERCENT( o/ITERCENT G 0.717 0.189 0.209
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nodes in the same vicinity. UNIFY first adds these twelve
universal agreements to S.

Resolving disagreements

In Fig. 1c we label nodes found by one or two of the
path-based backbones, but not all three (18 total). We use
node color to indicate the backbone(s) that discovered
them, with primary colors for nodes discovered by one
backbone:

e Betweenness (4), colored red: B1-B4
e Closeness (5), colored yellow: C1-C5
e Degree (2), colored blue: D1, D2

We use secondary colors obtained by combining appro-
priate primary colors for nodes discovered by two back-
bones:

¢ Betweenness & Closeness (1), colored orange: BC1
e Closeness & Degree (5), colored green: CD1-CD5
e Betweenness & Degree (1), colored violet: BD1

We note patterns among these disagreements. Many
times all three backbones are covered exactly once
between two adjacent or three triad nodes. We argue that
because of the fundamental properties of iteration, cen-
trality is likely a “toss-up” in these situations. Take for
example the triad [«,7%,z] in Fig. 4a. In this case x, y and
z were found as central by iterative betweenness, close-
ness and degree respectively. However, suppose centrality
is actually a “toss-up” between them, which would mean
for example in iterative betweenness when x was found
as most central, y and z had only slightly lower central-
ity values. In the next iteration x would be removed along
with edge y — z, causing y and z to lose all contributions
from paths involving this triad (which by definition are
likely significant if x was central). The same thing would
happen when y was found by iterative closeness, and z
by iterative degree. Adjacencies like the one in Fig. 4b
have the same issue for the same reason, with x (or y)
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losing contributions from its central neighbor upon its
removal.

We define a supernode as any set of neighboring nodes
such that each algorithm finds exactly one of them.
In Fig. 1c we have two supernode triads: [B1,C1,D1]
and [B3,C5,D2]. UNIFY adds these to S (now 14 ele-
ments) as “toss-ups’, and we also darken them in our
updated Fig. 1d to indicate they have been resolved. For
supernode adjacencies there are three types: red-green
(betweenness, closeness/degree), yellow-violet (closeness,
betweenness/degree), and blue-orange (degree, between-
ness/closeness). We have a total of six supernode adja-
cencies in Fig. lc and begin by adding them to S:
[ Bl,CD1], [ B2, CD2], [ B3, CD3], [ B3, CD4], [ B4, CD3],
and [ C2,BD1].

We now have an issue, because two of these adjacencies
also include supernode triad members (B1 and B3). Hav-
ing supernodes that share members is not helpful, because
each supernode should provide multiple options for a cen-
tral node. We now describe how UNIFY merges supern-
odes with common members, and specifically address
the triad and adjacency in detail to handle this network.
Supernode triads can also overlap with each other, as can
supernode adjacencies, and we later briefly describe how
to merge those.

Merging overlapping supernodes

We first note that for a supernode adjacency x-y, if x is also
amember of a supernode triad it is already a “toss up” with
two nodes w and z, as shown in Fig. 5. We then note that
w and z must be found by the same two algorithms that
found y (since in a supernode triad all three algorithms
must be covered). Thus, the “toss-up” becomes between
(1) only %, (2) ¥y and w, and (3) y and z. We merge these
into one supernode triad [, {y, w}, {y, z}], now allowing a
single node to represent a set of nodes as shown in the
Figure. Although the edges from x to {y, w} and {y, z} now
become ambiguous, their weights are no longer relevant
because we already ran the backbones.

x,y, Z]
(a)

Fig. 4 Supernode examples; (a) triad, (b) adjacency

@

[x, yl

(b)
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—
[x, {y, z}, {w, y}]
Fig. 5 Merging supernodes; in this case an overlapping triad and adjacency
We have several supernode adjacencies in our network UNIEY(SgeT, Scro, SDEG)
where one of the two nodes is also in a supernode triad: begin
. , S=1{;
e Central Triad [ B1, C1, D1] with adjacency foreach (x : x € Sger N Scro N Spec) do
[ B1, CD1]. We replace both elements in S by the | addxtoS; > Universal Agreements
supernode: [ B1, {C1, CD1},{D1, CD1}]. end

e Upper Triad [ B3, C5, D2] with adjacencies
[ B3, CD3] and [ B3, CDA4]. We replace all three
elements in S by the supernode
[B3,{C5,CD3, CD4},{D2, CD3, CD4}].

e New Triad [ B3, {C5, CD3, CD4},{D2, CD3, CD4}]
now has an overlap with adjacency [ B4, CD3]. We
similarly replace both elements in S by the supernode
[ (B3, B4}, {C5, CD3, CD4}, {D2, CD3, CD4}].

Figure 1d shows all resolved disagreements darkened.
In addition, Table 3 shows the other types of supernode
merges performed by UNIFY, between triads that share
one or two nodes or adjacencies that share one. Merging
provides the final set S in UNIFY, which we now fully write
as Algorithm 3.

Ranking Supernodes: The final step of UNIFY is to rank
the elements of S. We do this as follows:

1. Universal Agreements: Mean ranking over
backbones.

2. Supernode Triads: Mean ranking of each node
using the backbone that found it. For example in
Fig. 4a we would average the ranking of x in
betweenness, y in closeness, and z in degree.

Table 3 Other types of supernode merges

Category SN1 SN 2 Replace Both By
Triad (2 Shared) [x,y,wl [xv.2] [y {w,z}]
Triad (1 Shared) [x v, w] [xy,2] [x vy} {w, 2]]
Adjacency(1 Shared) [x,¥] [x,2] [x {y.z}]

foreach (x,y,z : x € Sper — (Scro U Speg), ¥ €
Scro— (SperUSpEG)s 2 € SpeG — (SpeTUScro), and
Wx,y) « W(y,2) * W(x,z) > 0) do

| add[x,9,z]toS; > Supernode Triads
end
foreach (x,y : W(x,y) # 0 and
((x € Sper and y € (Scro N SpeG) — SBET) O
(x € Scro and y € (Sper N Speg) — Scro) or

(x € Speg and y € (Sger N Scro) — Speg)) do
| add[x,y]tosS; > Supernode Adjacencies

end

Merge overlapping supernodes in S ;
Rank all elements in S ;

return S;

end

Algorithm 3: UNIFY procedure.

3. Supernode Adjacencies: Same as supernode triads,

except one node will have rankings for two
backbones.

. Merged Supernodes: These have elements like

{w, y} where w and y were said to both be important
by a backbone. In this case use the ranking of
whichever of w and y was discovered first as the
ranking of {w, y}, then apply the above logic for the
supernode ranking. Our results, shown in Fig. 1e
(red=high and violet=low rank), indicate that the top
five entries (A1, A2, A5, A8, and the supernode
BD1-C2) could correspond to leaders of the five
most tightly connected components.
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Unresolvable Disagreements: Although most dis-
agreements in Fig. 1 were resolvable there are still two
nodes C3 and C4 that were found by closeness and not
involved in a resolvable disagreement. These are still
colored yellow in Fig. 1d. Upon further investigation
the disagreement resulted because iterative degree and
betweenness found node A7 early (#2 and #7), but close-
ness found it later (#16, but more importantly after C3
and C4). With A7 directly connected to C3, removing it
plummeted C3 in degree and betweenness centrality. But
since A7 was also eventually discovered by closeness it
became a universal agreement and could not be a supern-
ode with C3. This seems to suggest forming supernodes
on-the-fly, as opposed to waiting until the end. However
the drop of C4 resulted from an indirect effect (remov-
ing A7 reduced many edges in that tight component), so
that will not resolve all disagreements either. The other
disagreement, BC1 and CD5, creates an interesting sit-
uation where two backbones each say one is important,
but one (closeness) says both are important (i.e. not a
“toss-up”). We leave this as unresolvable for now, though
could potentially add another type of element in S which
encapsulates this. We will see however that even with our
current approach, these unresolvable disagreements are
quite rare in our networks.

We also remark that UNIFY can be generalized to work
with any k centrality algorithms. In our example (k = 3),
we can view supernode adjacencies and triads as compo-
nents of size 2 and 3. In general supernodes can be of
sizes 2 to k.

Results

Coverage

We begin by evaluating the percentage of nodes for which
UNIEY could reach an agreement on centrality. Table 4
shows that the number of agreed important nodes did not
drop significantly as our networks became less modular.
While the universal agreement (important and unimpor-
tant) percentage did drop, most of these nodes became
involved in supernodes, all5owing us to still draw con-
clusions about their centrality. Only 3-7% of nodes were
involved in unresolvable disagreements, demonstrating

Table 4 MATRIA coverage of all three networks

A B @
Agreed Important 12 11
Agreed Unimportant 96 127 50
Supernode Triad 6 20 3
Supernode Adj 8 31 57
Unresolvable 4 14 9
% Universal Agreement 86 68 45
% Resolvable 97 93 93
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that MATRIA will generally produce a set with good
coverage.

We also checked some of the agreed important genes
discovered by MATRIA in network B. Although gene
essentiality statistics are limited for the Pacific Oyster,
the results show promise. The gene for the most abun-
dant and fundamental eukaryotic protein, Actin [19], was
found and ranked #2 by MATRIA. MATRIA also found
genes for Death-Associated Protein 3 (DAP3) which has
been marked essential in other eukaryotic organisms for
its critical roles in respiration and apoptosis [20], and the
Heat Shock Protein (HSP) which has also been marked
essential for apoptosis in both prokaryotes and eukaryotes
[21] and is involved in protein folding [22]. Addition-
ally, MATRIA found genes for a member of the Sterile
Alpha Motif (SAM) homology, which is known to have
important roles in immunity [23] and its ability to bind
to RNA [24], and also a Protein-Tyrosine Phosphatase
Non-Receptor (PTPN, [25]) which has potential to affect
multiple cellular functions through post-translational
phosphorylation [26].

Correlations

We next verify that the rank vector for S correlates with
the individual rank vectors Sger, Scro, and Speg, plus
those found when including PN-Centrality and PageTrust
(thus kK = 5). Table 5 shows that for all five examples
we were able to produce a ranking with moderate and
consistent correlations across all iterative backbones, with
correlations tending to decrease as the network became
less modular to just below 0.5 in the worst case (still
demonstrating correlation).

Discussion

As we realize that iteration is computationally expensive,
we parallelize MATRIA for the GPU using a four-step pro-
cess demonstrated by Fig. 6. We can envision GPU threads
as a jagged array indexed by two values i and j, where
i < j. Each thread (i, )) first computes any maximum pos-
itive and negative paths between node i and node j in
parallel. We then take N threads (for a network with N
nodes), one per row, to compute the centrality of each ele-
ment i. Next, we compute the most central node m on
the CPU, followed by each thread (i, /) marking edge (i, /)

Table 5 MATRIA rank vector correlations

Algorithms A B C

MATRIA/ITERCENTg7 0.636 0.598 0.386
MATRIA/ITERCENT 0 0.708 0.606 0404
MATRIA/ITERCENTpEG 0.684 0.635 0486
MATRIA/ITERCENTpy 0.696 0614 0.507

MATRIA/ITERCENTpr 0.698 0.597 0470
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fork->1toN

L] L]
[ [
S

/

Update maximum positive/negative path(s)

Compute Centrality(i)

With Max
Centrality

Mark edge (i, ) for removal if in a stable triad with m

Fig. 6 Steps for our GPU multi-threaded code, and specific operations for each thread

if it (1) exists and (2) is in a stable triad with #. Finally
each thread (i, j) removes edge (i, ) if it is marked. Table 6
shows the wall clock execution time of MATRIA on a Tesla
K20 GPU, demonstrating that with this power MATRIA
can practically produce results for networks in the low-
to mid- thousands. Compared to serial execution on a 1.6
GHz CPU with 16 GB of RAM, this yielded 8- to 16- fold
speedups on the first three networks and orders of magni-
tude speedups on the larger two (respectively over an hour
and on pace for multiple days on the CPU). We continue
to look for ways to run MATRIA on larger networks.

Conclusions

Our results illustrate that applying iteration to central-
ity algorithms with different definitions of “importance”
and unifying their results gives more meaning to their
computed central node sets. By resolving disagreements
MATRIA produces a ranked list of central nodes and
supernodes, with a cardinality much smaller than the size
of the network and several mutually agreed unimpor-
tant nodes removed. Rank vectors correlate well between
this set and the individual iterative backbones and are
much more consistent compared to just the iterative or
non-iterative backbones. While cases of unresolvable dis-
agreements can still occur in this unified set, they are rare.
Through GPU optimizations MATRIA is currently prac-
tical for medium-sized networks, and we are exploring
ways to push this boundary. We also plan to experiment
with weighted averages when computing overall rank-
ings. Finally, applying MATRIA to directed (i.e. metabolic)

Table 6 MATRIA wall clock execution times

Sample Network Nodes GPU Wall Clock Time (s)
Lung Bacterial Co-Occurrence 126 0.48 +/-0.00

Oyster Gene Co-Expression 203 1.60 +/- 0.00

Scale-Free Synthetic 500 28.52 +/-0.03
Scale-Free Synthetic 1000 60.61 +/- 0.04

Fruit Fly Protein-Protein 2997 435794 +/-3.97

biological networks will require an extension of iteration
and supernodes to incorporate direction (i.e. adjacency
x — y would now be different from x < y), an interesting
question that we plan to immediately pursue.

Abbreviations
ATria: Ablatio Triadum; GPU: Graphics Processing Unit; MATria: Multiple Ablatio
Triadum

Acknowledgements

We acknowledge Michael Campos, Mitch Fernandez, Wenrui Huang, Jingan
Qu, Juan Daniel Riveros, Victoria Suarez-Ulloa, and Camilo Valdes for useful
discussions.

Funding

TC was funded by a Faculty Development Grant from Eckerd College and
resources provided by NVIDIA. VAP was supported by the College of
Engineering and Computing at FIU. GN was partially supported by the
Department of Defense (W911NF-16-1-0494), National Institute of Health (NIH
1R15A1128714-01), National Institute of Justice (NIJ 2017-NE-BX-0001), Florida
Department of Health (FDOH 09KW-10), and the Alpha-One Foundation.
Publication charges for this article will be paid through personal funds of the
authors.

Availability of data and material

MATria is available as a plugin for the PIuMA [27] analysis pipeline, available at
http://biorg.cs.fiu.edu/pluma/ for download. All applicable input data is also
available, along with sample executions from this paper at http://biorg.cs fiu.
edu/pluma/matria.

About this supplement

This article has been published as part of BMC Bioinformatics Volume 20
Supplement 11, 2019: Selected articles from the 7th IEEE International Conference
on Computational Advances in Bio and Medical Sciences (ICCABS 2017):
bioinformatics. The full contents of the supplement are available online at
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-
20-supplement-11.

Authors’ contributions

This work was conducted by the Bioinformatics Research Group (BioRG) at
Florida International University managed by GN and spearheaded by TC. All
authors contributed to all portions of this project, and have read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.


http://biorg.cs.fiu.edu/pluma/
http://biorg.cs.fiu.edu/pluma/matria
http://biorg.cs.fiu.edu/pluma/matria
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-11
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-11

Cickovski et al. BMC Bioinformatics 2019, 20(Suppl 11):278

Author details

! Bioinformatics Research Group (BioRG) & Biomolecular Sciences Institute,
School of Computing & Information Sciences, Florida International University,
11200 SW 8th St, 33199 Miami, FL, USA. 2Center for Neurogenetics, Weill
Cornell Medical College, 10021 New York, NY, USA.

Published: 6 June 2019

References

1. Freeman L. C. A set of measures of centrality based on betweenness.
Sociometry. 1977;40(1):35-41.

2. Sabidussi G. The centrality index of a graph. Psychometrika. 1966;31(4):
581-603. https://doi.org/10.1007/BF02289527.

3. Havel V. A remark on the existence of finite graphs. Cas Pro Pestovani
Matematiky. 1955;80:477-80.

4. Everett M. G, Borgatti S. P. Networks containing negative ties. Soc
Networks. 2014;38:111-20.

5. Pagel, Brin'S, Motwani R, Winograd T. The PageRank citation ranking:
bringing order to the web. Tech Rep. 1999. http:/ilpubs.stanford.edu:
8090/422/.

6. de Kerchove C, Van Dooren P. The PageTrust algorithm: How to rank
web pages when negative links are allowed?. In: Proceedings SIAM Data
Mining Conference (SDM2008). Atlanta: SIAM; 2008. p. 346-52.

7. FellD. A, Wagner A. The small world of metabolism. Nat Biotechnol.
2000;18(11):1121-2.

8. JeongH., Mason S.P., Barabasi A. L., Oltvai Z.N. Lethality and centrality in
protein networks. Nature. 2001;411(6833):41-2.

9. Wuchty S. Interaction and domain networks of yeast. Proteomics.
2002;2(12):1715-23.

10. Hahn M.W., Conant G. C,, Wagner A. Molecular evolution in large
genetic networks: Does connectivity equal constraint?. J Mol Evol.
2004;58(2):203-11. https://doi.org/10.1007/500239-003-2544-0.

11. Koschutzki D., Schreiber F. Centrality analysis methods for biological
networks and their application to gene regulatory networks. Gene Regul
Syst Bio. 2008;2:193-201.

12. Wuchty S, Stadler P. F. Centers of complex networks. J Theor Biol.
2003;223(1):45-53.

13. Koschutzki D., Schreiber F. Comparison of centralities for biological
networks. In: Proc. German Conf Bioinforma (GCB'04); 2004. p. 199-206.

14. Kim P.-J,, Price N. D. Genetic co-occurrence network across sequenced
microbes. PLoS Comput Biol. 2011;7(12):1002340.

15. Cickovski T., Peake E., Aguiar-Pulido V., Narasimhan G. ATria: A novel
centrality algorithm applied to biological networks. BMC Bioinforma.
2017;18(58):239-48.

16. Wilson E. O. Consilience: The Unity Of Knowledge. New York, NY: Knopf;
1998.

17. Easley D., Kleinberg J. Networks, Crowds and Markets: Reasoning About a
Highly Connected World. Cambridge, UK: Cambridge University Press;
2010.

18. Jackson M. O., Wolinsky A. A strategic model of social and economic
networks. Economic Theory. 1996;71(8):44-74.

19. Elzinga M, Collins J. H., Kuehl W. M., Adelstein R. S. Complete amino-acid
sequence of actin of rabbit skeletal muscle. Proc Natl Acad Sci. 1973;70(9):
2687-91. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC427084/.

20. Tang T, Zheng B, Chen S-h., Murphy A.N., Kudlicka K, Zhou H.,
Farquhar M. G. hNOAT interacts with complex | and DAP3 and regulates
mitochondrial respiration and apoptosis. J Biol Chem. 2009,284(8):
5414-24. https://doi.org/10.1074/jbc.M807797200.

21. Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M., Garrido C. Heat
Shock Proteins: Essential proteins for apoptosis regulation. J Cell Mol Med.
2008;12(3):743-61.

22. Morano K. A. New tricks for an old dog. Ann NY Acad Sci. 2007;1113(1):
1-14. https://doi.org/10.1196/annals.1391.018.

23. ZhanglL, LiL, ZhuY. Zhang G, Guo X. Transcriptome analysis reveals a
rich gene set related to innate immunity in the eastern oyster. Mar
Biotechnol (NY). 2014;16(1):17-33.

24, Kim C. A, Bowie J. U. SAM domains: uniform structure, diversity of
function. Trends Biochem Sci. 2013;28(12):625-8. https://doi.org/10.1016/
jtibs.2003.11.001.

25. Gurzov E.N.,, Stanley W.J., Brodnicki T. C., Thomas H. E. Protein Tyrosine
Phosphatases: Molecular switches in metabolism and diabetes. Trends

26.

27.

Page 55 of 103

Endocrinol Metab. 2014;26(1):30-9. https://doi.org/10.1016/j.tem.2014.10.
004.

Denu J. M., Dixon J. E. Protein tyrosine phosphatases: mechanisms of
catalysis and regulation. Curr Opin Chem Biol. 1998;2(5):633-41.
Cickovski T., Aguiar-Pulido V., Huang W., Mahmoud S., Narasimhan G.
Lightweight microbiome analysis pipelines. In: Proceedings of
International Work Conference on Bioinformatics and Biomedical
Engineering (IWBBIO16). Granada: Springer; 2016.

Ready to submit your research? Choose BMC and benefit from:

o fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1007/BF02289527
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1007/s00239-003-2544-0
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC427084/
https://doi.org/10.1074/jbc.M807797200
https://doi.org/10.1196/annals.1391.018
https://doi.org/10.1016/j.tibs.2003.11.001
https://doi.org/10.1016/j.tibs.2003.11.001
https://doi.org/10.1016/j.tem.2014.10.004
https://doi.org/10.1016/j.tem.2014.10.004

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Background: iteration
	Signed versions of other path-based approaches
	Degree centrality
	Betweenness centrality


	MATria
	Universal agreements
	Resolving disagreements
	Merging overlapping supernodes


	Results
	Coverage
	Correlations

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and material
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

