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Abstract

Background: Pairwise alignment of short DNA sequences with affine-gap scoring is a common processing step
performed in a range of bioinformatics analyses. Dynamic programming (i.e. Smith-Waterman algorithm) is widely
used for this purpose. Despite using data level parallelisation, pairwise alignment consumes much time. There are
faster alignment algorithms but they suffer from the lack of accuracy.

Results: In this paper, we presentMEM-Align, a fast semi-global alignment algorithm for short DNA sequences that
allows for affine-gap scoring and exploit sequence similarity. In contrast to traditional alignment method (such as
Smith-Waterman) where individual symbols are aligned,MEM-Align extracts Maximal Exact Matches (MEMs) using a
bit-level parallel method and then looks for a subset of MEMs that forms the alignment using a novel dynamic
programming method.MEM-Align tries to mimic alignment produced by Smith-Waterman. As a result, for 99.9% of
input sequence pair, the computed alignment score is identical to the alignment score computed by
Smith-Waterman. YetMEM-Align is up to 14.5 times faster than the Smith-Waterman algorithm. Fast run-time is
achieved by: (a) using a bit-level parallel method to extract MEMs; (b) processing MEMs rather than individual symbols;
and, (c) applying heuristics.

Conclusions: MEM-Align is a potential candidate to replace other pairwise alignment algorithms used in processes
such as DNA read-mapping and Variant-Calling.
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Background
Biological sequence alignment [1] is about finding sim-
ilarities and differences between sequences. The term
alignment covers a broad range of different processes.
Seed-and-extend alignment method is a popular tech-
nique for aligning reads to the reference-genome. This
technique is used in DNA read-mappers such as BWA
[2, 3] and Bowtie [4, 5]. In the seed-and-extend technique,
small subsequences of a read (called seeds) are searched
in the reference-genome to find candidate regions. Once
a rough alignment is identified (seeding-step), the read is
typically aligned to all candidate regions using a dynamic
programming algorithm (extending-step)
Seed-and-extend method is also used in similarity

search tools such as BLAST [6], BLAT [7] and MUMmer
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[8] as well as PatternHunter [9] and PatternHunter II [10].
In order to search for the seed in the reference-genome,
some methods such as BWA and Bowtie use a suffix-tree-
based structure called FM-Index [11] while others such as
BLAST and SNAP [12] use a hash-table index of fixed size
k-mers (subsequences of length k).
The seeding-step varies from program to program.

For example, BWA-MEM [3] looks for Maximal Exact
Matches (MEMs) and MUMmer looks for Maximal
Unique Matches (MUMs). GEM [13] limits the seed size
to have at least n + 1 non-overlaping seed to find all
alignments with up to n errors. Another technique is to
use spaced-seeding [14] that is used in PatternHunter and
PatternHunter II.
The focus of this paper is the extending-step and not the

seeding-step. Typically, in the extending-step, dynamic
programming is used. Dynamic programming alignment
could produce global [15], local [16] or semi-global [1]
alignment. Such an extending-step could also implement
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different scoring systems such as edit-distance [17] scor-
ing or affine-gap [18] scoring.
Most DNA read-mappers [2–5, 19] use a derivative

of the Smith-Waterman algorithm which uses affine-gap
scoring to find a semi-global alignment. Such implemen-
tations of the Smith-Waterman algorithm can be found in
[20–23]. These implementations exploit data-level paral-
lelisation (SIMD) instructions of Intel processors (SSE) to
further speed up the alignment process.
Not all DNA read-mappers use the above extending-

step. For example, GEM and SNAP use modified ver-
sion of Gene Myers [24] and Ukkonen [25] algorithms
respectively for their extending-step. Both Gene Myers
and Ukkonen algorithms are edit-distance based dynamic
programming alignment. There are other alignment algo-
rithms which do not use the conventional dynamic pro-
gramming technique. For example, PatternHunter uses its
own custom-made extending-step. Another example is a
greedy approach for aligning DNA sequences introduced
in [26]. The Smith-Waterman algorithm is also accelerated
on Graphic Processing Units (GPUs) [27] and Field Pro-
grammable Gate Arrays (FPGAs) [28, 29]. However, the
scope of this paper is the use in conventional computing
platform (CPUs), though they can be extended for use in
FPGAs.
In this paper, we present a dynamic programming

alignment algorithm called DP-MEM to be used in the
extending-step of the DNA read-mapper tools. Our algo-
rithm produces a semi-global alignment in which the
first few bases or the last few bases can be excluded
(clipped) from the alignments (not affecting alignment
score). Also, the proposed algorithm implements the
affine-gap scoring model. Unlike previous dynamic pro-
gramming alignment algorithms which work on indi-
vidual bases of the sequences (see Fig. 1, DP-MEM
works on the MEMs which exist between a pair of short
sequences.
DP-MEM requires all MEMs to be extracted from a

given pair of sequences. To reduce the overhead of extract-
ing MEMs, we introduce a bitwise parallel method to
quickly extract all MEMs which exist between a pair of
short sequences. DP-MEM requires MEMs to be sorted.
Thus, a linear counting sort algorithm is used to speed up
the sorting of extracted MEMs (Additional file 1: Section
I). DP-MEM along with our proposed MEM extraction
method and several heuristic optimisations introduced
in this paper form a fast and near-accurate alignment
method calledMEM-Align.
We motivate the work in this paper with the follow-

ing simplified example. Consider aligning the following
sentences:

• my dog is friendly whenever playing
in the park

Fig. 1 Traditional dynamic programming for pairwise alignment. For
sequences of length S symbols there are O(S2) entry in the table to
be processed

• all dogs are friends when playing in
parks

It is clear that matching words such as “dog”, “friend” and
“park” rather than individual letters such as “m”, “y” and
“d” would speed up the alignment process. MEM-Align
uses MEMs (similar to matching words in sentences) to
align sequences. MEM-Align is suitable for aligning sim-
ilar sequences (i.e. a read and its candidate region in the
reference-genome) where the number of existing MEMs
are significantly smaller than the number of bases in the
sequences.
Figure 2 identifies possible applications of MEM-Align.

In addition to DNA read-mapping software, MEM-Align
can be used in Variant-Callers such as GAKT Haplo-
typeCaller [30] and Platypus [31] to align haplotypes to
reference-genome and reads to haplotypes. MEM-Align
can be used for all applications where a pair of short and
similar DNA sequences are aligned.
To show the efficacy of our work, we compare the speed

and accuracy results to an accelerated implementation
of the Smith-Waterman algorithm as well as algorithms
proposed by Gene Myers and Ukkonen.
Note that, Maximal Exact Matches has been used in the

seeding-step [3]. Although MEM-Align uses MEMs, it is
not a seeding method and should not be compared with
the entire seed-and-extend alignment.MEM-Align should
be considered a replacement for algorithms used in the
extending-step.
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Fig. 2 Possible applications ofMEM-Align as a pairwise alignment algorithm for short DNA sequences. Use of pairwise alignment in a simple variant
calling pipeline. Highlighted blocks use pairwise alignment

Method
Approach
In our proposed algorithm, the first step towards align-
ing sequences is to extract MEMs between sequences by
directly comparing them. Figure 3a is an example which
compares a target and a query sequence where CTC and
AAA are two MEMs identified by the comparison. Each
group of continuous identical symbols in the comparison,
result in a MEM even if it is composed of only a single
matching symbol. In order to extract all MEMs between
the sequences, the query sequence must be shifted all
the way to the right and to the left one symbol at a
time (see Fig. 3b). After each shift, the comparison step
must be repeated to identify new MEMs. For example,
the third line in Fig. 3b represents the case where the
query sequence is shifted to the right one symbol and
is compared with the target sequence. The result of the
comparison identifies AAAAGC as a newMEM. All other
MEMs extracted by shift and compare operations are also
highlighted in Fig. 3b. Three of the MEMs (Mx,My and
Mz) are highlighted with different colours to be used for
later explanation.
In the affine-gap scoring model, the alignment score AS

is computed using Eq. 1 where Nm is number of matches
each receiving a match score of Rm,Nx is number of mis-
matches each receiving a mismatch penalty of Px,No is
number of gap openings each receiving a gap open penalty
of Po and Ng is total length of all gaps, each gap receiving
a gap extension penalty of Pg . There would be a gap open-
ing for each group of continuous gap. For example, if there
are two gaps in the alignment, where the length of the first
gap is three and the length of the second gap is four, then
there are two gap openings (No = 2) and the total length
of the gap is seven (Ng = 3 + 4 = 7).

AS = (Nm×Rm)−((Nx×Px)+(No×Po)+(Ng ×Pg)) (1)

Given the list of all MEMs, the alignment can be com-
puted using partial alignments. For example, consider

(a)

(b)
Fig. 3MEM extraction using shift and compare operations. a Identify
MEMs by direct comparison of sequences. b The query is shifted to
left until last symbol in query sequence is aligned to the first symbol
in target sequence. Then the query sequence is shifted to right until
the first symbol in query sequence is aligned to the last symbol of
target sequence. After each shift the overlapping part of the query
and target sequences are compared to identify new MEMs. Three of
MEMs (Mx ,My andMz ) are highlighted with different colours to be
used for later explanation
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MEMs Mx, My and Mz in Fig. 3b. The partial alignments
made by taking different combinations of Mx, My andMz
along with the number of matches, mismatches and gaps,
as well as the resulting alignment scores are shown in
Fig. 4. The alignment that only includesMx andMz results
in the highest alignment score. Note that,My andMz over-
lap each other and when both are considered in the same
alignment the overlap is excluded from Mz. Considering
all MEMs in Fig. 3b results in many more combinations
where none of them achieves a higher score.
Examining all possible combination of MEMs would be

exhaustive. In “Alignment algorithm” section we describe
a novel dynamic programming algorithm DP-MEM that
efficiently finds the best combination without consider-
ing all cases. DP-MEM needs to know which parts of
the sequences match but not the actual symbols in the
sequences. The input to DP-MEM is the positioning of
MEMs in the target and in the query sequences which are
obtained during theMEM extraction process described in
“MEM extraction” section. How MEMs are represented
with their positions and how the number of matches,
mismatches and gaps are computed whenMEMs are com-
bined in an alignment are explained in the remainder of
this section. Figure 5 is another example alignment with
six MEMs (M1 to M6) that form the alignment between

target sequence T and query sequence Q. For simplicity
there is no overlap between MEMs in this example. Each
MEM Mi is represented as a triplet of integer numbers:
the starting positions in T and in Q (STi and SQi respec-
tively) and its length (Li). The ending positions in T and
in Q can be computed later (�2E of Algorithm 2). Table 1
lists the length and the positioning of M1 to M6 in T and
in Q.
The number of mismatches and gaps between adjacent

MEMs Mi and Mj (Mi is on the left of Mj) is computed
from their positioning in sequences. First, the distance
between Mi and Mj in T and in Q denoted by LTj

i and
LQj

i respectively are computed (�2F of Algorithm 2) then
the number of mismatches between Mi and Mj, denoted
by Ni,j

x , is the minimum of LTj
i and LQj

i. The length of the
gap between Mi and Mj, denoted by Ni,j

g , is equal to the
absolute value of LTj

i − LQj
i (�2G of Algorithm 2). A neg-

ative value of LTj
i − LQj

i indicates an insertion (there are
more symbols in the query sequence) and a positive value
indicates a deletion (there are more symbols in the target
sequence).
For example, consider M2 and M3 in Fig. 5 where there

are three symbols between them in T (LT3
2 = 3) and only

two symbols between them inQ
(
LQ3

2 = 2
)
. This situation

Fig. 4 All possible combination of MEMs in the alignment
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Fig. 5 An example alignment with highlighted MEM

indicates two mismatches and a gap (deletion). Table 2
elaborates how the number of mismatches and gaps are
computed for the example alignment in Fig. 5.
In case there are both mismatches and gaps betweenMi

and Mj, all gaps are considered continuous to reduce the
gap open penalty (only one gap open penalty is applied for
a continues gap). Thus, for all adjacent MEMs that have
gaps between them, only one gap open penalty is applied.
The placement of mismatches and the only continuous
gap is not important, as it would not affect the alignment
score. We assume that the mismatch penalty is constant
(this is usual for DNA sequences).
If there is an overlap between Mi and Mj either in the

target sequence or in the query sequence, the overlap
should be excluded from Mj. The length of overlap MOj

i
is the maximum of the length of overlap in target and in
the query (�2B of Algorithm 2). To exclude overlap, MOj

i
should be added to STj and SQj and subtracted from Lj
(�2D of Algorithm 2).

MEM extraction
There are methods [3, 32] to extract maximal exact
matches between lengthy sequences such as an entire
genome. However, these methods are based on prepro-
cessing and indexing of one or both sequences which is
a time-consuming operation. For example, in DNA read
aligner, the reference-genome is indexed once, and the
same index is used each time a new read is aligned.We are
looking for a quick algorithm to identify MEMs between
relatively short sequences that change for each alignment.
A brute force method for this problem (Additional file 1:
Section II) is slow and inefficient (with the complexity
of O

(
n3

)
). We propose a fast bit-level parallel method to

speed up the MEM extraction process. Our MEM extrac-
tion method is based on the shift and compare operations
shown in Fig. 3b. The first step is to represent sequences
with bit-vectors, where A, C, T, and G are encoded as 00,
01, 10, and 11, respectively (Additional file 1: Section III).

Figure 6 illustrates an example sequence pair, along with
corresponding bit-vector representations. In a commodity
computer, the machine word is usually 64 bits which can
accommodate 32 nucleotide symbols. Since a sequence
is usually larger than 32 symbols, the corresponding bit-
vector is stored in multiple machine words. Each opera-
tion on bit-vectors of sequences of size n symbols acts on
� n
32� machine words.
With bit-vectors representation of sequences, shifting a

sequence by one symbol is the same as shifting the bit-
vector by two bits, and comparing sequences can be done
with XOR instruction (32 symbols at a time). In the XOR
output (X), 00 means that symbols are matched, and a
sequence of 00s shows a MEM. A set of shift and bit-
wise operations as shown in Algorithm 1 computes X and
subsequently the edge bit-vector (E) in which the start
and the end of each MEM are highlighted with set bits
(bits with a value of one). Figure 6 shows the X and the
E bit-vectors with highlighted MEMs. The positioning of
MEMs in sequences are then computed from the edge
bit-vector (Additional file 1: Section IV).

Algorithm 1: Compute edge bit-vector for given
sequences in bit-vector format
Input: T target sequence bit-vector
Input: Q query sequence bit-vector
Output: E edge bit-vector
X ← T ⊕ Q;
E ← X ∨ (X � 1);
E ← E ∨ ((E ∧ 0101...0101) 	 1);
E ⇐ E ⊕ (E � 1);

Alignment algorithm
In “Approach” section, we show that by considering differ-
ent combinations of MEMs and computing the alignment
score for the corresponding alignment, one can identify
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Table 1 Starting and ending position of MEMs in Fig. 5

Mi Li ST i ST i BQi EQi

M1 4 1 4 1 4

M2 3 5 7 7 9

M3 5 11 15 12 16

M4 5 18 22 19 23

M5 4 25 28 24 27

M6 5 31 35 31 35

the combination of MEMs that results in the maximum
alignment score. However, examining all possible combi-
nation of MEMs is a naive solution. A more systematic
way of finding the alignment efficiently is to use dynamic
programming.
Dynamic programming is the method of approaching

the solution to a problem by defining and solving smaller
subproblems. Solutions for subproblems are used to solve
a bigger problem at each step. The process is repeated
until all subproblems are solved. Eventually, the solu-
tion to one of the subproblems would be the solution to
the initial problem. When all subproblems are solved a
backtracking process identifies a series of solutions that
contribute to the final solution. In dynamic programming,
there should be an ordering of the input data along which
the recursion procedure proceeds.
We sort all MEMs according to the position of their end

in query sequence (EQ). MEMs which end in the same
position are ordered in an arbitrary way. The jth subprob-
lem is to find the alignment of subsequences of T and
Q which end at jth MEM Mj (T[ 1...ETj] and Q[ 1...EQj]
respectively). We will show that this ordering of MEM is
sufficient to support the correct recursion.
In the sorted list of MEMs, EQi = EQj indicates that

one ofMi orMj fully overlaps the otherMEM in the query
sequence. Since in �2B of Algorithm 2 the overlap region
is excluded, Mi and Mj cannot be in the same alignment.
Thus ith and jth subproblems are solved independently
from each other and the order of i and j in the sorted list
could be arbitrary. If EQk > EQj (k > j in the sorted
list), Mk could not be a part of the alignment that ends in
Mj. Thus the jth subproblems can be solved independently

Table 2 Computing number of mismatches and gaps between
MEMs in Fig. 5

Mi Mj LT ji LQj
i LT ji − LDj

i Gaps Mismatches

M1 M2 0 2 -2 2 insertion 0

M2 M3 3 2 1 1 deletion 2

M3 M4 2 2 0 0 2

M4 M5 2 0 2 2 deletion 0

M5 M6 2 3 -1 1 insertion 2

from the solution to the kth subproblem. Note that it is
also possible to sort MEMs based on their ending position
in the target sequence (ET) using a similar justification.
Our proposed dynamic programming algorithm (DP-

MEM) is elaborated in Algorithm 2. For the example
MEMs extracted in Fig. 3b, the dynamic programming
table and intermediate value computed in the algorithm
are shown in Figs. 7 and 8 respectively. The input to DP-
MEM is the list of MEMs where each MEM (Mj) is a
triplet of integers [ Lj, SQj, STj]. The second input n is the
number of MEMs in the list. The output S is the align-
ment score for the sequences. The algorithm prints out
the indices of all MEMs that forms the alignment where
the first and the last printed numbers are the indices of
the rightmost and the leftmost MEMs in the alignment
respectively. All steps of Algorithm 2 are commented in
the following:

• �1: Scoring each MEM for all of its matching
symbols. Note that there are Lj matching symbols in
Mj. Sj represents the highest alignment score for the
alignment ending atMj. Initialising Sj in this step is
similar to computing the partial alignment score
when onlyMj is included in the alignment.W [j] is
used for backtracking. The value of -1 indicates that
the current Sj is obtained by consideringMj alone in
the alignment.

• �2: Computing Sj for each MEM (Mj). To compute
Sj, for each MEMMi whereMi appears beforeMj in
the list, the algorithm addsMj to the alignment
ending atMi (extending previously found
alignments) and looks for the extension that
maximises Sj (solving a bigger subproblem using
previously solved subproblems).

• �2A: Skip extension when it is not possible. If
ETi > ETj thenMi contains part of target sequence
which is beyond the alignment ending atMj and the
extension is not possible. If EQi = EQj or ETi = ETj
or SQi ≥ SQj or STi ≥ STj then one of the MEMs
fully overlaps the other MEM. In this case,Mi andMj
cannot be in an alignment together.

• �2B: Computing the length of the overlap between
Mi andMj. IfMOj

i is less than or equal to zero, then
no overlap exists.

• �2C : Keeping a copy ofMj before excluding overlap.
• �2D: If overlap exists, excluding overlap fromMj
• �2E : Computing ending position ofMj in T and Q.
• �2F : Computing the distance (number of symbols)

betweenMi andMj in T and Q.
• �2G: Computing number of mismatches and gaps

betweenMi andMj.
• �2H : Computing the penalty for the mismatches and

gaps betweenMi andMj (P
j
i). If gap exists, only one

gap open penalty is subtracted.
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Fig. 6 Representation of sequences with bit-vectors. XOR output (X) with highlighted MEMs. Edges bit-vector (E) identifies the start and the end of
each MEMs

• �2I : Computing alignment score
(
Sji

)
whenMj is

added to the alignment ending atMi. The score for
all the matching symbols inMj (Lj × Rm) is added to
the alignment score for the alignment ending atMi
(Si). Then the penalty for the gaps and mismatches
betweenMi andMj

(
Pji

)
is subtracted.

• �2J : If extendingMj to the alignment ending inMi

results into a score
(
Sji

)
higher than current score for

Mj (Sj) then the new score is stored in Sj. AlsoW [ j]
is set to i to keep track of theMi that maximise the
score forMj.

• �2K : Restoring the the value ofMj before exclusion

Fig. 7 Dynamic programming table used in Algorithm 2 to process extracted MEMs in Fig. 3b. Cell i and j represent the value of Sji . Empty cells are
not evaluated in �2. Evaluation of cells with cross mark are skipped in �2A . Initial Value of Sj is computed in �1. Final value of Sj and its source (what
maximises Sj) are highlighted for each row. The highest Sj (S13) is the alignment score.M13 is the last MEM in the alignment and the MEM before that
isMW[13] = M3. SinceW[ 3]= −1,M3 is the first MEM in the alignment. The scoring system for this alignment is Rm = 2, Px = 3, Po = 4 and Pe = 1
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Fig. 8 Intermediate values to compute Sji in Fig. 7. Note that Sij in this figure refers to Sji

so thatMj can be used in other alignment extensions.
• �3: Looking for the MEM with the highest Sj. This

MEM is the last MEM in the alignment (Me). The
highest score (Se) is returned as S which is the
highest alignment score for the given sequences. The
index of the MEM that maximises Sj is stored in e to
begin backtracking fromMe.

• �4: In the alignment, the immediate previous MEM
toMe is the one that maximises the alignment score
forMe. The index of such MEM is stored inW [e]. As

a result, the iteration of f ← W [ f ] visits the index of
all MEMs in the alignment. WhenW [ f ] is equal to
-1,Mf is the first MEM in the alignment and the
iteration is stopped.

W [ j] only keeps one index forMj. However, there might
be cases that multiple MEMs maximise Sj (i.e. Sj = Sjx =
Sjy). Also, there might be cases that multiple MEMs max-
imise the alignment score (i.e. S = Sx = Sy). Considering
all these cases and backtracking through all the paths



Bayat et al. BMC Bioinformatics          (2019) 20:261 Page 9 of 15

Algorithm 2: DP-MEM: Dynamic programming algo-
rithm to compute the alignment score using a list of
MEMs and print the index of MEMs in the alignment
in reverse order
Input:M list of MEMs sorted by EQ.
Input: n number of MEMs in the list.
Output: S alignment score.
�1: Initialisation of variables
for j ∈ {1, . . . , n} do

Sj ← Lj × Rm
W [ j]← −1

end
�2: Recursion
for j ∈ {1, . . . , n} do

for i ∈ {1, . . . , j − 1} do
�2A:
if (EQi = EQj or ETi ≥ ETj or
SQi ≥ SQj or STi ≥ STj) then

�2B: MOj
i ← max

(
EQi − SQj,ETi − STj

) + 1
�2C : TEMP ← Mj
�2D: ifMOj

i > 0 then
Lj ← Lj − MOj

i
STj ← STj + MOj

i
SQj ← SQj + MOj

i
end
�2E:
ETj ← (STj + Lj) − 1
EQj ← (SQj + Lj) − 1
�2F :
LTj

i ← (STj − ETi) − 1
LQj

i ← (SQj − EQi) − 1
�2G:
Ni,j
x ← min

(
LTj

i, LQ
j
i

)

Ni,j
g ←

∣∣
∣LTj

i − LQj
i

∣∣∣
�2H :
Pji ←
(
Ni,j
x × Px

)
+

(
Ni,j
g × Pg

)
+

{
Po Ni,j

g 
= 0
0 otherwise

�2I : S
j
i ← Si + (Lj × Rm) − Pji

�2J : if S
j
i > Sj then

Sj ← Sji
W [ j]← i

end
�2K : Mj ← TEMP

end
end

end
�3: Identify the alignment from all computed alignment
S ← S1; e ← 1
for j ∈ {2, . . . , n} do

if Sj > S then
S ← Sj
e ← j

end
end
�4: Backtracking and printing the alignment
f ← e; Print(f )
while f 
= −1 do

f ← W [ f ]
Print(f )

end

results in retrieving multiple alignments, all of which are
have the same score. Reporting multiple alignment paths
is not implemented in our experimental implementation,
though there is no practical limitation to implementing it.
In our algorithm, we do not penalise mismatches and

gaps before the first MEM and after the last MEM in the
alignment. This results in a local alignment algorithm.
By considering these penalties the algorithm generates a
global alignment (Additional file 1: Section V).
The equation to compute Pji in �2H of Algorithm 2

assumes that there is no matching symbol between T and
Q in the area betweenMi andMj (all symbols are counted
as mismatches or gaps). Although this assumption is not
true for all Mi, it is always true for the Mi that leads to
maximum Sji which overrules the effect of the assump-
tion being incorrect for other Mi. As a proof, assume
there is a matching symbol in the area between Mi and
Mj. The matching symbol would be a MEM (Mk). Mk is
already extended to the alignment ending at Mi. Thus,
when extendingMj toMk a higher score is achieved when
compared to extendingMj toMi.
Chaining colinear seeds as discussed in [33] have been

widely used in the alignment of large sequences, i.e.
genome-to-genome alignment. It has been also used to
identify candidate regions for a read given a set of MEMs
in BWA. Chaining algorithms with scoring are similar to
the dynamic programming algorithm we proposed (DP-
MEM). However, there are differences that make DP-
MEM suitable for pairwise alignment of short sequences.
DP-MEM takes into account that all MEMs within a cer-
tain gap size are provided in the input and optimises
the number of iteration in the algorithm. DP-MEM also
implements a heuristic approach to compensate for the
effect of short MEMs removed from the input list result-
ing gaps between MEMs.

Optimisation
Given sequences of length n, the algorithm to extract
MEMs (provided in “MEM extraction” section) requires
2(n − 1) shift and 2n − 1 compare operations on bit-
vectors (each act on � n

32� machine words) that result in
an algorithm with complexity of O(n2) to produces edge
bit-vectors for the given pair of sequences. The complex-
ity of the function that computes positioning of MEMs
from the edge bit-vector and sorts them based on EQ is
yet to be added. Further, if m MEMs are extracted, �2
of Algorithm 2 (DP-MEM) has the complexity of O(m2).
Considering the complexity of MEM extraction and DP-
MEM, MEM-Align is much slower than available align-
ment algorithms. To speed up the process, we present sev-
eral optimisations for MEM-Align which achieves faster
runtime by sacrificing accuracy. On the other hand, we
introduce methods to improve accuracy with a minimal
performance loss.
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Banded alignment
Banded alignment [34] is a known heuristic method to
speed up the alignment process. This technique limits the
pattern of the gaps in the alignment (Additional file 1:
Section VI). Consequently, if the alignment between two
sequences does not follow this pattern, the algorithm will
not identify the alignment. In traditional dynamic pro-
gramming, the alignment is obtained after computing the
value of all cells in the table. However, with the banded
alignment optimisation, only cells on the diameter and
close to diagonal are evaluated. gl is the width of the band
in banded alignment where cells farther than gl to the
diameter are not evaluated. Darker cells in Fig. 1 show the
case where gl = 1.
Unlike traditional dynamic programming approach,

MEM-Align does not have a similar table to apply banded
alignment. However, we found that we can simulate the
same effect by limiting the number of shift operations in
the MEM extraction process. For example, if we shift the
query sequence up to gl to the right and to the left, we
achieve banded alignment with the band of gl. Banded-
alignment reduce the complexity of MEM extraction from
O(n2) toO(n.(2gl+ 1)) where gl is a small and fixed value.
Thus, the complexity of MEM extraction is O(n) when
banded alignment is applied. Also, with the said banded
alignment, it is likely that fewer MEMs are extracted
which speeds up the subsequent algorithmic steps.

Short MEM removal
We observed that the majority of extracted MEMs are
short and are the result of randomlymatching symbols. To
speed up MEM-Align, MEMs shorter than sl are filtered
out during MEM extraction process. This reduces the
number of MEMs to be extracted and processed (subse-
quently speeding up the algorithm). Filtering short MEM
is done by extending Algorithm 1 with a set of shift and
bitwise operations (Additional file 1: Section VII).
On the other hand, there are rare cases in which short

MEMs are part of the alignment; for example, a match-
ing symbol surrounded by mismatches. Without having

all MEMs in the input list, DP-MEM is not able to find
the same alignment as it finds when all MEMs exist in the
input list. In order to compensate for lost short MEMs
in the input, we modify �2H of DP-MEM to consider
the possibility of having short matches between MEMs
(Additional file 1: Section VIII).
There might be more difficult cases where in the align-

ment, multiple shortMEMs exist between twoMEMs (see
Fig. 9). The only way to correctly identify the score for the
area betweenMi andMj in �2H is to apply a global align-
ment to this region. However, �2H is a frequent operation
and should remain fast. Consequently, we decided to par-
tially overcome the problem by limiting possible cases (a
heuristic method).
If there are gaps in the area between Mi and Mj, we

assume there is only one continuous gap either to the left
end or to the right end of the area. Then, only two align-
ments are possible for the area. The number of matching
symbols is counted for both cases in a sequential man-
ner and the one that results in maximummatches is taken
as the number of matches between Mi and Mj (Addi-
tional file 1: Section IX). The sequential comparison is an
expensive operation and we devise a method to avoid the
sequential comparison when possible (Additional file 1:
Section X).
Any other case that does not fit the above assump-

tion results in an alignment with a lower score. However,
considering the low rate of gaps and mismatches, the pos-
sibility of having multiple gaps and mismatches in a small
area is low.

Efficient alignment extension
In �2 of DP-MEM, Mj extends all alignments that end in
{M1 . . .Mj−1} (if possible). However, for eachMj there is a
smaller subset �j ⊆ {M1 . . .Mj−1} such that by extending
Mj to all alignments ending in a Mi ∈ �j the alignment
which ends in Mj is found (Eq. 2). In other words, there
would be fewer Sji to be evaluated. Definition of the set �j
and the proof of Eq. 2 are provided in Additional file 1:
Section XI. The definition of �j is affected when short

Fig. 9 An example that shows multiple short MEM in the small area betweenMi andMj in an alignment
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MEM removal optimisation is applied (Additional file 1:
Section XII).

max
Mi∈�j

Sji = max
1≤i≤j−1

Sji (2)

Hybrid alignment
To maintain the accuracy of the algorithm, we decided to
utilise a hybrid method that is a combination of MEM-
Align and Smith-Waterman algorithm. We define three
cases in whichMEM-Alignmay be inaccurate. If the align-
ment of a pair of sequences falls down into one of these
cases, we use the Smith-Waterman algorithm to align
sequences. These cases are:

• When the sequences are repetitive, and the number
of extracted MEMs exceeds the threshold TM. We
found MEM-Align is likely to produce inaccurate
alignment when aligning repetitive sequences. An
appropriate TM value decreases the chance of
reporting inaccurate alignment with a negligible
increase in the average processing time.

• When the computed alignment score for the
alignment generated by MEM-Align is lower than a
threshold TS. This case mostly occurs when there is a
gap in the alignment which cannot be identified due
to banded alignment.

• When no MEM longer than sl exists to be extracted
(a rare case). If sl is set to a high value and the
similarity between sequences is low,

Although sending sequence pairs to an external algo-
rithm results in additional computation, the number of
sequences sent to the external algorithm remains small if
appropriate values are chosen for TM and TS.

Skipping distantMEMs
When the distance between Mi and Mj is large, it is not
likely to have Mi and Mj as adjacent MEMs in the align-
ment. Therefore, the algorithm skips the extension if the
distance between Mi and Mj is longer than a threshold
TD (further reducing the number of Sji to be evaluated).
This optimisation slightly improves the performance with
a negligible side effect on accuracy.

Results
In order to evaluate MEM-Align, four synthetic datasets
and one realistic dataset, shown in Table 3, were consid-
ered. Each of these contains one million sequence pairs.
Synthetic datasets were prepared by random selection of
short sequences from the reference human genome fol-
lowed by simulated variations. The realistic dataset was
taken from mapped reads of sample HG00096 down-
loaded from the 1000 genomes project [35]. In the realistic
dataset, each mapped read is paired with a sequence of

Table 3 Datasets

Dataset Sequence length
Variation rate

SNP Indel Indel expansion

DSL 125 1% 0.1% 5%

DLL 500 1% 0.1% 5%

DSH 125 5% 0.5% 10%

DLH 500 5% 0.5% 10%

DRQ 250 Natural Natural Natural

the same size taken from its mapping location in the
reference-genome. All datasets are available along with
theMEM-Align package. These multiple datasets allowed
estimating the impact of sequence length and sequence
divergence levels on the speed and accuracy of the vari-
ous algorithms. All the tests were run on a Linux (version
3.13.0-58-generic) machine with Intel i5-3470 processors,
in single thread mode.
Two different configurations of MEM-Align (MA1 and

MA2) as described in Table 4 were compared with four
other alignment algorithms: A SIMD implementation
of Smith-Waterman (SSW) [22]; an implementation of
Ukkonen algorithm (UKK) taken from SNAP [12]; a Gene
Myers algorithm (GM); and, a combination of GeneMyers
with Hirschberg algorithm (GMH) implemented in the
SeqAN package [23]. In order to implement hybrid align-
ment,MEM-Align uses the SSW algorithm internally. The
appropriate values of TM and TS depend on sequence
length and varies for each dataset (Table 4). The lower TS
in MA2 (compared to MA1) leads to a lower number of
sequence pairs being sent to SSW and results in a faster
but less accurate alignment. On the other hand, MA1
delivers higher accuracy at the cost of higher execution
time.
Accuracy was measured using two different metrics: the

number of suboptimal alignments; and, the average align-
ment score difference between the reported alignment
score and the optimal alignment score (reported by SSW).
For the purposes of measuring accuracy, if the alignment
score reported by an algorithm is less than the align-
ment score reported by SSW, the alignment is considered
suboptimal.

Table 4 MEM-Align Configurations

Datasets

DSL DSH DLL DLH DRQ

TM 50 50 200 200 90

TS (MA1) 100 80 450 300 215

TS (MA2) 20 20 200 100 50

For all datasets gl = 6, sl = 4 and TD = 25 were used
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Details regarding how SSW, UKK, GM and GMH were
used in our experiments are available in Additional file 1:
Section XIII. Execution time and accuracy are measured
for existing alignment algorithms as well as for several
configurations ofMEM-Align, showing the effect of vary-
ing parameters on differing datasets. In order to get a
deeper insight into the effect of the optimisations on
MEM-Align the following metrics were also measured.

• The number of sequences sent to SSW because of
TM and TS.

• The average number of extracted MEM for those
sequences that are not sent to SSW.

• Number of alignment extensions (number of
evaluated Sji in Fig. 7) avoided by � and TD
optimisation.

• Number of times sequential string comparison of the
area betweenMi andMj is avoided.

• Proportion of execution time spent on each of the
sub-processes including file access (IO), string to
bit-vector conversion, MEM extraction, sorting,
alignment, backtracking and the time spent by SSW
to process sequence pairs sent to SSW.

The complete experimental report is provided in Addi-
tional file 1: Section XV. Here, we only highlight a fraction
of the results that demonstrate the effects of various
parameters. Note that for a streamlined application where
the error rate, genome and sequence length are fixed,
MEM-Align parameters only need to be tuned once. Thus,
for the purpose of this evaluation, theMEM-Align param-
eters were tuned using datasets that were different from
the ones used in the evaluation.
Our string to bit-vector conversion function (Additional

file 1: Section III) is about 25 times faster than the conven-
tional shift-and-insert loop method. Using the counting
sort strategy to sort MEMs (Additional file 1: Section I)
is 8.2 and 3.4 times faster than using the quick-sort algo-
rithm when the average number of extracted MEMs for a
pair of sequences is about 1330 and 42 respectively.
Figure 10a, b and c show the number of suboptimal

alignments, average alignment score difference, and exe-
cution time respectively.While the execution time of SSW
is quadratic in the length of the sequence, the UKK exe-
cution time seems to be linear in sequence length. The
MEM-Align execution time is a more complex function
and depends on other factors such as error rate and
given parameters. Although UKK is the fastest algorithm,
MEM-Align results in a considerably lower number of
suboptimal alignments and is only slightly slower than
UKK. Figure 10a suggests that the alignment produced by
edit-distance based methods such as GM and UKK dif-
fers from the alignment produced by SSW (gold standard)
for a large number of input sequences. However, MEM-
Align can produce alignment identical to SSW in most

cases. Thus MEM-Align is a better alternative for SSW in
read-mapping applications.
Figure 10d represents the average number of extracted

MEMs for a pair of sequences (�) for MA2 configuration
of MEM-Align. � is in direct relation with the time spent
on execution time. � is a helpful guideline for identifying
the optimal value of TM. Although the exact function has
not been identified yet, it appears that 4� < TM < 5� is
a suitable estimation.
The proportion of execution time for each algorithmic

step of MEM-Align is shown in Fig. 11a. Since the exe-
cution times for some configuration of MEM-Align are
negligible compared to other configurations, in Fig. 11a all
execution times are scaled to a 100% bar to allow for better
visualisation. MA1 spends more time in SSW since more
sequences are sent to SSW because of higher value for TS.
The number of sequence pairs sent to SSW because of

TM and TS are shown in Fig. 11b. Data in Fig. 11b are
scaled to 100% bar in order to reflect the percentage of
sequence pairs sent to SSW yet the labels show the actual
value.
Figure 11c reports the expected number of times the

alignment extension is executed along with the number of
times alignment extension is avoided (optimised) because
of using the set � and the parameter TD. Both of these
optimisations have been noticeably effective. Figure 11d
demonstrates the number of times sequential string com-
parison of the area betweenMi andMj is avoided. All bars
are scaled to 100%, yet labels show the actual number in
millions.
The effect of varying sl and gl (on DLL dataset) are

shown in Fig. 11e (execution time) and Fig. 11f (the num-
ber of suboptimal alignments). While sl < 4 exponentially
increases execution time, sl > 4 result in significant
increase in number of suboptimal alignments. sl = 4 seem
to be the most appropriate value. gl = 6 delivers the best
trade off between speed and accuracy for this data set. In
these figures TM = 1, 000, 000, TD = 1, 000 and TS = 0
are set to disable corresponding optimisation and only
show the effect of sl and gl. To see the effect of TM, TS and
TD refer to Additional file 1: Section XV.

Discussion
Due to the similarity in many operations, there is poten-
tial to internally implement the SHD filter [36] in the
MEM extraction step with minimal additional computa-
tion. In [37], SHD is accelerated using custom hardware
resulting in up to 17.3 times speed up. Similar Hard-
ware acceleration can be applied to our MEM extraction
process.
Finally, we are aware that Gene Myers and Ukkonen

algorithms are edit-distance based alignments and do
not support affine-gap scoring. The reason we compare
them to MEM-Align is that they are used in recent DNA
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(a)

(b)

(c)

(d)
Fig. 10 Comparing two configurations ofMEM-Align (MA1 and MA2) with Gene Myers (GM) and Gene Myers and Hirschberg (GMH) as well as
Ukkonen (UKK) and Smith-Waterman (SSW) algorithms. a Number of suboptimal alignments. b Average alignment score difference in suboptimal
alignments. c Execution time in seconds. d Average number of extracted MEMs for a pair of sequences (MA2)

read-mappers as an alternative to the Smith-Waterman
algorithm. Our results demonstrate that MEM-Align is
likely to be a better substitute for the Smith-Waterman
algorithm as it allows for affine-gap scoring.
The implementation of MEM-Align contains a module

that prints out human-readable colourful alignments. For
each alignment, this module highlights extracted MEMs
in the alignment as well as removed short MEMs which

are part of the alignment and are identified by the sequen-
tial string compare operation. A sample output is provided
in Additional file 1: Section XIV.

Conclusions
Pairwise alignment is one of the most frequently utilized
operations in sequence analysis. Considering the growth
in the amount of sequence data to be processed in the
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(a)

(b)

(c)

(d)

(e)

(f)
Fig. 11 The effect of proposed optimisations onMEM-Align. a
Proportion of execution time for different algorithmic steps. bNumber
of sequence pairs sent to SSW by TM and TS. c Number of alignment
extensions in million for MA2 (normalised bar). d Number of string
comparisons per million for MA2 (normalised bar). e Execution times
varying gl and sl. f Number of suboptimal alignments varying gl and sl

near future [38], even a small improvement in the align-
ment operation can save significant computational power.
MEM-Align delivers considerable speed improvement,
especially in the case of longer sequences where the tradi-
tional alignment methods slow down quickly.
Decision making based on sequenced data is life critical.

However, errors are common in the sequencing process.
Most analysis overcome errors by utilising redundant data
(overlap sequences). We believe the negligible number
of suboptimal alignments produced by MEM-Align can
be partly compensated by the existing redundancy in the
data. When speed matters, MEM-Align is the best algo-
rithm as it is fast and its output is near identical to
the Smith-Waterman algorithm with affine-gap scoring.
Other alternative such as UKK and GM are also fast but
only support edit-distance based scoring.

Additional file

Additional file 1: Supplementary Data. Supporting material as well as the
complete experimental result are provided in supplementary data.
(PDF 3044 kb)
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