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Abstract

Background: Identification of motifs–recurrent and statistically significant patterns–in biological networks is the key
to understand the design principles, and to infer governing mechanisms of biological systems. This, however, is a
computationally challenging task. This task is further complicated as biological interactions depend on limited
resources, i.e., a reaction takes place if the reactant molecule concentrations are above a certain threshold level. This
biochemical property implies that network edges can participate in a limited number of motifs simultaneously.
Existing motif counting methods ignore this problem. This simplification often leads to inaccurate motif counts (over-
or under-estimates), and thus, wrong biological interpretations.

Results: In this paper, we develop a novel motif counting algorithm, Partially Overlapping MOtif Counting (POMOC),
that considers capacity levels for all interactions in counting motifs.

Conclusions: Our experiments on real and synthetic networks demonstrate that motif count using the POMOC
method significantly differs from the existing motif counting approaches, and our method extends to large-scale
biological networks in practical time. Our results also show that our method makes it possible to characterize the
impact of different stress factors on cell’s organization of network. In this regard, analysis of a S. cerevisiae
transcriptional regulatory network using our method shows that oxidative stress is more disruptive to organization
and abundance of motifs in this network than mutations of individual genes. Our analysis also suggests that by
focusing on the edges that lead to variation in motif counts, our method can be used to find important genes, and to
reveal subtle topological and functional differences of the biological networks under different cell states.
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Background
Biological networks describe interactions between
molecules such as genes and proteins [1, 2]. These net-
works are often modeled as graphs where nodes and
edges represent molecules and their interactions, respec-
tively. Biological networks are involved in many key
biological processes including transcriptional regulation,
interactions between a cell and its environment, and con-
trolling a cell’s specificity [3–5]. Understanding biological
networks is essential for understanding how cells
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function. Efforts on computational analysis of biological
networks have been growing rapidly in recent years as
large-scale data collection at low cost is now possible.

One of the most fundamental challenges in computa-
tional network studies is the motif counting problem. A
network motif is a pattern of local interconnections (i.e., a
small subnetwork) observed significantly more frequently
in a given network than in a random network of the same
size [6, 7]. Existing studies have already uncovered exis-
tence of network motifs such as feed forward loop and
bifan (see Fig. 1) [8, 9]. Motifs utilize the basic control
mechanisms to govern biologically important dynamic
behaviors, such as oscillations, generation of molecular
pulses, and rapid or delayed responses [7, 10]. Thus,
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Fig. 1 Four conserved motifs studied frequently in the literature. (a) Bifan. (b) Biparallel (c) Cascade (d) Feed forward

the presence or relative abundance of motifs in biologi-
cal networks is often used to characterize their topology,
function, and robustness [11, 12]. Network motifs have
been effectively used to study the biological processes
that regulate transcription [9], to find the genetic factors
that impact various diseases [13, 14] and to discover new
drugs [15].

Identifying motifs and counting them in biological net-
works is a computationally challenging task as it requires
solving the subgraph isomorphism problem, which is NP-
complete [16]. Several methods have been developed to
count instances of a motif in a given network [17–20].
These methods could be categorized into two classes [17].
The first class counts all instances of a given motif ignor-
ing the fact that some motifs may share edges (F1 mea-
sure) [19]. The second class counts all non-overlapping
instances of a given motif, i.e., those which do not share
any edge (F2 measure). Figure 2 shows the difference

between these two frequency measures on a hypothetical
network G. Consider the motif pattern M in Fig. 2b. Our
input network G in Fig. 2a yields six possible embeddings
of M shown in Fig. 2d-i. Thus, F1 measure of M in G is six.
However, out of these six embeddings at most two can be
chosen without picking the same edge multiple times (e.g.,
Fig. 2d and i). Thus, F2 measure of M in G is two.

Notice that both F1 and F2 measures make opposite,
yet very strong assumptions regarding how the cells real-
ize interactions. The former one assumes that the same
interaction can participate in an arbitrary number of
motif instances at the same time. The latter one lim-
its the participation of an interaction to a single motif
instance. Although, these two assumptions simplify the
motif counting problem, they rarely reflect how cells oper-
ate interactions. Each interaction utilizes the molecules
participating in that interaction. Thus the abundance of
the interacting molecules makes it possible to include

(a) (b) (c) (d)

(e) (f) (g)

(i) (j) (k)

(h)

Fig. 2 A hypothetical network and its embeddings of a given pattern. (a) A network with eight nodes and eight edges. (b) A motif pattern. (c) A
network with edge capacities. x(y) denotes the edge x has the capacity y. (d) - (i) Six motif embeddings in the network. (j) An embedding set
includes embeddings H2, H5 and H6. (k) An embedding set includes embeddings H1, H4, H5 and H6
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the corresponding edges appear in multiple (yet limited)
number of motif instances. For example, depending on
the concentration level of a metabolite, an enzymatic
reaction may take place in one (low reaction/edge capac-
ity) or many metabolic pathways (high edge capacity)
[21–23]. We use the term capacity of an edge to denote the
number of motif instances that edge can participate simul-
taneously. Thus, even if two cells have the same underly-
ing biological network topology, they may yield different
number of motifs of the same topology. For example, if we
allow partial overlap of the motif M in the network G (see
Fig. 2b and c), we find four possible embeddings of motif
M in G (Fig. 2d, g, h and i). A motif counting approach that
ignores the edge capacities will lead to unrealistic motif
counts, and wrong biological interpretations. Thus, motif
counting approaches that take edge capacities into account
are needed.

In the literature, several approaches have been devel-
oped to count motifs while also incorporating edge infor-
mation [24–27]. These methods are designed for weighted
networks, and find motifs with specific weights. As we
explain in the subsequent sections in detail, the problem
considered in this paper is fundamentally different (See
“Discussion and Conclusions” section for details on motifs
in weighted networks).

Our contributions. In this study, we build a new motif
counting algorithm that allows partial overlap between
different embeddings of a given motif on the target net-
work. Briefly, given a target network, a motif topology,
and a positive capacity value for each interaction in the
target network, we count the maximum number of ways
to place the motif on the target network, so that no
edge appears in more motif embeddings than its capac-
ity. Notice that the classical counting measures F1 and
F2 are special instances of our measure [28, 29]. If we
set the capacity of all edges to one, our motif counting
problem reduces to non-overlapping motif counting with
F2 measure. Similarly, if we set the edge capacities to
infinity our problem reduces to motif counting using F1
measure.

We develop a novel motif counting method called Par-
tially Overlapping MOtif Counting (POMOC), that com-
putes the number of partially overlapping instances of a
given motif in a given network. POMOC algorithm first
finds all instances of a given motif M in the network G,
then it chooses the motif instances that are guaranteed
to exist without using any edge more than its capacity.
For a given motif embedding, if the capacities of its edges
are more than the number of embeddings those edges are
part of, this embedding exists in our solution. Next, for
the remaining motif instances, our algorithm randomly
adds some embeddings whose edges are not more than
the capacity constraints, into the resulting embedding
set. It gradually expands the resulting set by taking one

embedding out of the resulting set and inserting another
two embeddings to the set.

Our experimental results on synthetic and real datasets
demonstrate that our algorithm finds vastly different
motif counts than F1 and F2 measures. Since biologi-
cal interactions are resource limited, leading to varying
edge capacities, we hypothesize that our method provides
a more accurate approach to counting network motifs
in biological networks than existing methods. Although,
the POMOC method is slightly slower than motif count-
ing with F1 and F2 measures, our method remains to be
practical for all network sizes and motifs we test here.
Our results on a S. cerevisiae transcriptional regulatory
network suggest that oxidative stress is more disrup-
tive to abundance and organization of network motifs
than genetic mutations. Our analysis on the yeast net-
work also suggests that our method can be used to find
the key genes, which lead to topological and functional
differences in biological networks under varying genetic
backgrounds and growth conditions.

The rest of the paper is organized as follows. We present
our algorithm in “Methods” section . We experimentally
evaluate our method in “Results” section and provide a
brief conclusion in “Discussion and Conclusions” section.

Methods
Here, we describe our method for counting partially
overlapping motifs in networks. Preliminaries and prob-
lem definition section provides the preliminaries needed
to describe our method. Counting partial overlapping
motifs section discusses our algorithm.

Preliminaries and problem definition
We denote a given biological network with graph
G = (V , E, c), where V = {v1, v2, . . . , vn} and E =
{e1, e2, . . . , em} represent the set of nodes (molecules) and
the set of edges (interactions) among those nodes, respec-
tively. The function c : E → Z

+ shows the capacity of the
edges. To simplify our notation, in the rest of this paper,
∀ei ∈ E we use ci to denote c(ei) (i.e., the capacity of
the edge ei) and the vector C = (c1, c2, . . . , cm) to repre-
sent the capacity of all edges in E in sorted order of edge
indices. For example, in Fig. 2c, the value in the form x(y)
denotes that edge x has capacity y.

Given a motif pattern M, we represent the ith embed-
ding of M in G with Hi ⊆ E (i.e., Hi constitutes a
subgraph of G, which is topologically isomorphic to M).
We denote the set of all possible embeddings of M in G
with H(M). Given an edge ei ∈ E and a subset H′ of
H(M), we denote the set of all embeddings in H′ con-
taining edge ei with fi(M,H′) = {Hj ∈ H′|ei ∈ Hj}.
We denote the number of embeddings in the set H′ ⊆
H(M) containing each interaction in E with the vec-
tor CH′ = (|f1(M,H′)|, |f2(M,H′)|, . . . , |fm(M,H′)|). We



Ren et al. BMC Bioinformatics 2019, 20(Suppl 12):318 Page 4 of 14

say that H′ is feasible if no interaction appears in more
embeddings in H′ than its capacity that is ∀i, |fi(M,H′)| ≤
ci. Figure 2b to i explain this on an example. Here, the
capacity of the edges is C = (1, 2, 2, 2, 1, 2, 2, 1). This net-
work yields six embeddings (see Fig. 2d to i). Consider
the subset H′ = {H1, H6}. The capacity H′ uses is CH′ =
(1, 1, 1, 0, 0, 1, 1, 1), which is less than the imposed capac-
ity constraints in C. Thus, H′ is feasible. The subset of
embeddings {H1, H2}, however, is not feasible as this set
contains edge e1 twice, which is more than its capacity
(c1 = 1).

Next, we formally define the partially overlapping motif
counting problem.
Definition 1. (PARTIALLY OVERLAPPING MOTIF
COUNTING). Consider a graph G = (V , E, c) condi-
tioned with edge capacity constraints. Given a motif
pattern M, partially overlapping motif counting problem
seeks to find a largest feasible subset of the set of motif
embeddings H(M).

Notice that Definition 1 provides a general formulation
of motif counting problem. When the capacity constraints
of each edge is set to infinity it reduces to a motif counting
problem using F1 measure. When the capacity of all edges
are set to one, it counts non-overlapping motifs (i.e., F2
measure). Next, we present the partially overlapping motif
counting problem on an example.
Example 1. Different ways to select embeddings leads
to different number of possible embeddings. Consider
the network in Fig. 2c with capacity constraints C =
(1, 2, 2, 2, 1, 2, 2, 1). Embedding set 1 (see Fig. 2j) includes
embeddings H2, H5 and H6, and is feasible as its usage of
the capacity is (1, 1, 0, 2, 1, 2, 1, 1). Embedding set 2 (see
Fig. 2k) includes embeddings H1, H4, H5 and H6. This set
is also feasible. The number of embeddings in this set is
four. The partially overlapping motif count is thus four as
this is the largest set of feasible embeddings.

Counting partially overlapping motifs is an NP complete
problem for several reasons. First, it requires solving the
subgraph isomorphism problem, which is NP-complete
[30]. Furthermore, as we explain above the F2 count is a
special instance of the partially overlapping motif count-
ing problem as we can reduce the non-overlapping motif
counting problem to partially overlapping motif counting
by setting the capacity of all edges to one. The Maximum
Independent Set (MIS) problem, which is NP-complete
[16], reduces to the non-overlapping motif counting prob-
lem [19, 29]. Thus the partially overlapping motif counting
problem requires solving at least two NP-complete prob-
lems. In this paper, we develop a scalable method to tackle
this problem using the local search strategy.

Counting partial overlapping motifs
In this section, we discuss our POMOC algorithm. Algo-
rithm 1 presents the pseudo-code of our method. Our

algorithm takes a network G = (V , E, c) and a motif pat-
tern M as input. Briefly, our algorithm has four main steps:
(1) We locate all possible embeddings of M in G (line 1). At
this step, we ignore the number of embeddings of M shar-
ing each edge. (2) We determine the embeddings, which
are guaranteed to exist in the final solution (lines 2-5). (3)
We construct an initial, random yet feasible, solution by
including a subset of the remaining embeddings in the set
found in Step 2 (lines 5-6). (4) We iteratively improve this
solution by replacing an embedding in the current solu-
tion with two or one new embeddings without violating
feasibility of the solution (lines 7-11).

The first step of our algorithm is identical to comput-
ing the F1 count. This is a well studied problem in the
literature. We use the method developed by Elhesha et al
[31] for this step as it is one of the most recent and effi-
cient methods. One can however replace this step with
another method for F1 count without affecting the rest of
our algorithm. Below, we explain Steps 2, 3, and 4 in detail.

Step 2. An embedding Hr is guaranteed to exist in the
solution set if each edge of Hr has large enough capacity
to realize all embeddings that have this edge. Formally, Hr
exists in result set if ∀ei ∈ Hr , |fi(M,H(M))| ≤ ci. For
example, in the network in Fig. 2c, embedding H6 (Fig. 2i)
satisfies this criteria. We prove the correctness of this step
at the end of this section.

Step 3. Once we identify the set of all embeddings, which
are guaranteed to be in the final solution, we move them
from the set H into solution set A. We then update the
capacity constraints in the input graph G as follows. For
each embedding Hr ∈ A, we reduce the capacities of all
the edges ei ∈ Hr by one as Hr is in the solution set.
We then build a new graph, called the overlap graph for
the remaining embeddings in H. Each node in this graph
corresponds to an embedding in H. We include an edge
between two nodes if their corresponding embeddings
share at least one edge. Figure 3 depicts the overlap graph
of the remaining five embeddings after moving embed-
ding H6 from H into the result set. Next, we generate
a random feasible solution iteratively using the overlap
graph as follows. At each iteration, we randomly pick a
node vr from the overlap graph, and include the corre-
sponding embedding (say Hr) in the solution. We then
reduce the capacity of all the edges of Hr in G by one.
If the capacity of an edge drops to zero, it means that
that edge cannot participate in any other embedding (say
Hs) without violating the feasibility of solution. If such an
embedding Hs exists, its corresponding node in the over-
lap graph is a neighbor of vr as they share that edge in
G. Thus, we remove these neighbors of vr in the over-
lap graph, which denote an embedding with an edge of
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Fig. 3 The overlap graph of the five embeddings in Fig. 2d-i

zero capacity. We repeat these iterations to grow the ran-
dom feasible solution set until the overlap graph becomes
empty.

Algorithm 1 Partially Overlapping Motif Counting
Input: Graph G = (V , E), motif pattern M, capability
vector of edges C = (c1, c2, . . . , cm)

Output: A set of motif embeddings
1: H ← Find all embeddings of M from G
2: A ← Select a set of embeddings from H that all edges

constituting these embeddings have enough capacity
3: H ← H\A
4: C ← Update capacity
5: Build an overlap graph Ḡ = (V̄ , Ē) for the embedding

set H
6: (S0, C′

S0
) ← Randomly generate a feasible solution

from Ḡ
7: (S�, C′

S� ) ← LocalSearch(S0, C′
S0

)
8: while Stopping criterion is not met do
9: (S′, C′

S′) ← Perturb(S�, C′
S� )

10: (S�, C′
S� ) ← LocalSearch(S′, C′

S′)
11: end while
12: return S� ∪ A

Step 4. So far, we have generated an initial feasible solu-
tion, which consists of those embeddings, which are guar-
anteed to be in the final result (Step 2) and those chosen
randomly (Step 3). Next, we try to increase the size of
this solution set iteratively by applying two strategies,
namely local search and perturbation. We elaborate on
these strategies next.

Local search iteratively increases the size of the solu-
tion set by replacing an embedding in the solution set with
two other embeddings while maintaining the feasibility of
the solution. For each embedding Hi in the solution, we
study its corresponding node vi in the overlap graph along

with the set of neighboring nodes vi. We find all pairs of
nodes (vj, vk) in the overlap graph, which satisfy all of the
following two conditions.

(i) vj and vk are neighbors of vi.
(ii) Replacing the embedding Hi corresponding to vi in

the solution set with those of Hj and Hk corresponding to
nodes vj and vk respectively does not violate the feasibility
of the solution.

Once we identify all such node pairs, we randomly pick
one and replace the embedding for node vi with those of
vj and vk . After each swap, we update the capacity of the
edges contained in the embeddings Hi, Hj and Hk . Notice
that each swap operation increases the solution set size by
one.

Similar to many local search algorithms, POMOC has
the potential to get trapped in the local optimum. To
escape the local optimum, before each local search,
POMOC perturbs the current best solution to explore a
slightly different search space. More specifically, POMOC
first selects a node vi such that Hi is in the solu-
tion set and replaces it with an embedding Hj such
that vj is a neighbor of vi in the overlap graph if the
solution set remains feasible. As a result, the size of
the solution set remains unchanged after the pertur-
bation. For each node in the solution, POMOC does
a Bernoulli trial with a probability value p to deter-
mine if a replacement is needed for this node. Given a
solution S, POMOC does |S| × p replacements approx-
imately. If a replacement is decided, POMOC finds all
valid non-solution neighbors and randomly pick one
to replace. Here, valid neighbors means the replace-
ment of these nodes is consistent with the capacity
constraints.

We repeat updating the solution by applying local search
and perturbation until the size of the solution set does not
improve for user supplied number of iterations. Finally,
we prove the correctness of Step 2 of our algorithm in the
following theorem.
Theorem 1. Given a graph G = (V , E, c) conditioned
with edge capacity constraints and a motif pattern M,
consider the set of all possible embeddings of M, H(M).
An embedding Hr ∈ H(M) must be included by par-
tially overlapping motif counting problem, if ∀ei ∈ Hr ,
|fi(M,H(M))| ≤ ci.

Proof. We prove the theorem by contradiction. Assume
that H′ is the largest feasible subset of the set of motif
embeddings H(M), which does not have Hr . That is,
H′ ⊆ H(M)\Hr . Now we construct a larger subset of
embeddings H′′ = H′ ∪ {Hr}. ∀ei 
∈ Hr , we have

|fi(M,H′′)| = |fi(M,H′)| ≤ ci

In addition, ∀ei ∈ Hr , we have



Ren et al. BMC Bioinformatics 2019, 20(Suppl 12):318 Page 6 of 14

|fi(M,H′′)| =|fi(M,H′ ∪ Hr)|
≤|fi(M,H(M)\Hr ∪ Hr)|
=|fi(M,H(M))| ≤ ci

Thus, H′′ is also a feasible subset of embeddings, which
yields a contradiction to the assumption that H′ which
does not include Hr is the largest feasible subset of
H(M). Thus, an embedding Hr must be included by
partially overlapping motif counting problem if ∀ei ∈ Hr ,
|fi(M,H(M))| ≤ ci.

Results
In this section, we experimentally evaluate performance
of our method on synthetic and real datasets. We con-
sider four motif topologies, which are commonly studied
in the literature; namely bifan, biparallel, cascade and feed
forward loop (see Fig. 1). These motifs have been shown
to be overrepresented in biological networks under the F1
count [8, 9]. We compare our method’s motif count and
running time to two existing approaches: counting with
F1 and F2 measures. First, we describe in detail the syn-
thetic and real datasets used in our experiments. We then
present the results.

Datasets
SYNTHETIC DATASET. We generate directed random net-
works to test robustness and scalability of our algorithm
under three network parameters: network size (i.e., num-
ber of nodes), edge capacity, and topology model. We
generate synthetic networks of varying sizes and edge
capacities using three network topology models: Erdos-
Renyi random graph (ER) [32], Watts-Strogatz small-
world (WS) [33] and Barabasi-Albert preferential attach-
ment (BA) [34]. We randomly assign the direction of each
edge. We set a capacity value to each edge using two
alternative approaches. In the first approach, we set the
capacity of all edges to the same value; 1, 2 or 3. In the
second approach, we randomly assign each edge capacity
to a value between 1 and 3, thus different edges can have
different capacities.

REAL DATASET. We use S. cerevisiae transcriptional reg-
ulatory network [8, 35]. This network contains 690 nodes
and 1081 edges. We use the S. cerevisiae gene expression
dataset, GSE26169, obtained from the GEO database to
set capacities of interactions [36]. This dataset contains
expression data under control and oxidative stress condi-
tions in seven genetic backgrounds; wildtype, and Glr1,
Gpx1, Gpx2, Grx1, Grx2 and Yap1 mutants leading to 14
different conditions (i.e., 2 × 7). We assign the capacity of
each network edge using the capacity of the reactant gene.
For each condition, we calculate the capacity of each gene
as log(eg)/κ , where eg and κ represent the expression level

of gene g and capacity constant, respectively. In our exper-
iments, we use κ = 2. There are several main reasons
behind our choice of capacity function. First, one could
replace the gene expression levels with the protein abun-
dance values. However, when the protein abundance data
is not available, transcription values are often used as an
indicator of the protein abundance. Second, logarithmic
transformation is commonly used in studying microar-
ray gene expression data [37] as gene expression values
are highly skewed. Logarithmic transformation stabilizes
the variance, compresses the range of data and makes the
data more normally distributed so it allows statistics to be
applied to the data.

In order to observe whether there is any correlation
between the topology of the genes in the interaction
networks and their transcription (thus the capacity), we
create a scatter plot for the distribution of capacity lev-
els and degrees of reactant genes for each mutant and
wild type under normal and oxidative stress conditions.
Figure 4 presents the results for Glr1 mutant under oxida-
tive stress condition. We observe that there is no corre-
lation between node degree and capacity levels of genes.
We observe the same pattern for all the remaining 13
conditions (results not shown).

IMPLEMENTATION AND SYSTEM DETAILS. We imple-
ment the POMOC algorithm in C++. We perform all the
computational experiments on a Linux machine equipped
with Intel core i7 processor 3.6 GHz CPU and 12GBs
RAM.

Evaluation on synthetic networks
In this section, we compare POMOC to motif counting
with F1 and F2 measures on synthetically generated net-
works for varying network size, network topology and
edge capacity.

Effects of network size
We generate random networks of varying sizes (200, 400,
800 and 1600 nodes) using ER, WS and BA topology mod-
els. We set the average degree of nodes to six, and the
capacity for each edge to two. For each network size and
model we generate 10 networks, and report the average
motif count and running time. Figure 5 reports the results.

Effects of network size on motif count (Fig. 5a to c).
We observe that motif count using partial overlaps sig-
nificantly differs from that of F1 and F2 measures. Motif
counting with F2 measure finds substantially lower motif
counts than our method for each motif type in all network
topologies for almost all motif types. In ER networks,
only biparallel motif count shows observable difference
between partial overlap and F1 measure. In WS networks,
feed forward loop and biparallel motifs show the highest
differences. In BA networks, all motif topologies show dif-
ference; the most significant variation is observed for the
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Fig. 4 The distribution of capacity levels and degrees of reactant genes for Glr1 oxidative stress condition. The diagonal line shows the degree =
capacity line

biparallel motif. The POMOC method and motif count-
ing with F1 measure shows the most significant difference
in BA networks. This difference can be explained as fol-
lows. ER and WS models generate synthetic networks
whose nodes have similar degrees leading to uniform
motif distributions in these network topologies. However,
BA networks contain hub nodes with high degrees, which
leads to non-uniform distribution of motifs to edges. Thus
all motif embeddings can be realized in ER and WS net-
works but not in BA without violating our edge capacity
constraints.

All three motif counting methods show the least motif
count in synthetic networks generated under the ER
model. Motif counts in WS and BA networks are compa-
rable, but substantially higher than those in ER networks.
This difference can be explained by the fact that ER model
generates networks that are more disconnected com-
pared to WS and BA models. Our results also show that
regardless of the network model and counting measure
the motif count varies dramatically across different motif
topologies. More importantly, the motif count distribu-
tion exhibits significant variance across different random

(a) (b) (c)

(d) (e) (f)

Fig. 5 Motif count and running time on varying sizes of synthetic networks generated by (a, d) ER, (b, e) WS and (c, f) BA network topology models
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network models (see Fig. 5a to c). While biparallel motif
is observed most in ER and BA networks, feed forward
loop is the most abundant motif in WS networks. Cascade
motif is found least in ER and BA networks, but bifan is
the least abundant motif in WS networks.

Effects of network size on running time (Fig. 5d to f ). Our
results demonstrate that counting motifs takes the most
time with partial overlap constraint, and least time with F1
measure for all network sizes, topologies and motif types.
This is not surprising since F2 count and partial overlap
require solving the F1 count as the first step. Furthermore,
since F2 count enforces identifying non-overlapping set of
motifs, it eliminates the motif embeddings identified in
F1 count more aggressively than the partial overlap. That
said, we observe that the running time of our method is
either very close to those of F1 and F2 measures or remains
to be practical for all network sizes and motifs we test.

We observe that the running times for all three mea-
sures are greatly affected by the underlying network topol-
ogy. Although all running times are less than 1 s for ER and
WS networks, they go up to 10 s for BA networks. The sec-
ond factor that influences the running time of our method
is the motif topology. While our method’s running time
for bifan motif is largest on ER and WS networks, that for
biparallel motif is largest on BA networks. Cascade motif
takes the shortest time in all three network topologies due
to its smaller abundance and simple three node topology.

Three motif counting approaches show network topol-
ogy dependent differences. In ER networks, only running
times for feed forward loop and biparallel motifs show
observable difference for the three measures. Similarly, in
WS networks, running times for feed forward loop, bipar-
allel and cascade motifs differ. The running time for our
method differs from that of the F2 measure by a larger
margin on BA networks for all motif types and network
sizes. The most significant gap is observed for the bipar-
allel motif. Finally, we would like to note that running
time is independent of the motif count in ER and WS net-
works. However, there is a positive correlation between
motif count and running time for BA networks; running
time increases with increasing motif count.

In summary, our experiments suggest that motif distri-
butions are heavily impacted by the network topology. In
particular, BA networks show the most difference between
POMOC method, and motif counting with F1 and F2
measures. Since biological networks often have similar
topological characteristics as BA networks [2], we conjec-
ture that our method will be crucial in determining the
motif counts for real networks. On the other hand, our
experiments also suggest that POMOC method is slightly
slower than motif counting with F1 and F2 measures.
While all three network topologies show running time dif-
ferences for three motif counting approaches, the most
significant difference is observed in BA networks. In all

three network models, we observe that as network size
increases running time increases linearly. Our method,
however, scales to large networks (it runs in less than 10 s
even for a network with 1600 nodes). Thus, our method is
scalable to genome scale biological networks.

Effects of capacity
Here, we compare the performance of our method to that
of motif counting with F1 and F2 measures under varying
edge capacity levels. We compare these three approaches
using two metrics: motif count and running time. Simi-
lar to the previous section, we generate random networks
with size 800 and average node degree 6 using ER, WS
and BA network topology models. The capacity for each
network edge is set using two distinct approaches. In the
first approach we set capacity of all edges to 2 (C2) or
3 (C3). In the second approach, for each network edge,
we randomly set capacity to an integer between 1 and
3 (CR). Note that motif counting with F1 and F2 mea-
sures correspond to setting the edge capacity to infinity
(CINF) and one (C1), respectively. For each edge capacity
and network topology model we generate 10 random net-
works, and report the average and two standard errors
of motif count and running time. Figure 6 shows the
results.

Effects of capacity on motif count (Fig. 6a to c). Our
results suggest that the effects of edge capacity depends
greatly on the network topology model. The motif counts
for the WS and BA networks are substantially higher than
that for the ER network. For the ER network, at all capacity
levels, biparallel and cascade motifs are observed the most
and the least, respectively. In WS networks, while feed for-
ward loop is observed the most, bifan motif is observed
the least in this network topology. In BA networks, bipar-
allel and cascade motifs are observed the most and the
least, respectively.

Next, we analyze how the motif counts change as edge
capacity increases. We observe that as the capacity level
increases the number of motifs found by the POMOC
method tends to increase. This is not surprising as higher
capacity values make it possible to have more motifs share
the same edge without violating the capacity constraints.
Motif counting with F1 (CINF) and F2 (C1) measures show
the most and least number of motifs, respectively. Motif
counting with varying edge capacities (CR) results in motif
counts that are comparable to C1 and C2. Increasing edge
capacity affects the motif counts in different ways for the
three network topologies. In ER and WS networks, num-
ber of motifs are comparable between motif counting with
F1 measure and partial motif counting with an edge capac-
ity of 2 and 3, respectively. This suggests that for these
two network topologies, a small edge capacity is enough
to find all possible embeddings for each motif type. How-
ever, in BA networks, the motif counts are vastly different
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Motif count and running time on synthetic networks generated by (a, d) ER, (b, e) WS and (c, f) BA network models with varying edge
capacity levels

between motif counting with F1 measure and POMOC
method. For this network topology, even an edge capacity
of 3 is not enough to find all network motif embed-
dings. This observation can be explained by the fact that
ER and WS models generate synthetic networks whose
nodes have similar degrees. This leads to uniform motif
distribution in these two network topologies with small
number of motif overlaps. Thus, all motif embeddings
could be found by using small edge capacities. However,
the scale-free networks generated by BA model contain
hub nodes with high degrees. The distribution of motifs
to edges are non-uniform in these networks leading to
large number of motif overlaps. Thus, all motif embed-
dings cannot be realized in BA networks without violating
edge capacity constraints even with an edge capacity of 3–
resulting in much lower motif counts as compared to the
F1 measure.

Effects of capacity on running time (Fig. 6d to f ).
Our results demonstrate that our method is very fast
for both fixed and variable capacity values. We observe
that POMOC method’s running time for four motifs is
affected by the network topology. The running time for
all network motifs is less than one second in ER and
WS networks. Although finding motifs in BA networks
takes slightly longer, running time is still less than 5 s.
Counting bifan and cascade motifs take the longest and
the shortest time in ER and WS networks, respectively.
Our algorithm shows different performance for BA net-
works. While bifan motif ’s running time is highest in
motif counting with F1 and F2 measures, biparallel motif

count’s running time is highest for motif counting with
edge capacity levels; C2, C3 and CR. For all capacity levels,
cascade motif takes the shortest time in this network
topology.

Running time for each motif changes similarly for ER
and WS networks; in general motif counting with CR and
CINF takes the longest and the shortest time, respectively.
Interestingly, our method’s running time does not increase
or decrease monotonically as edge capacity increases
in these two network topologies. While running time
increases from edge capacity of 1 to 2, the opposite behav-
ior is observed as edge capacity increases from 2 to 3.
Again, our algorithm shows slightly different behavior in
BA networks. The running time increases as edge capacity
increases from 1 to 2, but it is comparable for the capac-
ity levels 2 and 3. In ER and WS networks, the running
time does not correlate the motif counts. However, BA
networks show positive association between motif count
and running time.

In summary, our experiments suggest that BA networks
will benefit from our partial motif counting method the
most. Since, BA model generates scale-free networks that
resemble the real biological networks, our method will
potentially lead to more accurate motif counts and biolog-
ical interpretations. On the other hand, our experiments
also demonstrate that POMOC method is fast (less than
5 s) for a network of 800 nodes. Thus, we conjecture
that that our method can scale to large real biological
networks. Next, we test this conjecture by running our
method on real networks.
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Evaluation on real networks
In this section, we evaluate the performance of the
POMOC method on a S. cerevisiae (budding yeast) tran-
scriptional regulatory network. In our analysis, we focus
on the effects of edge capacity to motif counting in seven
genetic backgrounds (wild type, and Gpx1, Gpx2, Grx1,
Grx2, Glr1 and Yap1 mutants) under two experimental
conditions (normal and oxidative stress). As explained
above, the POMOC method uses gene expression levels to
calculate the network edge capacities. Thus, we use our
method to count motifs of the yeast transcription net-
work for 14 edge capacity vectors. Tables 1, 2 and 3 and
Fig. 7 present our results. The running times for motif
counting with F1 and F2 measures are less than 1 s in
all real network experiments. POMOC method’s running
time–in average 22 s–is comparable to those of F1 and F2
measures, and remains to be practical for real biological
networks.

Average motif counts
Here, we compare the average motif counts for four
motif topologies over the 14 input networks using the
POMOC method and, motif counting with F1 and F2
measures. Table 1 reports the mean and standard devi-
ation of motif count for each counting approach. Note
that F1 and F2 measures do not utilize edge capacity,
and thus, their motif counts do not change under vary-
ing edge capacity vectors. Our results show that POMOC
finds substantially different number of motifs than that
with F1 and F2 measures. We observe that there is a
massive variation in the abundance of different motif
topologies from only one up to over two thousand. There
is only one instance of cascade. Thus, this motif instance
occurs in all three measures as it has no other instance
to overlap with. More importantly, partially overlapping
motif counting varies greatly in the interval defined by
F1 and F2 measures for different motif topologies. For
instance, for biparallel, it is closer to F1 measure, while
it is closer to F2 measure for bifan, and equally dis-
tant to F1 and F2 measures for feed forward loop. This
demonstrates that the amount of overlap among different
embeddings of a motif depends not only on the network
topology but also the motif topology. Similar to Milo
et al. (2002) [8], we find that bifan and feed forward motifs
are the most abundant motif types in this network. These

Table 1 Average and standard deviation of the motif counts for
four motif topologies using the POMOC method and, motif
counting with F1 and F2 measures

Feedforwad Bifan Biparallel Cascade

F1 73 2026 11 1

F2 24 137 5 1

POMOC 54 ± 0.5 426.4 ± 7 10 ± 0 1 ± 0

Table 2 Top five genes with most publication count among the
genes identified by POMOC but not by the F2 measure for motifs
feed forward loop (FFL) and bifan

FFL Count Bifan Count

CLN2 44 IDH2 111

ENO1 40 DDR2 7

ILV2 26 PEX1 7

ILV5 20 YRR1 7

INO1 16 ILV1 4

two motif topologies also show small variation across the
14 networks for the POMOC method. Finally, our results
show that the motif count distribution in yeast network
differs substantially from that of all three synthetic net-
work models we test (see Fig. 5a to c). Biparallel motif is
the most abundant in ER and BA networks, and feed for-
ward is the most abundant in WS network. On the other
hand, bifan is the most abundant motif in yeast network
with a huge margin.

In summary, our partial motif counting approach
finds vastly different motif counts than F1 and F2

Table 3 Motif count variation for Abf1, Dal80, Msn2, Msn4, Skn7
and Yap1 under control and oxidative stress conditions in seven
genetic backgrounds (a), and in wild type (WT) and six genetic
mutants under control (b) and oxidative stress (c) conditions. The
first and second digits represent whether the observed difference
in edge capacity and motif count is significant (1) or not (0)

Gpx1 Gpx2 Grx1 Grx2 Glr1 Yap1 WT

(a) Abf1 00 00 00 01 00 01 01

Dal80 00 00 00 10 00 00 00

Msn2 01 01 01 00 01 01 01

Msn4 01 01 01 00 01 11 01

Skn7 00 00 00 00 00 00 00

Yap1 11 11 11 01 11 00 00

Gpx1 Gpx2 Grx1 Grx2 Glr1 Yap1

(b) Abf1 00 00 00 00 00 01

Dal80 00 00 00 00 00 00

Msn2 00 00 00 01 00 00

Msn4 00 00 00 01 00 00

Skn7 00 00 00 00 00 01

Yap1 00 00 00 00 00 11

Gpx1 Gpx2 Grx1 Grx2 Glr1 Yap1

(c) Abf1 01 01 11 01 01 01

Dal80 10 10 10 00 00 00

Msn2 00 00 00 00 00 00

Msn4 00 00 00 00 00 00

Skn7 00 00 00 00 00 01

Yap1 01 01 01 01 01 11
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(a)

(b)

(c)

Fig. 7 Motif counts for all reactant genes under control and oxidative stress conditions in seven genetic backgrounds (a), and in wild type and six
genetic mutants under control (b) and oxidative stress (c) conditions

measures. Since real biological interactions are resource
limited, leading to varying interaction (edge) capacities,
we hypothesize that our method provides a more accu-
rate approach to count network motifs, and to decipher
dynamics of biological systems under varying conditions.
Our method shows little variation in motif counts on the
yeast transcription network (see the standard deviation
values in Table 1), which suggests that variation in gene
expression does not substantially change the edge capacity
levels for the yeast network. That said, by focusing on the
edges, which lead to such minor variation can reveal sub-
tle differences between the impact of different cell states.
Next, we further investigate the difference among three
measures, F1, F2 and POMOC.

Comparison with F1 and F2 measures
Here, we focus on the genes that exhibit differences in
motif count among F1 measure, F2 measure and POMOC.
To do this, for each frequency measure, we obtain the
set of genes which are included in the resulting embed-
ding set for each genetic background under oxidative
stress condition. Notice that the gene sets identified by
F1 and F2 measures are same across all conditions. They
however may differ for POMOC. We represent the gene
set for F1 and F2 measures with AF1 , AF2 respectively.
For each genetic background, say the ith background, we
represent the gene set identified by POMOC with APi .
Notice that, for all i, the gene set APi is always a subset
of AF1 . We first investigate the difference among genes

identified by F1 measure and POMOC respectively. To do
this, we do the literature analysis on genes included by
motif instances. For each gene gj ∈ APi , we count the
number of publications containing gene gj and each of the
three keywords ‘oxidative’, ‘respiration’ and ‘fermentation’
in PubMed. For each gene gj ∈ AF1 , we also count the
motif embeddings containing gj identified by F1 measure
and POMOC respectively. Here, we calculate the latter as
the mean value of the number of embeddings containing
gi for all seven genetic backgrounds under oxidative stress
conditions. Then we calculate the Spearman correlation
between publication count and gene specific motif count
generated by F1 and POMOC respectively. We observe
that the gene set identified by POMOC exhibits much
higher correlation with publication count (feed forward
loop: correlation = 0.265, bifan: correlation = 0.248) than
that by F1 measure (feed forward loop: correlation = 0.158,
bifan: correlation = 0.007), which implies that our method
has the potential to filter genes that do not exhibit sig-
nificant publication evidence. To test our hypothesis, we
collect all genes that belong to AF1 but not POMOC, that
is

⋃
i AF1\APi . We observe that these genes contribute

to limited publication counts compared to the number
of these genes especially for feed forward loop (i.e., feed
forward loop: number of genes percentage = 25.26%,
publication count percentage = 4.86%, bifan: number of
genes percentage = 1.88%, publication count percentage =
0.24%). Thus, the genes found by F1 but not by POMOC
have very low publication evidence to the oxidative stress.
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Next, we investigate the difference between F2 measure
and POMOC. Similar with the comparison between F1
measure and POMOC, we collect all genes that belong
to POMOC but not in AF2 , that is

⋃
i APi\AF2 . Notice

that the gene set identified by POMOC is often larger
than that by F2 measure (but not necessarily a superset).
Table 2 presents the top five genes with the largest publi-
cation count for feed forward loop and bifan. We observe
that there is substantial publication evidence for these
genes. For example, Mitochondrial NAD+-specific isoc-
itrate dehydrogenases (IDHs) are key regulators of flux
through biosynthetic and oxidative pathways in response
to cellular energy levels [38]. One lysosomal protease
which when mutated can cause juvenile onset neuronal
ceroid lipofuscinoses (NCL) is encoded in CLN2, a ser-
ine tripeptidyl protease with no obvious yeast orthologue
[39]. Thus, POMOC has the potential to discover signif-
icant genes which are missed using F2. Next, we analyze
the association between motif count and edge capacity
focusing on individual genes.

Gene specific motif counts
Here, we take a closer look into the network contents and
analyze the distribution of motif embeddings to individ-
ual genes. To do that, we first find the set of partially
overlapping motif embeddings for each of the 14 genetic
background and experimental condition combination. For
each gene in each network, then, we count the number of
motifs containing that gene. Figure 7 plots these counts
for all reactant genes that we use to assign the edge capaci-
ties in the S. cerevisiae transcriptional regulatory network.
In what follows, we discuss the motif count differences
and effects of the edge capacity levels to motif counting
in seven genetic backgrounds under control and oxidative
stress conditions.

Effects of experimental condition to motif count.
Our results demonstrate that most of the genes exhibit
similar motif counts under varying genetic backgrounds
and growth conditions. We observe more genes away
from the y = x line in control vs. oxidative stress con-
ditions (Fig. 5a) than wild type vs. mutant genetic back-
grounds (Fig. 5b and c). This suggests that oxidative stress
is more disruptive to the organization and abundance
of motifs in yeast network than mutations of individual
genes.

To understand our results more clearly, from now on, we
focus on the analysis of the six reactant genes; Abf1, Dal80,
Msn2, Msn4, Skn7 and Yap1. Among these, Msn2, Msn4,
Skn7 and Yap1 play key roles in controlling the transcrip-
tion of oxidative stress response genes [40–44]. Dal80 is
implicated in nitrogen depletion and amino acid starva-
tion stress responses [45, 46]. Similarly, Abf1 is involved
in nutritional stress response [47]. Table 3 reports how
changes in the edge capacity levels affect the number of

motifs these six genes participate. For this analysis, first
we divide the edge capacity and motif count variations
to two groups: significant or non-significant. We desig-
nate any variation that is more than 10% as significant. We
then divide all reactant genes to four groups (00, 01, 10
and 11). Here, the first digit represents whether observed
variations in edge capacity is significant (1) or not (0),
respectively. Second digit denotes whether the deviation
in motif count is significant.

First, we focus on motif count variation in seven genetic
backgrounds under control and oxidative stress condi-
tions (Fig. 5a and second digits in Table 3a). Our analysis
shows that while most of the reactant genes including
Dal80 and Skn7 have similar motif counts, some genes
such as Msn2, Msn4 and Yap1 show substantially different
motif counts. We observe that motif count differences are
highly dependent on genetic background: Msn2 and Msn4
show different motif counts in all genetic backgrounds
except Grx2 mutant; Yap1 shows different motif counts
only in Gpx1, Gpx2, Grx1, Grx2 and Glr1 mutants; Abf1
shows different motif counts only in wild type and, Grx2
and Yap1 mutants.

Motif counts show small variation between wild type
and mutant conditions under control and oxidative stress
conditions (Fig. 5b-c and and second digits in Table 3b-c).
Our results suggest that genetic mutants show similar
gene expression levels to wild type, which leads to compa-
rable edge capacity levels and motif counts. Under control
conditions: Msn2 and Msn4 show motif count variation
in Grx2 mutant; Yap1, Skn7 and Abf1 show motif count
variation in Yap1 mutant. We observe slightly different
behavior under oxidative stress conditions: Yap1 and Abf1
show motif count variation in all genetic backgrounds;
Skn7 shows motif count variation in Yap1 mutant. Msn2,
Msn4 and Dal80 show similar motif counts under oxida-
tive stress in all genetic backgrounds.

Effects of edge capacity to motif count. Here, we ana-
lyze how an individual gene’s edge capacities affect the
number of motifs it participates. Figure 7 shows that while
genes with highly different edge capacity (darker circles)
might have no motif count variation (circles on the y =
x line); genes with similar edge capacity (lighter circles)
might have motif count variation (circles off the y = x
line). This implies that variation in edge capacity levels is
not a sufficient condition for alterations in motif count.
Also small variations in edge capacities may lead to sub-
stantial changes in motif counts. We will further analyze
these observations on six stress response genes. The two
digits in Table 3 reports the dependency between edge
capacity and motif counts.

First, we report how oxidative stress affects motif
counts. We observe that although oxidative stress leads to
edge capacity variation for many genes, most of the genes
show similar motif counts under control and oxidative
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stress conditions in seven genetic backgrounds. Msn2 and
Msn4 show small edge capacity variation, but high motif
variation in all genetic backgrounds except Grx2 mutant
(Table 3a). Abf1 shows similar edge capacity in all genetic
backgrounds, however, it shows different motif counts in
wild type and, Grx2 and Yap1 mutants. In Grx2 mutant,
Dal80 shows edge capacity variation, but similar motif
counts. For Yap1 we see a more complex story. It shows
edge capacity variation in Gpx1, Gpx2, Grx1 and Glr1
mutants, which leads to different motif counts. However,
while Yap1 shows similar edge capacity levels in wild type,
and Grx2 and Yap1 mutants, it has different motif counts
in Grx2 mutant.

In almost all genetic backgrounds, majority of the genes
do not show edge capacity variation between wild type
and mutant genetic backgrounds under control condition
(Table 3b). Yap1 shows edge capacity and motif count vari-
ation in Yap1 mutant. Msn2 and Msn4 show similar edge
capacity but different motif counts in Grx2 mutant com-
pared with wild type. Similarly, Abf1 and Skn7 show motif
count variation in Yap1 mutant. Oxidative stress leads to
slightly more edge capacity variation compared to control
(Table 3c). Yap1 and Abf1 show edge capacity and motif
count variation in Yap1 and Grx1 mutants compared with
wild type, respectively. Dal80 shows edge capacity vari-
ation in Gpx1, Gpx2 and Grx1 mutants, however, it has
similar motif counts. Despite lack of edge capacity varia-
tion, Yap1 shows different motif counts between wild type
and, Gpx1 Gpx2, Grx1, Grx2 and Glr1 mutants. Simi-
larly, Abf1 does not show edge capacity variation in Gpx1,
Gpx2, Grx2, Glr1 and Yap1 mutants, but, it has different
motif counts. Finally, Skn7 shows motif count variation in
Yap1 mutant although having similar edge capacity.

In summary, partial motif counting approach finds sub-
stantially different motif counts than that of F1 and F2
measures. However, the changes in edge capacity is not
enough to explain the observed motif count differences for
individual genes. While some genes show different motif
counts due to edge capacity changes, most genes have the
same motif count. There are also genes that show sim-
ilar edge capacity levels but different motif counts. For
these genes, the changes in motif counts could be possibly
explained by the edge capacity changes of its neighboring
genes.

Discussion and Conclusions
Motif counting in biological networks is an important
tool to decipher the topology of biological networks and
its function. Existing motif counting approaches either
count all or non-overlapping instances of a given motif.
This results in either over- or under-estimation of the
motif counts, since biological reactions are constrained
by many factors such as concentration levels of reactant
molecules. In this paper, we introduced a novel frequency

measure which considers the abundance of the interact-
ing molecules. It allows partially overlap between differ-
ent embeddings based on edge capacities. This problem
is fundamentally different from the problem of finding
weighted network motifs which also incorporates the edge
information. This is because the edge weights in weighted
network is used to identify if an embedding has strong
strength. And the resulting embeddings can be counted
using both F1 and F2 measure. In our problem, the edge
information however is used to specify at most how
many embeddings can share this edge, leading to motif
count different from both F1 and F2 measure. Moreover,
the resulting embeddings in our problem do not contain
weight.

To address this problem, we presented a novel motif
counting method, POMOC, based on edge capacities of
a given network. Our experiments on both synthetic and
real networks demonstrate that motif count using our
method significantly differs from the existing motif count-
ing approaches, and our approach extends to large-scale
biological networks in practical time. Application of our
method to the S. cerevisiae transcriptional regulatory net-
works demonstrates that the POMOC method reveals
topological differences of biological networks under dif-
ferent genetic backgrounds and experimental conditions.
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