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Abstract

Background: Set enrichment methods are commonly used to analyze high-dimensional molecular data and gain
biological insight into molecular or clinical phenotypes. One important category of analysis methods employs an
enrichment score, which is created from ranked univariate correlations between phenotype and each molecular
attribute. Estimates of the significance of the associations are determined via a null distribution generated from
phenotype permutation. We investigate some statistical properties of this method and demonstrate how alternative
assessments of enrichment can be used to increase the statistical power of such analyses to detect associations
between phenotype and biological processes and pathways.

Results: For this category of set enrichment analysis, the null distribution is largely independent of the number of
samples with available molecular data. Hence, providing the sample cohort is not too small, we show that
increased statistical power to identify associations between biological processes and phenotype can be achieved by
splitting the cohort into two halves and using the average of the enrichment scores evaluated for each half as an
alternative test statistic. Further, we demonstrate that this principle can be extended by averaging over multiple
random splits of the cohort into halves. This enables the calculation of an enrichment statistic and associated p
value of arbitrary precision, independent of the exact random splits used.

Conclusions: It is possible to increase the statistical power of gene set enrichment analyses that employ enrichment
scores created from running sums of univariate phenotype-attribute correlations and phenotype-permutation
generated null distributions. This increase can be achieved by using alternative test statistics that average enrichment
scores calculated for splits of the dataset. Apart from the special case of a close balance between up- and down-
regulated genes within a gene set, statistical power can be improved, or at least maintained, by this method down to
small sample sizes, where accurate assessment of univariate phenotype-gene correlations becomes unfeasible.
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Background
Set enrichment analysis has become an important element
of the bioinformatics and biostatistics toolkit. Such analyses
can provide insights into the fundamental biological pro-
cesses underlying different molecular or clinically-defined
phenotypes [1]. Suppose that a dataset is available in which
p attributes (e.g. protein abundances, expressions of genes)
are measured for N instances (samples), each of which has
an associated continuous or categorical phenotype. Instead
of carrying out p univariate analyses to evaluate the correla-
tions between each individual attribute with the phenotype
across the N instances, set enrichment seeks to identify a

consistent pattern of increased or decreased correlations
(an enrichment) within a subset of the p attributes com-
pared with the remainder. Attribute subsets can be selected
which contain attributes associated with particular bio-
logical processes or pathways of interest.
There are many incarnations of set enrichment analysis,

which differ mainly in the methods used to assess enrich-
ment and its significance. An overview and comparison of
a multitude of approaches can be found in Ackermann et
al. [2]. One class of set enrichment analysis methods uses
an enrichment score (ES) to capture the differences of the
individual attribute-phenotype correlations between the at-
tribute subset and its complement. One commonly used
enrichment score approach, gene set enrichment analysis
(GSEA) [3, 4], ranks the univariate correlations between
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attributes and phenotype and defines an enrichment score
in terms of extrema of a running sum constructed from the
ordered ranks. The statistical significance of the associ-
ation between attribute subset (gene set) and phenotype
captured by the enrichment score is determined based on
a null distribution of the ES generated by permuting the
phenotype labels.
The power of analyses such as GSEA to detect an

association with a particular attribute subset depends on: i.
the number of attributes measured; ii. the number of attri-
butes in the attribute subset and correlations between
them; iii. The number of samples for which data is avail-
able; and iv. the metric used to assess the univariate
attribute-phenotype correlations. Considerable research has
been performed to better understand the limitations of
GSEA and how the factors listed above impact its sensitiv-
ity and statistical power (e.g., [5–7]). In this paper, we ex-
plore the dependence of the statistical power of the GSEA
approach on the number of samples in the cohort with
available molecular data. We show that, while the distribu-
tion of ES narrows with increasing N, the null distribution
generated by phenotype permutation does not. Hence, in-
creasing the number of samples in the cohort does not give
the same increase in statistical power with N commonly
observed in other settings. As a corollary, we show that, as
long as the cohorts are large enough, splitting the cohort
into two distinct parts and using the average of the ESs
from each part as an alternative statistic provides greater
power to detect associations than using the conventional
ES defined using the entire cohort. This approach produces
an enrichment statistic, and hence enrichment p value, that
depends on the particular split of the cohort into two parts.
This potential disadvantage can be mitigated by randomly
selecting multiple cohort splits and averaging the ES over
these splits, as well as over the halves in a particular split.
We show that this technique can produce a desired level of
precision (in enrichment score metric and p value) inde-
pendent of how the cohorts are split.

Results
mRNA expression data for patients with breast cancer
This section uses a publically available dataset with mea-
surements of expression of 13,018 genes obtained from tis-
sue samples collected from breast cancer patients. The
cohort has been well-studied [8–10] and was the basis for
development of a test stratifying patients into good or poor
outcome groups following surgery for breast cancer [8, 9].
The test classifications (“good” or “poor”) are available as
part of the dataset and are used as a binary phenotype. The
data were accessed from the supplementary materials pro-
vided with Venet et al. [10]. The attribute subsets (here
gene sets) used were the Hallmarks Gene Sets (a set of 50
gene sets) [11] available from the Broad Institute GSEA
website (see Methods). Two particular gene sets,

HALLMARK_MYC_TARGETS_V1 and HALLMAR-
K_ALLOGRAFT_REJECTION, were chosen for particular
investigation as examples of processes within the Hall-
marks Gene Sets with association with phenotype within
the breast cancer cohort characterized by GSEA p values
of around 0.05 (p = 0.0172 for MYC_TARGETS_V1 and
p = 0.0684 for ALLOGRAFT_REJECTION). The null dis-
tributions for the standard ES for the two gene sets are
shown for various numbers of samples used in the enrich-
ment analysis, N, in blue in Fig. 1a-b. The width of each
band reflects the standard error of the null distribution in
each histogram bin across the 1000 subset realizations cre-
ated (random selections of N samples from the whole co-
hort, stratified by phenotype). It is apparent that the null
distributions remain largely unchanged as N increases.
Note that this contrasts with the archetypal, textbook case
for typical statistics, e.g., Student’s t-statistic, where the null
distribution narrows as N increases. The number of sam-
ples does not play a typical role in determining the width
of the null distribution of ES. Other factors, such as num-
ber of attributes measured and number of attributes within
the gene set, are much more important in determining the
shape of the null distribution.
For the same gene sets, the sampling distribution of ES,

for subsets of N samples drawn from the studied cohort of
294 samples, does narrow as N increases (lower plots of
Fig. 2a-b). For lowest N, the distribution retains a trace of
the bimodal character of the null distribution. As N in-
creases, the distribution becomes unimodal and then nar-
rows further. Note that as sampling is performed within a
population of only 294 samples, there will be correlations
between sampling realizations, especially for larger N.
The results shown in Figs. 1 and 2 imply that the power to

detect association between a particular attribute subset and
phenotype will increase with N. However, it will not occur
as quickly as for some simpler statistics, because although
the distribution related to the alternative hypothesis narrows
with N, the distribution for the null hypothesis does not.
We now consider the impact of changing the test statistic

from the standard ES calculated using N samples to the
average of the two ESs, ES1 and ES2, each calculated for a
split of the N samples into two distinct subsets of N/2 sam-
ples, i.e. ESavg = 0.5 (ES1 + ES2). Figure 1a-b compares the
null distribution for ESavg (in red) with that for ES (in blue)
for various values of N for the two example gene sets. (Note
that the null distribution of ESavg is trimodal, not bimodal.
For a permutation of phenotype classifications, ES1 and
ES2 are equally likely to be positive or negative and hence it
is not unlikely that ESavg is close to 0.) Figure 2a-b shows
the same for the sampling distributions of ESavg (upper
plots) and ES (lower plots). For all N studied, we observe
that the null distribution for ESavg is narrower than that for
ES. This is a result of the relative independence from N of
the null distributions: The null distribution of ES is similar
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for N and for N/2. So, the null distribution of ES1 and ES2
(which are calculated for N/2 samples) is similar to that of
ES. As ESavg is an average of ES1 and ES2, its null distribu-
tion for N samples will be narrower than those of ES (simi-
larly ES1 and ES2) for N/2 samples, and hence be narrower
than that of ES for N samples. For small N, the sampling
distribution for ESavg may be wider than that for ES. This
occurs when N is so small that the phenotype-individual
gene correlations cannot be evaluated with sufficient accur-
acy to produce a unimodal ESavg sampling distribution,
even though there is a true population association between

gene set and phenotype. This can happen for larger N when
there is no population association between gene set and
phenotype. However, when there exists a true population
association between gene set and phenotype, for larger N
the sampling distribution for ESavg for N samples is similar
in location and width to that for ES. In these cases, illus-
trated by MYC_TARGETS_V1 and ALLOGRAFT_REJEC-
TION, although the sampling distribution for ES1 and ES2
is broader than that for ES, due to the halving of the sample
size, this is compensated for by the narrowing effect of aver-
aging ES1 and ES2 together for the new statistic, ESavg.

Fig. 1 Null distribution for ES and ESavg for N = 20, 40, 60, 80, 100, and 200. a HALLMARKS_MYC_TARGETS_V1, b
HALLMARKS_ALLOGRAFT_REJECTION. Distributions for ES are shown in blue and those for ESavg are shown in red
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Hence, using ESavg as the test statistic increases the
power of detecting the association of phenotype with a
specific gene set over that obtained using ES, as long as N
is not too small and there is a meaningful population asso-
ciation. Figure 3 shows the difference in statistical power
between ES and ESavg as test statistic to detect the associ-
ation between the two example gene sets and phenotype.
Results are shown as a function of subset size, N, of the
294 patient cohort. Even for 40 samples (24 “poor” and 16
“good” phenotype), using ESavg as the statistic provides in-
creased power to detect the association. For 20 samples,

power is numerically smaller for the ESavg than for ES, al-
though both methods provide minimal power (less than
30%). The exact sample size at which benefit from ESavg
over ES ceases will depend on the magnitude of associ-
ation. It is not possible to assess anything but very strong
univariate correlations between phenotype and individual
gene expression with any accuracy for very small sample
sizes. In this setting, the power to detect the association of
gene sets with phenotype using the standard ES test statis-
tic is already severely impacted. This situation is exacer-
bated if the dataset is split in half. There will then be no

Fig. 2 Sampling distribution for ES and ESavg for N = 20, 40, 60, 80, 100, and 200. a HALLMARKS_MYC_TARGETS_V1,
b HALLMARKS_ALLOGRAFT_REJECTION
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improvement in power for ESavg over ES, but the statis-
tical power using either test statistic will be low.
One disadvantage of using the statistic ESavg is that it

is not uniquely defined for a cohort and depends on the
way that the cohort is split into two parts. This variabil-
ity can be reduced by randomly splitting the cohort into
two distinct parts many (M) times and defining a test
statistic as the average of ESavg over the M multiple

splits, i.e. < ESavg >¼

X

splits

ESavg

M . The appropriate null
distribution can be generated by applying the same per-
mutation of phenotype labels across all splits averaged
for <ESavg>. Figure 4 shows the null distribution gener-
ated for one subset of N = 200 drawn from the cohort of
294 patients for the MYC_TARGETS_V1 gene set for a
test statistic with no splits (ES), one split (ESavg), two
splits and 25 splits of the subset. As the number of splits
averaged increases above one, the distribution loses its
multi-peak structure but retains the same overall width.
Figure 5 shows the distribution of the test statistics ob-

tained for ESavg, and < ESavg > for two splits and 25 splits
for 1000 random splitting averages for the same single sub-
set of 200 samples and the MYC_TARGETS_V1 gene set.
As expected considering of the Law of Large Numbers, the
location of the distribution remains unchanged and the
width of the distribution narrows as the test statistic

averages over more random splits. This procedure allows
for definition of the test statistic, and hence associated en-
richment p value, to arbitrary precision for the cohort by
averaging sufficient random splits.
To illustrate the benefit of using ESavg and < ESavg > for

25 splits over ES as the test statistic over a wider range of
gene sets, Table 1 compares the enrichment p values for
all 50 Hallmarks Gene Sets as calculated using 294
patients using the three statistics. The p values of associ-
ation are nearly always smaller for ESavg and for < ESavg >
than for ES, and in the few cases where this is not the
case, neither approach yields p values indicative of signifi-
cant association.

Synthetic dataset
To further investigate the performance of the method for
attribute subsets with different levels of phenotype associ-
ation and different degrees of attribute correlation, we car-
ried out a set of experiments using synthetic data. Our
approach is similar to the benchmarking methodology of
Ackermann and Strimmer [2]. We simulated datasets of
600 genes for 50 samples (25 per phenotype) and defined
21 gene sets with differing degrees of inter-gene correlation
and differential expression between phenotypes. Full details
are provided in the Methods. To assess the power of the
different test statistics to identify associations of phenotype
with gene sets, we evaluated the proportion of the 100

Fig. 3 Power to detect association of phenotype with HALLMARKS_MYC_TARGETS_V1 (blue) and HALLMARKS_ALLOGRAFT_REJECTION (red) with
α = 0.05. Power is shown as a function of N for ES (dotted line) and ESavg (solid line)
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Fig. 4 Null distributions for ES and for <ESavg>. Null distributions for<ESavg > are shown for one split (ESavg = <ESavg>), two splits, and 25 splits.
All distributions are generated for one subset of 200 samples drawn from the 294-patient cohort

Fig. 5 Distribution of ESavg, and < ESavg > (two splits and 25 splits) for 1000 random splitting averages. All distributions are for a single subset of
200 samples using the MYC_TARGETS_V1 gene set
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Table 1 p values for the 50 Hallmarks gene sets. p values were calculated using the 294 sample cohort using ES, ESavg or < ESavg >
with 25 splits as the test statistic. Gene sets are sorted by increasing p value obtained using ESavg as the statistic

Gene Set p value with ES p value with ESavg p value with <ESavg>

MTORC1_SIGNALING < 0.0001 < 0.0001 < 0.0001

E2F_TARGETS < 0.0001 < 0.0001 < 0.0001

UV_RESPONSE_UP 0.0132 < 0.0001 < 0.0001

G2M_CHECKPOINT < 0.0001 < 0.0001 < 0.0001

PI3K_AKT_MTOR_SIGNALING 0.0040 0.0002 < 0.0001

MITOTIC_SPINDLE 0.0028 0.0004 < 0.0001

UNFOLDED_PROTEIN_RESPONSE 0.0006 0.0004 < 0.0001

REACTIVE_OXIGEN_SPECIES_PATHWAY 0.0063 0.0004 0.0002

ESTROGEN_RESPONSE_EARLY 0.0068 0.0006 0.0002

SPERMATOGENESIS 0.0185 0.0006 0.0002

GLYCOLYSIS 0.0216 0.0012 0.0008

MYC_TARGETS_V1 0.0172 0.0020 0.0002

UV_RESPONSE_DN 0.0156 0.0020 0.0012

MYC_TARGETS_V2 0.0320 0.0032 0.0026

DNA_REPAIR 0.0263 0.0035 0.0008

INTERFERON_GAMMA_RESPONSE 0.0373 0.0046 0.0038

IL6_JAK_STAT3_SIGNALING 0.0790 0.0074 0.0081

INTERFERON_ALPHA_RESPONSE 0.0638 0.0080 0.0105

COMPLEMENT 0.1059 0.0157 0.0149

ESTROGEN_RESPONSE_LATE 0.0622 0.0188 0.0080

ALLOGRAFT_REJECTION 0.0684 0.0194 0.0144

INFLAMMATORY_RESPONSE 0.0963 0.0303 0.0172

CHOLESTEROL_HOMEOSTASIS 0.1035 0.0449 0.0252

BILE_ACID_METABOLISM 0.0966 0.0472 0.0247

ANGIOGENESIS 0.2591 0.0796 0.0753

WNT_BETA_CATENIN_SIGNALING 0.4422 0.1160 0.1235

EPITHELIAL_MESENCHYMAL_TRANSITION 0.2984 0.1219 0.0984

COAGULATION 0.2516 0.1223 0.1093

IL2_STAT5_SIGNALING 0.1685 0.1437 0.0596

MYOGENESIS 0.2767 0.1589 0.1043

TGF_BETA_SIGNALING 0.3229 0.1593 0.1344

OXIDATIVE_PHOSPHORYLATION 0.3773 0.1877 0.1604

PROTEIN_SECRETION 0.3107 0.2032 0.2028

ADIPOGENESIS 0.4204 0.2247 0.2581

APICAL_SURFACE 0.4078 0.2477 0.0824

P53_PATHWAY 0.5724 0.2489 0.2423

TNFA_SIGNALING_VIA_NFKB 0.3401 0.2509 0.1545

HYPOXIA 0.4398 0.2712 0.2450

APOPTOSIS 0.5796 0.2905 0.3886

APICAL_JUNCTION 0.5175 0.2907 0.2579

NOTCH_SIGNALING 0.7451 0.3104 0.3226

FATTY_ACID_METABOLISM 0.5358 0.3134 0.3853

PANCREAS_BETA_CELLS 0.6834 0.3201 0.1500
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dataset realizations in which an association was detected
with p < 0.05 using ES, ESavg, and < ESavg > for 25 splits.
The results are shown in Table 2.
With the exception of the two control sets (a and j), all

gene sets are constructed with an association between at
least some of the attributes in the gene set and the pheno-
type. The association is chosen to vary from moderate to
weak. This allows for detection of differences in statistical
power to identify association between gene set and pheno-
type; if associations were strong (e.g., greater than for gene
set b), they would be uniformly detected in almost all reali-
zations for all methods. For the two control gene sets, with
no association between phenotype and gene set, the distri-
bution of p values over the realizations was uniform (see
histograms in Appendix) and the proportion of realizations
yielding a p value of association below 0.05 remains around
5% for our approach. For the majority of other gene sets,
the proportion of realizations identifying the association
with p < 0.05 is higher for <ESavg > (M= 25), and often also
for ESavg, than for ES. This indicates increased power to
identify the constructed associations over a variety of
attribute subset scenarios, including different magnitudes
of univariate association between phenotype and genes,
mixtures of up- and down-regulated genes between pheno-
types, and differences in correlation structure within the
gene set. Apart from the controls, there are two other situa-
tions where increased power is not observed. The first in-
cludes those gene sets where the association is very weak
(gene sets d, f, and g). All three test statistics have similarly
poor power to identify very weak associations constructed
between phenotype and gene set. The second situation in-
cludes special cases of balance between up- and down-reg-
ulated attributes within a gene set (gene sets h and i). Gene
sets h and i are constructed with equal numbers of pheno-
typically up- and down-regulated attributes, all with exactly
the same strength of univariate correlation with phenotype.
In this very special setting, for any particular realization of
the dataset, one is equally likely to calculate either a positive
ES or a negative ES. For gene set h, p < 0.05 is found in
around 30% of cases, but around half of these correspond

to a positive ES and the other half to negative ES. When
the dataset is split into two to calculate ESavg and < ESavg>,
each half is equally likely to yield a positive or negative ES,
due to the exact balance between up- and down-association
with phenotype. Averaging over this bimodal distribution
yields a distribution centered around ESavg = 0 or < ESavg >
=0 and hence a reduction in the power to identify a

Table 1 p values for the 50 Hallmarks gene sets. p values were calculated using the 294 sample cohort using ES, ESavg or < ESavg >
with 25 splits as the test statistic. Gene sets are sorted by increasing p value obtained using ESavg as the statistic (Continued)

Gene Set p value with ES p value with ESavg p value with <ESavg>

XENOBIOTIC_METABOLISM 0.4921 0.3541 0.4946

HEME_METABOLISM 0.7713 0.4576 0.4731

KRAS_SIGNALING_UP 0.6241 0.7068 0.4892

ANDROGEN_RESPONSE 0.8082 0.7539 0.5841

HEDGEHOG_SIGNALING 0.7870 0.7810 0.5163

PEROXISOME 0.3931 0.8977 0.3682

KRAS_SIGNALING_DN 0.9700 0.9193 0.7337

Table 2 Proportion of realizations with p < 0.05 for ES, ESavg, and
< ESavg > for 25 splits. The proportion was calculated over 100
realizations of the dataset for each of the 21 gene sets using the 3
test statistics, ES, ESavg, and < ESavg > with M = 25. a indicates a
control gene set with no association with phenotype

Gene
Set

Proportion with p < 0.05

ES ESavg <ESavg>

a a 0.06 0.08 0.05

b 1.00 1.00 1.00

c 0.82 0.81 0.92

d 0.09 0.09 0.14

e 0.38 0.39 0.46

f 0.06 0.13 0.10

g 0.01 0.00 0.01

h 0.29 0.19 0.19

i 0.10 0.16 0.07

j a 0.07 0.07 0.07

k 0.92 0.93 0.98

l 0.81 0.88 0.91

m 0.92 0.94 0.98

n 0.34 0.35 0.43

o 0.73 0.76 0.84

p 0.42 0.56 0.64

q 0.77 0.84 0.90

r 0.22 0.26 0.22

s 0.75 0.77 0.90

t 0.36 0.38 0.44

u 0.25 0.28 0.37
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significant association between phenotype and gene set.
Therefore, in this special setting of balance between extent
and number of features with up- and down-association
with phenotype, performance of the ESavg and < ESavg > test
statistics is inferior to that of ES. However, as long as one is
not close to a precisely matched scenario of up- and
down-regulation, ESavg and < ESavg > show at least similar
power to ES (see gene set r, with 13 genes with Δμ = 0.5
and 7 with Δμ = − 0.5) or greater power (gene sets l, p, and
q, each with 15 genes with Δμ = 0.5 and 5 with Δμ = − 0.5).
In a real world setting, very close balance in number and
magnitude of opposing directions of differential gene ex-
pression between phenotypes is unlikely to occur within a
gene set. Hence, the analyses of the synthetic data indicate
that use of ESavg or < ESavg > is likely to increase power to
detect associations with biological processes represented by
the gene sets as long as the sample set size and strength of
association is large enough to provide some minimal power
for identification via the standard ES approach.

Discussion and conclusions
The null distribution of the enrichment score, as defined in
the GSEA approach to set enrichment analysis, is largely in-
dependent of the number of samples used within the ana-
lysis. Hence, increasing the sample cohort size, N, can only
lead to increases in power to detect association between a
gene set and a phenotype by narrowing the sampling distri-
bution of ES. Splitting the cohort into two distinct equal
parts, calculating the ES for each part, and averaging these
to create a new test statistic, ESavg, can produce a markedly
narrower null distribution and similar sampling distribution
of ES. This approach leads to increased statistical power to
detect significant associations between phenotype and attri-
bute subset. In the majority of cases where this is not the
case, neither ES nor ESavg as test statistic leads to identifica-
tion of significant association of phenotype and gene set,
because no association exists, the attribute subsets are not
strongly enough associated with phenotype for detection,
or N is too small to allow meaningful assessment of corre-
lations between individual genes and phenotype. In excep-
tional situations of close matching between number and
magnitude of up- and down- regulated attributes between
phenotypes, the sampling distribution of the ES statistic has
the unusual property of being bimodal even for the largest
sample sizes. Using ESavg as test statistic can then reduce
the power to identify associations. However, this situation is
unlikely to occur outside synthetically produced datasets,
and such scenarios could be identified by inspection of the
running sum from which ES is calculated. (Similar magni-
tudes for the maximal and minimal deviation of the run-
ning sum from zero would be observed, even though the p
value associated these values of ES would be small.) Un-
acceptable dependence of the test statistic and enrichment

p value on the way the cohort is split to produce ESavg can
be avoided by using an extension of the averaging process
to include multiple random splits of the cohort in the test
statistic <ESavg > .
Application of this approach could lead to clear advan-

tages in the statistical power available to identify associa-
tions between biological processes or pathways and sample/
patient phenotypes in all but the smallest sample cohorts,
where the standard method also has very limited power.
This may help to alleviate the issue of comparative reduced
power for these kinds of ESs that has been pointed out in
the literature [2]. Increased power would enable the reliable
identification of weaker associations and increased certainty
for identifications that may have borderline significance in
terms of p-value and false discovery rate with the standard
statistic. The method has been illustrated using a binary
phenotype classification and one choice of phenotype-indi-
vidual gene correlation metric, but it should be applicable
to enrichment analyses using other correlation metrics or
continuous phenotype scores. The benefit of using ESavg or
< ESavg > over ES depends on the relative independence of
the null distribution of ES on the number of samples, N.
This phenomenon is a result of the way that the enrichment
is assessed, via the extrema of the running sum (created
from ranking and combining the attribute-phenotype corre-
lations) and the generation of the null distribution via
phenotype permutation. Each phenotype permutation for
generation of the null distribution leads to a randomization
of the values and rankings of the attribute-phenotype corre-
lations. Hence, the manner in which the correlation be-
tween attribute and phenotype is evaluated should not be
important, and our method should be directly applicable to
GSEAs employing other correlation metrics (e.g. Spearman/
Pearson r for continuous attributes).
Here, we explored only a split of the sample set into two

distinct, equal parts. The method could be extended to
average over splits of the dataset into more than two parts,
and this should lead to improved performance by further
narrowing of the associated null distribution. However, the
benefit of splitting into more distinct subsets would require
larger cohort sizes. The concept of averaging ESs across
distinct subsets may also be useful to allow the combination
of data from multiple cohorts of samples with identical
available attributes. This could be especially useful if batch
effects preclude merging of the multiple sample sets into a
single cohort. Use of normalized ESs [4, 12] would also per-
mit the same approach to be used to combine data from
different cohorts of patients with different attributes avail-
able per cohort, even, for example, to combine genomic
and proteomic panel data, provided that consistent pheno-
types could be assigned to the multiple cohorts. Extending
to the case of multiple data sources for a single cohort of
patients would also be possible using an averaging over the
ESs calculated per data source, provided that the null
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distribution was generated using a permutation of patient-
defined phenotype class labels.

Methods
Dataset and gene sets: mRNA expression
The dataset used in this part of the study, accessed from
[10], includes mRNA expression measurements of 13,018
genes from tissue samples collected from patients undergo-
ing surgery for breast cancer. This cohort of 295 patients
was the basis for development of a test stratifying patients
into “good” and “poor” outcome groups [8, 9]. The test
classification for each patient is included in the dataset and
this binary result was used as the phenotype for which asso-
ciation with biological processes was sought. Gene expres-
sion values were used as in [10] without further processing
or normalization. We used data from 294 of the 295 pa-
tients (data from sample NKI373 was not used) throughout
our studies to allow splitting of the cohort into two distinct,
equally-sized subgroups.
The attribute sets, in this case gene sets, used here are the

Hallmarks Gene Sets [11] available from the Broad Institute
GSEA website (http://software.broadinstitute.org/gsea/
msigdb/collections/jsp#H). They are a well-curated collec-
tion of gene sets representing clearly defined biological
states and processes. Fifty gene sets are included in the col-
lection. For most of the analyses we selected two particular
gene sets from the Hallmarks set, MYC_TARGETS_V1 and
ALLOGRAFT_REJECTION, as examples. The test classifi-
cation phenotype showed unambiguous, but not extreme,
associations with these gene sets and, as such, they were
considered to be particularly illustrative examples. P values
for enrichment were also calculated for all 50 gene sets in
the Hallmarks collection using ES, ESavg, and < ESavg > (25
splits) as test statistics using data from all 294 samples.

Dataset and gene sets: synthetic data
To investigate the dependence of the performance of the
method on level of association and degree of correlation be-
tween attributes in the attribute subsets in a more con-
trolled way, we carried out a set of analyses using synthetic
datasets and attribute subsets, following the benchmarking
approach of Ackermann and Strimmer [2].
A synthetic dataset of expression values for 600 attri-

butes (genes) was generated by drawing from a multivari-
ate normal distribution with unit variance for 25 samples
with phenotype A and 25 samples with phenotype B. For
attribute i, we define the difference in mean attribute
value between A and B as Δμi. The correlation between at-
tribute i and attribute j is defined as ρij. The 600 attributes
were selected for the 50 samples as follows:

i. 420 with Δμ = 0 and ρ = 0,
ii. 20 with Δμ = 0.5 and ρ = 0,
iii. 20 with Δμ = 0.25 and ρ = 0,

iv. 20 with Δμ = 0.1 and ρ = 0,
v. 20 with Δμ = 0.5 and ρ = 0.6,
vi. 20 with Δμ = 0.25 and ρ = 0.6,
vii. 20 with Δμ = 0.1 and ρ = 0.6,
viii.10 with Δμ= + 0.5 and 10 with Δμ= − 0.5, with ρ =

0.6 within each subgroup of 10 and ρ = − 0.6 between
the subgroups,

ix. 10 with Δμ = + 0.5 and 10 with Δμ = − 0.5, with ρ =
0,

x. 20 with Δμ = 0 and ρ = 0.6.

Twenty one gene sets with varying degrees of pheno-
type association and varying intercorrelation were cre-
ated by taking the following attribute groups:

a. 20 from (i)
b. 20 from (ii)
c. 20 from (iii)
d. 20 from (iv)
e. 20 from (v)
f. 20 from (vi)
g. 20 from (vii)
h. 20 from (viii)
i. 20 from (ix)
j. 20 from (x)
k. 10 from (ii) and 10 from (v)
l. 10 from (ii), 5 + 5 from (viii) (5 Δμ = 0.5 and 5 Δμ =

− 0.5)
m. 20 from (ii), (iii) and (iv)
n. 20 from (v), (vi) and (vii)
o. 20 from (ii)-(vii)
p. 10 from (ix) with Δμ = + 0.5, 5 from (viii) with Δμ

= − 0.5, and 5 from (viii) with Δμ = + 0.5 and ρ = 0.6
q. 10 from (ii), 5 + 5 from (viii) (5 Δμ = 0.5 and 5 Δμ =

− 0.5)
r. 3 from (ii), 10 Δμ = 0.5 from (ix) and 7 with Δμ = −

0.5 with from (ix)
s. 10 from (i) and 10 from (ii)
t. 10 from (i) and 10 from (v)
u. 8 from (i) and 12 from (ii)-(x)

Gene set enrichment analysis implementation
The enrichment set analysis methodology used closely fol-
lows the approach of Subramanian et al. [4]. Rank-based
correlation, in the form of a Mann-Whitney test statistic
scaled to range from 1 to − 1, was used to characterize asso-
ciation between expression of individual attributes and the
binary phenotype. For the standard gene set enrichment
analyses, the enrichment score, ES, used was exactly as de-
fined in Subramanian et al. with p = 1. The null distribu-
tions for assessment of statistical significance of enrichment
were obtained by repeated random shuffling (permutations)
of the phenotype classifications.
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The alternative enrichment assessment method using
ESavg was implemented as follows. The cohort of size N
was split into two equal and distinct subgroups, S1 and S2,
each of size N/2. For each subgroup an enrichment score
was calculated as described above, to yield ES1, ES2 for S1,
S2 respectively. The alternative statistic ESavg was defined
as the average of the two subgroup enrichment scores, i.e.
ESavg = 0.5(ES1 + ES2). The null distribution was again
calculated via permutation of phenotype classifications.
The phenotype classifications were shuffled, then the data-
set was split into two halves, S1 and S2. ES1 and ES2 were
calculated within S1 and S2, respectively and averaged to
give ESavg for the permutation realization.
Assessment of enrichment using an average over mul-

tiple splits used the test statistic <ESavg > = 0.5 Σi (ES1i +
ES2i)/M, where the sum runs over the number of splits,
M, of the N samples into two random subsets, S1i and
S2i, which have enrichment scores ES1i and ES2i, re-
spectively. To generate the null distribution, the pheno-
type classifications were shuffled, and then the dataset
was randomly split into two halves M times. <ESavg > is
then calculated for the permutation realization. This is
repeated for the number of permutation realizations re-
quired to generate the null distribution.

Null distributions for ES and ESavg
The null distributions for the standard enrichment score,
ES, and the alternative statistic, ESavg, were generated for
subsets of the cohort of size 20, 40, 60, 80, 100 and 200 for
the gene sets MYC_TARGETS_V1 and ALLOGRAFT_RE-
JECTION. In each case a subset was chosen randomly,
stratified by phenotype classification. Phenotype classifica-
tions were randomly permutated 10,000 times in each case.

Sampling distributions of ES and ESavg
The sampling distributions for subsets of size N drawn
from the population cohort of 294 samples were generated
for ES and ESavg for the gene sets MYC_TARGETS_V1 and
ALLOGRAFT_REJECTION for N = 20, 40, 60, 80, 100 and
200. One thousand subsets were chosen randomly for each
subset size, stratified by phenotype classification.

Comparison of power to detect associations between ES
and ESavg
The power to detect association of the phenotype with the
gene sets MYC_TARGETS_V1 and ALLOGRAFT_REJEC-
TION was calculated as follows. The null distributions for
ES and ESavg for different subset sizes were first calculated
as outlined above. ES and ESavg were calculated as described
above, for 1000 realizations of each subset size, for estima-
tion of the sampling distributions. For each realization for
each subset size, ES and ESavg were compared with their re-
spective null distributions to determine whether an associ-
ation with p < 0.05 was observed. The power to detect this

association with α = 0.05 was defined as the proportion of
realizations for which p < 0.05.

Null distribution for enrichment score statistics for
different numbers of splits, M
The null distributions for ES (no splits), for ESavg (1
split) and for <ESavg > with 2 and with 25 splits of one
subset of 200 samples drawn from the 294 patient co-
hort were estimated. Each null distribution was gener-
ated as described above from 10,000 permutations of the
phenotype classifications.

Distributions of <ESavg > over different splits of the
cohort for different numbers of splits, M
The distributions of ES (no splits), for ESavg (1 splits)
and for <ESavg > with 2 and with 25 splits over different
random splits of the single subset of 200 samples drawn
from the study cohort were estimated using 1000 reali-
zations of the sets of splits needed for each statistic.

Associations of all 50 Hallmark gene sets with phenotype
classification for the cohort
For each of the 50 Hallmark Gene Sets, GSEA was per-
formed separately using ES, ESavg, and < ESavg > with M
= 25 splits on the whole cohort of 294 samples. The null
distributions for each gene set were estimated by 10,000
phenotype classification permutations.

Synthetic data analyses
For each of the 21 gene sets, GSEA was performed separ-
ately using ES, ESavg, and < ESavg > with M= 25 splits for
100 realizations of the synthetic dataset. The null distribu-
tions were estimated by 10,000 phenotype classification per-
mutations. The power of the analyses to detect association
between gene set and phenotype for α = 0.05 (significance
level of 95%) was estimated by calculating the proportion of
realizations in which the enrichment p value was lower than
0.05. To examine the distribution of p values for the two
control gene sets (a and j), GSEA was performed for the sta-
tistics ES, ESavg, and < ESavg > with M= 25 for 1000 realiza-
tions of the dataset.

Software
Software implementing the method presented in this
study is available in the PSEABiodesix repository at
https://bitbucket.org/PSEABiodesix/pseabiodesix.

Appendix
For the control synthetic gene sets, which had, by con-
struction, no association with phenotype, GSEA was car-
ried out using all three enrichment statistics on 1000
realizations of the dataset to examine the distribution of
p values across the realizations (Fig. 6).
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