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Abstract

Background: Although a considerable number of proteins operate as multiprotein complexes and not on their own,
organism-wide studies so far are only able to quantify individual proteins or protein-coding genes in a condition-specific
manner for a sizeable number of samples, but not their assemblies. Consequently, there exist large amounts of
transcriptomic data and an increasing amount of data on proteome abundance, but quantitative knowledge on
complexomes is missing. This deficiency impedes the applicability of the powerful tool of differential analysis in the
realm of macromolecular complexes. Here, we present a pipeline for differential analysis of protein complexes based
on predicted or manually assigned complexes and inferred complex abundances, which can be easily applied on a
whole-genome scale.

Results: We observed for simulated data that results obtained by our complex abundance estimation algorithm were
in better agreement with the ground truth and physicochemically more reasonable compared to previous efforts that
used linear programming while running in a fraction of the time. The practical usability of the method was assessed in
the context of transcription factor complexes in human monocyte and lymphoblastoid samples. We demonstrated
that our new method is robust against false-positive detection and reports deregulated complexomes that can only
be partially explained by differential analysis of individual protein-coding genes. Furthermore we showed that
deregulated complexes identified by the tool potentially harbor significant yet unused information content.

Conclusions: CompleXChange allows to analyze deregulation of the protein complexome on a whole-genome scale
by integrating a plethora of input data that is already available. A platform-independent Java binary, a user guide with

complexes, Differential analysis, Monocytes

example data and the source code are freely available at https://sourceforge.net/projects/complexchange/.

Keywords: Differential protein complex analysis, Protein complex abundance estimation, Transcription factor

Background

Cellular function is a team effort because proteins rarely
perform their biochemical tasks all alone. Instead, pro-
teins frequently collide with other gene products in the
crowded environment of the cell, they may selectively
bind to other proteins driven by physical interactions,
they may dynamically assemble into complexes in a well-
coordinated manner and accomplish their tasks coopera-
tively [1, 2]. Such multiprotein complexes may be either
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clearly defined modules of interaction partners that repre-
sent permanently assembled molecular machines or com-
binatorial formations of transient interaction partners in a
dynamic interplay [3-5].

Whereas the experimental detection of protein com-
plexes is generally speaking a mature field, it is still
time-consuming and subject to high false-discovery rates.
Quantitative profiling of the complete complexome in a
condition-specific way is currently not feasible in a high-
throughput fashion [6-9]. More so, direct quantitative
measures are limited to a definite protein space and only
cover pairwise complexation [10-13].

Nowadays a plethora of data on gene expression and
an increasing amount of data on proteome abundances
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enable to also approach the dynamics of the condition-
specific complexome by computational methods. Guided
by static compilations of protein interactions, the corre-
lation of gene expression or protein abundance between
putative interaction partners was used as a proxy to study
their collective behavior [4, 14, 15]. Besides, the topic
was examined by integrating expression data with known
protein complexes [3] and annotated pathways [16]. How-
ever, such simplified models lack a ruleset addressing
how proteins that are expressed in low amounts and that
are shared between different binding partners may limit
complex formation. Approaches dealing with such inter-
dependencies and the limitedness of gene products have
been attempted by stochastic simulations with according
computational effort [17] and by linear optimization on
fixed sets of reference complexes [18, 19]. The latter stud-
ies only considered a very limited complexome and took
a simplistic view at differential abundances across cellular
states.

Whereas databases of experimentally detected protein
complexes continue to serve the community well, they
are inherently incomplete - especially when it comes to
dynamic combinatorial complexes - and thus can only
partially explain all the relevant interplay [20, 21]. Pro-
teins concerned with the regulation of transcription and
the chromatin state, for example, are highly interwoven
subsets of physically interacting proteins and form com-
plexes in a time-, context- and condition-specific manner.
In particular transcription factor complexes are master
regulators of all levels of eukaryotic life ranging from
the yeast cell cycle [22] to key determinants of cellular
fate in mammals [23-25]. We showed with our combina-
torial complex prediction algorithm DACO [26] that by
integrating connectivity constraints inferred from inter-
actions between protein domains, one is able to unravel
the ensemble of biologically feasible protein complexes
even for challenging modules of the interactome. With our
more recent development PPIXpress [27] and transcript
expression data, the input data for DACO can be contex-
tualized to a level of detail that even takes into account
potential effects of alternative splicing when inferring
sample-specific interactomes.

Here, we present the differential analysis software Com-
pleXChange as a terminal step of a pipeline consisting
of PPIXpress-contextualized and DACO-derived protein
complexes, or arbitrary alternative input protein com-
plexomes. The tool quantifies protein complexes, includes
several statistical testing procedures, is open-source and
can easily scale up to 10,000s of interdependent complexes
on a standard computer.

Implementation
CompleXChange facilitates differential analyses of the
protein complexome. It is intended to be used with input
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data on two groups of samples for which protein com-
plexes and protein abundances are predicted by the tools
JDACO [26] (version 1.0+) and PPIXpress [27] (version
1.15+). The software can also be applied to suitable input
data from alternative origin, of course. An alternative
workflow is provided below on the example of refer-
ence complexes taken either from CORUM ([28] or from
hu.MAP [21]. A ready to use platform-independent Java
8 binary, a user guide with example data and the source
code of the program are freely available for download
at https://sourceforge.net/projects/complexchange/. The
general workflow is outlined in Fig. 1.

Approximating protein complex abundances
In the first computational step, CompleXChange infers
complex abundances from the input data, namely total
protein abundances and protein complexes, for each indi-
vidual sample. To speed up the calculations, CompleX-
Change automatically utilizes multi-core systems in this
step by exploiting the independence of the samples.
Binding affinities between proteins are neglected as suit-
able data is lacking currently and in the foreseeable future
[29]. Instead, we assume that the formation of complexes
in a cellular sample is governed by two basic rules: the
total amount p; s, of each protein i € P in the sample
is fixed, see Eq. 1, and the abundance ¢, of a complex
m € C is limited by its least abundant member protein,
see Eq. 2. Thus

VieP:pitor = Z Dim + Pires (1)
meC
Vm € C: ¢y = minpj, (2)
teCy

where C,, denotes the set of proteins that make up com-
plex m, p;,, is the amount of protein i that is assigned to
complex m, and pj s is the residual quantity of protein i
that is unbound in the sense of the input proteome P and
complexome C. We do not consider the case that single
proteins may occur as multiple copies in a protein com-
plex because there are few data available and the informa-
tion is absent in the notion of complexomes derived from
interaction networks. The methodology can in principle
be extended to cover stoichiometries of the important
class of homo-oligomeric protein complexes if that infor-
mation should become widely available at genomic scale
in the future. At the moment, our concept of neglect-
ing such complexes leads to an over-representation of
the other complexes that these proteins are involved in.
Figure 1b visualizes an application of the algorithm to an
artificial example where “Iter: x.y” means iteration x and

step y.


https://sourceforge.net/projects/complexchange/

Will and Helms BMC Bioinformatics

(2019) 20:300

Page 3 of 14

A B

CompleXChange

C

protein abundances

complex
abundances

for each

testing differential
complex abundance

presumed protein

abundances sample

'sample-specific input data

D dt

presumed —_—— complex1 complex2 oo, ps py SIQH'flcanﬂy .
complexome ~ P' P2 PO P4 i deregulated protein
7t complexes
' Iter: 1.0 . Iter: 1.3
complex 1 complex 2 protein abundances complex 1 complex 2 residual capacitites
JDACO
le D detects sample-
< (7 specific combinatorial ct
)@ protein complexes l_l c2
Cc1 C2:
P P2 P4 PIP3 Pi P2 P P4 L PI P2 P4 P P3 Pl P2 P3 Pa
4 ¥
PPIXpress Iter: 1.1 lter: 2.1
P complex 1 complex 2 residual capacities complex 1 complex 2 residual capacitites
constructs sample-spegcific
- protein interactomes c1
- interactomes among -
W individual protein domains o
- protein abundances n c2
P P2 P4 P P3 PI P2 P3_ P4 P1_ P2 P4 P P3 P P2 P P4
* * lter: 1.2 Iter: 2.2 _ i
- complex 1 complex 2 residual capacities complex 1 complex 2 residual capacitites
i e
transcript-level  reference protein c1
RNA-seq data  interaction network c2 02__-:-:
recommended workflow to construct input P P2 P4 P1 P3 Pl P2 P3 P4 P1 P2 P4 P P3 Pl P2 P3 P4

data, alternative ways equally possible

Details are described in the main text

Fig. 1 Workflow example for CompleXChange. A) Suitable input data can be constructed easily with either PPIXpress and JDACO or in suitable
alternative ways. CompleXChange then performs B) the approximation of complex abundances, and C) the detection of differential complexes.

Step 0: Initial distribution of proteins

The algorithm starts by distributing equal portions of the
total abundance of each protein p; s, to the complexes it
is participating in. Thus Vi € P : p; »es = 0 and

__ Piot

Yie P,m e P;:pi, = (3)
|P;]

where P; is the set of all complexes that include protein i.
This step is only executed once.

Step 1: Tracking surplus capacities

After the initial fill-up in Step 0 and subsequent redis-
tribution steps in later iterations, the limiting proteins in
each complex are determined and all ¢, are set according
to Eq. 2. Thereby, all complexes limited by a protein i in
this iteration are kept track of in L;. Residual capacities are
subsequently updated by the surplus protein amount, thus

Vi€ P:pires= Y Pim — Cm)- (4)

mePp;

The respective quantities per complex are then adjusted
accordingly, Vi € P,m € P; : pj s = .

When its limiting proteins have zero residual capacity at
this point, their share in the complex will remain fixed in
further iterations and thus the complex is saturated. Sat-
urated complexes and proteins solely found in saturated
complexes are therefore set aside and not considered in
future iterations (see change to red text color for complex
annotations in Fig. 1B).

Step 2: Detecting convergence

The sum of residual capacities ) v;.p Pires after Step 1 is
monotonically decreasing and the optimal state is found
when no further meaningful decrease is possible. The iter-
ative optimization stops and the complex abundances c;,
are returned when either A ZWEP Pires < €, the preset
maximum number of iterations is reached or all com-
plexes are saturated. Details regarding default termination
parameters are given in Suppl. Additional file 1: Section
S1.1.

Step 3: Redistributing residual capacities

To counteract optimization confinement (pathological
examples can be artificially constructed where protein
amount is swapped back and forth without any meaning-
ful improvement) and accelerate convergence, a logistic
saturation function that is decreasing rapidly with each
iteration sets a distribution prefactor A €[0.99,...,0.09)
(see Suppl. Additional file 1: Section S1.1 for details) by
which the residual amounts of limiting proteins ({i € P |
|L;| > 0}) are preferentially distributed to complexes they
limit:

ADires

|Lil

V{ieP||Li| >0}, m € L : pim = pim + (5)
with thus remaining capacitites V{i € P | L;] > 0} :
Pires = (1 — A)pi res. Finally, the complete residual capac-
ities of all proteins are distributed equally as Vi € P,m €
P;: pim = Pim + P‘;):els and therefore Vi € P : pjpes = O.
From here, the algorithm proceeds with Step 1 in a new
iteration.
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Detection of differential complexes

After annotating each complex detected by JDACO with
an abundance value per sample, we statistically evaluate
the numerical difference of the abundance of individual
complexes between groups (see Fig. 1C). To limit unnec-
essary testing, complexes that should undergo testing have
to be detected in at least a sizeable fraction of samples
of either group (default: 0.75). The group-specific distri-
butions of each complex that passed this filtering step
are then subjected to two-sided statistical tests. Imple-
mented statistical tests are the Wilcoxon rank sum test
(default test; unpaired, non-parametric), Welch’s unequal
variances t-test (unpaired, parametric), Wilcoxon signed-
rank test (paired, non-parametric), and the paired t-test
(paired, parametric). Multiple testing adjustment is sub-
sequently performed using the Benjamini-Hochberg pro-
cedure [30] and significantly deregulated complexes are
reported. Additional options that are implemented in the
code but not discussed here are (a) to base the differen-
tial analysis on subsets of complexes detected to help the
detection of alterations in robust core complexes, or (b) to
solely use combinations of user-specified seed proteins as
the reference of interest. Please refer to the user guide for
details.

Furthermore, CompleXChange includes an optional
analysis that determines seed proteins that occur more
often than expected by chance in up- or down-regulated
complexes. If this option is selected, a ranked list of pro-
tein complexes is constructed by assigning a score to each
evaluated complex. This score is set as the negative loga-
rithm of their raw p-value and the sign of their direction
of deregulation. In doing so, the task resembles the estab-
lished approach Gene Set Enrichment Analysis (GSEA)
but is applied to proteins in scored protein complexes in
an analogous way. The implementation is done accord-
ing to the original GSEA paper [31]. By default 10,000
iterations are made in the randomization step and only
seed proteins are considered that belong to at least 10
complexes.

Results

The results and their discussion will be divided into three
major parts. First, we introduce the datasets that were
used in our evaluation, then we assess the performance
of CompleXChange. Finally, we analyze the results of
an application of CompleXChange to derive the differ-
ential transcription factor complexome of classical and
non-classical monocytes.

Datasets and processing of data

Preparing sample-specific transcript expression data

Raw RNA-seq data for 17 samples of classical mono-
cytes (CMs) and for 17 samples of non-classical human
monocytes (NCMs) [32] (16 sample pairs matched by
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donor among them) were retrieved from the SRA (acces-
sion SRP082682) [33]. A subset of 58 RNA-seq samples
of Finnish women among the human lymphoblastoid cell
line samples (LCLs) of the GEUVADIS data [34] was
downloaded from EBI ArrayExpress (accession E-GEUV-
1) [35] analogously to [36]. The raw sequencing data was
quantified using kallisto 0.43.1 [37] and the annotation
data on human protein-coding transcripts of GENCODE
release 27 (GRCh38.p10, Ensembl release 90). Kallisto was
applied with bias-correction enabled and default options
otherwise. Fragment length estimates for the single-end
sequenced monocytes data were set according to the orig-
inal publication [32]. One hundred iterations of bootstrap-
ping were carried out to account for technical variation in
a subsequent differential analysis using sleuth [36].

From interaction networks to transcription factor
complexomes

From the weighted human protein-protein interaction
network PrePPI [38, 39] we downloaded its most recent
high-confidence release on 17. Jan 2017. On the basis
of this reference interactome we constructed sample-
specific protein-protein interaction networks as well as
corresponding domain-domain interaction networks for
all quantified transcript expression samples with PPIX-
press 1.18 [27]. For this, the most recent updates were
automatically retrieved from Ensembl (release 90) [40],
UniProt (release 2017_09) [41] and 3did (release Sept
2017) [42]. The reference network contained informa-
tion on 18,451 proteins and 1,527,335 interactions. 70%
of the proteins and 37% of the protein interactions were
mapped to domain interactions and thus can benefit from
the transcript granularity of the data and the method-
ology of PPIXpress that adapts the interactome in an
isoform-specific manner. The usefulness of this model
based on conserved domains was recently confirmed
experimentally [43, 44]. All transcripts with a non-zero
TPM value were deemed expressed. Approximate protein
abundances were taken as the sum of TPM values for
all expressed transcripts coding for the protein. Notably,
when assigning abundance values, PPIXpress (since ver-
sion 1.12) by default excludes transcripts with Ensembl
biotype annotations 'nonsense-mediated decay’ or 'non-
stop decay’ Although protein abundances are still approxi-
mated by mRNA expression, the pipeline already accounts
for well-understood post-translational surveillance mech-
anisms and should thus provide more reasonable esti-
mates than mere gene expression data until equally rich
genome-wide proteome abundance data are available in
appropriate sample sizes.

Finally, transcription factor (TF) complexes were pre-
dicted for each sample with JDACO 1.0 [26] by employ-
ing the 601 TFs annotated in HOCOMOCO v10 [45]
as seed proteins in the respective protein and domain
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interactomes. The seed pair threshold was set to 0.95
(PrePPI weights are probabilities), the maximal complex
size to 5 proteins (optimized tradeoff between allowed
complex size and runtime) and default parameters were
used otherwise. The thus derived complexome will serve
as the default input for our analyses. Figure 2a visualizes
the distributions of mapped reads (left) as well as interac-
tome (middle) and predicted complexome sizes (right) for
the three groups of samples used in the study.

To illustrate how CompleXChange can also be used
in alternative workflows, we downloaded the manually
curated human protein complexome of 2916 complexes
in CORUM (3.0) [28] and the precompiled dataset of
4526 hu.MAP complexes [21] which was derived by data
integration efforts. After filtering for complexes with at
least one TF, the 454 remaining CORUM transcription
factor complexes (TFCs) comprised complexes involving
159 TFs. The 277 remaining huMAP TFCs covered 183
TFs. The thus derived TFCs of each data source where
then used as reference complexomes to construct sample-
specific subsets for which all member proteins have a
non-zero protein abundance (as given by PPIXpress, see
above) in the particular monocyte samples considered
here. Figure 2B shows the respective complexome sizes
for all monocytes samples. When assessing the sizes of
TFCs in the CORUM and hu.MAP data, the vast majority
of complexes was within the threshold of 5 proteins per
TFC that we used in our predictions (see Additional file 1:
Figure S1).

Assessing the methodology

We first evaluated the performance of the algorithm that
approximates protein complex abundances implemented
in CompleXChange. For this, we compared the Complex-
Change results to an approach where the problem was
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formulated as a linear program [18, 19]. Simulated data
with known ground truth was used to benchmark the two
methods. Furthermore, we checked if CompleXChange
was susceptible to reporting deregulated complexes erro-
neously and how it behaved using limited data. To emulate
rather complete complexomes, all method evaluation was
conducted using the extensive predicted complexomes of
each sample.

Comparing abundances computed by CompleXChange and
linear programming

Using both the CompleXChange algorithm and an exist-
ing approach based on linear programming (LP) we com-
puted abundance values of predicted protein complexes
for all 92 samples on monocytes and lymphoblastoids. The
LP approach was implemented according to the equations
in [18] using the established open-source solver lpsolve
(v5.5) [46]. Figure 3 visualizes the correlation of com-
plex abundance estimation results between both methods
(left), runtimes for each method (middle) and the frac-
tion of complexes per sample that were assigned with an
abundance of zero by the LP-based approach (right).

The predicted protein complex abundances were over-
all very similar to each other with an average correlation
of 0.90 + 0.06 (Fig. 3, left). Computing the LP results
took on average 2.8 + 0.9 times longer (Fig. 3, mid-
dle) than using CompleXChange on identical input data
(» < 10719, two-sided Wilcoxon signed-rank test paired
by sample). Notably, the LP formulation resulted in many
zero solutions. On average, 85% £ 1% of all complexes
in a sample were assigned an abundance of zero (Fig. 3,
right) although all member proteins in input complexes
have non-zero abundance by definition. Whereas the LP
result is numerically optimal given its formulation and
constraints, non-sparse abundance results as returned by
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CompleXChange - even if they are very small - appear bio-
logically more reasonable solutions. Furthermore, zero-
inflated complex abundance distributions would require
an adjusted statistical treatment [47, 48].

Benchmarking complex abundance estimation on simulated
data
As pointed out before, there exists so far no adequate
experimental reference data to test the complex abun-
dance estimation against. In lieu of this, we generated
input data of known ground truth by randomized con-
struction on the basis of realistic complex compositions
and expression values from our prepared samples. The
construction reverses the simple idea that a protein which
is exhaustively incorporated into complexes and has no
unbound portion (p;rs = 0) consequently sets the max-
imum abundance of all complexes it is part of. For the
construction of this synthetic dataset, the total abundance
Pitor of each limiting protein is randomly drawn from sam-
ple data. To ensure that such a sampling does not suffer
from biological bias, we assessed if protein abundances
correlate with the number of complexes a protein partici-
pates in. In the data on (N)CMs and LCLs this was clearly
not the case (average correlation —0.005 £ 0.003). The
arbitrary association of proteins with abundance values
should therefore be unproblematic.

Distributing a respective share of all limiting proteins
to the complexes in which they take part can then be

modeled in various ways (model parameter I). All p;,,
are determined by definition (see Eq. 1-2) and only resid-
ual capacities p; s of non-limiting proteins remain to
be set (model parameter II). These in turn specify the
Pitor of the artificial input data. Model parameter I, the
distribution of limiting protein abundances among their
associated complexes, was realized using three indepen-
dent modules: equal distribution with modeled noise
(abbreviated as eqd-[noise parameter]), sampled from an
empirical distribution (ed) from ComplexChange approx-
imation results and an assumption-free random distri-
bution (rndd). Model parameter II is the unbound ratio
parameter that models the extent of residual capacities of
non-limiting proteins. The detailed construction schemes
as well as our estimates on reasonable noise parame-
ter ranges are documented in Suppl. Additional file 1:
Section S1.2.

To judge the relative performance of the CompleX-
Change approximation algorithm we also applied the LP
approach and two randomized modifications of the Com-
pleXChange algorithm to the artificial reference data.
In the first randomized variant of the algorithm, input
abundance values of proteins were shuffled before apply-
ing the abundance estimation method (abbreviated rnd
(in)), i.e. input protein abundances did not match the
abundance of the proteins associated in the ground
truth. In the second variant, the complex abundance
results derived from the correct input data were shuffled
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(abbreviated rnd (out)). We tested 12 combinations of
parameters over all 92 samples for 20 iterations each for
all methods (see Suppl. Additional file 1: Section S1.2
for details on parameter sets). To assess the smooth-
ness of the CompleXChange approximation performance,
a broader set of 42 combinations including some inter-
mediate values was used for benchmarking. We com-
pared the artificial data for which we knew the ground
truth with the results of the individual methods in terms
of the correlation of known/predicted complex abun-
dances. The results are shown in Fig. 4 in dependency
of the distribution parameter (left) and the unbound
ratio parameter (right). More detailed results for all indi-
vidual parameter sets are shown in Additional file 1:
Figure S5.

Both CompleXChange approximation and the LP
approach performed far better than the randomized
methods whose results were generally not correlated
with the reference complex abundances (see Fig. 4 and
Additional file 1: Figure S5 for details). The correla-
tion of the CompleXChange results with the reference
was significantly higher than those from LP across all
modeling parameter sets (p < 107'* for all parame-
ter sets, see Additional file 1: Additional file 1: Table S1
and 1: Figure S5 for details). Interestingly, the perfor-
mance of both methods was more strongly affected by the
unbound ratio (model parameter II) than by the modeling
of the distribution of protein product (model parameter
I). This is even more apparent when a broader choice of
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modeling parameters is applied, as was done for the Com-
pleXChange abundance estimation (see Additional file 1:
Figure S6). Consequently, a good coverage of the complex-
ome sets the ruleset of interdependency and also limits
excess protein product. The typical complexome size in
our study (see Fig. 2, rightmost) was about a magnitude
larger than, for example, that used in the study describing
the application of the LP-based approach to human [19]
(1,338 human protein complexes taken into account).

Detection of false positives in negative control data

The subset of Finnish women in the GEUVADIS data
that we prepared is assumed to be rather homoge-
neous. Hence, random sampling of groups therein was
used before as a negative control in the assessment of
differential expression methods [36]. When we analo-
gously applied the same testing approach to find deregu-
lated complexes in the GEUVADIS data, CompleXChange
showed a high robustness against false positive reports
when group sizes were reasonably balanced. For details,
we refer to Suppl. Additional file 1: Section S2.1.

Sample size dependency of results

We also checked by subsampling on a reference dataset
(see [36, 49, 50]) how CompleXChange behaved when
only a small number of samples is available for differential
analysis. The results indicated that at least 10 samples per
group should be used, if possible. For details, see Suppl.
Additional file 1: Section S2.2.
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Differential transcription factor complexome of classical
and non-classical monocytes

Finally, we applied CompleXChange to detect deregulated
TF complexes (TFCs) between classical and non-classical
monocytes whereby complexomes were predicted for
each sample with PPIXpress and JDACO. This cellular
transition was chosen because the expected differences
should be comparably small and the number of samples in
the dataset appeared sufficient. We used non-parametric
testing, FDR 0.05 and default settings otherwise and
enabled the option to assess if seed proteins (here: tran-
scription factors) are enriched in up- or down-regulated
complexes. CompleXChange reported 978 deregulated
TFCs and 35 enriched TFs therein. Figure 5 shows
a volcano plot of the complexes evaluated and the
distributions of complexes involving the three most
enriched TFs.

Comparison to differential expression results

Differentially expressed genes were determined using the
quantified RNA-seq data (see Materials and Methods) and
sleuth (v0.29.0) [36]. For this, transcript expression was
summarized to the gene-level using matching Ensembl 90
data retrieved by biomaRt (v2.34.0) [51] and statistical sig-
nificance was determined based on g-values below 0.05 in
likelihood ratio- and Wald-tests. As result, 316 genes were
found to be differentially expressed, 77 of those were TFs.
In the following, these genes are termed DE genes. We
assume that the proteins encoded by them are deregulated
as well.
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We first studied to what extent DE genes overlapped
with the 978 deregulated complexes. On average, about
a third (37% =+ 24%) of each reported deregulated com-
plex consisted of proteins whose genes were deregulated
between the two cell types. In 823 complexes (84.2% of all
results) at least one protein-coding gene was deregulated
and in 32 cases (3.3%) all were differentially expressed.
These modes of action were also relevant in the 10 most
deregulated complexes as can be seen in Fig. 6. The sig-
nificantly altered abundance of 155 complexes (15.8%)
could not be inferred by differential expression analy-
sis of protein-coding genes in isolation. Such events can
be explained, on the one hand, by the effects of mutual
dependence among the complexes since they share and
compete for each protein product, and, on the other hand,
by the dynamics of the neighborhood in the protein inter-
actome which affect the cohesiveness measure in JDACO
predictions (see [26]).

Next, we investigated the relationship between dereg-
ulated complexes and deregulated protein-coding genes
in reverse direction. Of all 87,945 complexes seen in any
sample 54,645 had at least one deregulated gene (62.1%).
Among those complexes only 1.5% were detected as being
deregulated. When complexes were filtered with Com-
pleXChange to be present in at least 75% of either group,
of the 2,522 complexes, 1,841 had a deregulated mem-
ber (73.0%). Only 44.7% of those complexes were found to
be deregulated by CompleXChange. We stored the 1,841
complexes selected by DE for the analysis of information
content in the next subsection.
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Fig. 5 Volcano plot of fold-changes in protein complex abundances. Significantly deregulated complexes between classical and non-classical
monocytes are shown as blue points. Complexes below the significance threshold are colored grey. Additionally, complexes that contain one of the
three most enriched TFs are shown in red (NR4A1), green (NR1H2) and yellow color (RELA), respectively. Fold-changes were computed as the ratios
of mean abundances of respective complexes in the two groups. Complexes that exhibited border case fold-changes (zero mean abundance in one
of the groups) were set to 15 and the respective datapoints marked as triangles
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At last, we compared the results in terms of TFs that
were reported as deregulated. Whereas most of the TFs
that were found to be enriched in deregulated com-
plexes were also differentially expressed, 14 of the 35
(40%) enriched TFs were not significantly deregulated
on the gene-level. Significance rankings between the two
approaches can not be compared, as can be seen in Addi-
tional file 1: Table S2. Most noteworthy, NR4A1 is the TF
with highest enrichment in CompleXChange, whereas in
DE itis only the eighth TF when sorting by g-value and the
22nd TF when sorting by fold-change. Nr4al is the master
regulator of non-classical monocytes in mice [52, 53]. In
human, its ortholog NR4A1 is assumed to have the same
regulatory function [54, 55].

Furthermore, DE TFs and TFs reported to be enriched
in deregulated complexes were subjected to overrepre-
sentation analyses using the webservices GeneTrail2 [56]
and PANTHER [57] against the background of all 601
TFs regarding five pathway annotation databases. Details
concerning the analyses and the complete results are pro-
vided in Suppl. Additional file 1 Section S2.3. Whereas
the DE TFs showed only one rather unspecific enriched
term in one database (PANTHER pathway “CCKR signal-
ing map” 3.54-fold enriched, see Additional file 1: Table

S3), the CompleXChange enriched TFs showed enrich-
ment for all pathway annotation databases. The enriched
annotations contained, for example, Toll(-like) receptor
signaling (several terms across databases, see Additional
file 1: Tables S5, S7 and S8), TNF(-«) signaling (sev-
eral terms across databases, see Additional file 1: Tables
S5 and S7), various specific interleukin signaling path-
ways (e.g. WikiPathways “IL-1 signaling pathway", 13.71-
fold enriched, see Additional file 1: Table S7) as well
as more general terms such as “Inflammation mediated
by chemokine and cytokine signaling pathway” (PAN-
THER pathway, 9.95-fold enriched, see Additional file 1:
Table S8). This matches the specialization that has been
reported for these cell types [58—60].

Comparison to an alternative pipeline using CORUM and
hu.MAP complexomes

For this comparison, we selected those protein com-
plexes of CORUM and hu.MAP containing at least one
TF instead of using predicted complexomes as the input.
When we applied CompleXChange to the sample-specific
subsets of the CORUM and hu.MAP complexomes using
the same parameters as with the JDACO predictions,
77 CORUM complexes and 16 complexes of huMAP
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were identified as deregulated between classical and non-
classical monocytes. The distribution of complex abun-
dance changes appeared very one-sided in both datasets,
see Fig. 7. Due to the very small number of complexes
assessed and due to the skewed distributions, the cal-
culation of TFs enriched on the upper/lower end of the
deregulation range is not really meaningful. This can be
seen on the example of RREB1 that was found to be the
only enriched TF for the huMAP data.

The overlap between results of CompleXChange analy-
ses using the predicted JDACO complexes and complex-
omes of CORUM and hu.MAP was overall very small
(see Table 1). Interestingly, the result derived from the
predicted sample-specific complexomes was more simi-
lar to either result of the two complex databases than the
overlap of the two databases (first three rows, Table 1).
This also holds true when all TFCs are taken into account
rather than only the ones deemed significant by CompleX-
Change (last row, Table 1). This is not very surprising since
current experimentally-backed complexome libraries are
still considered to be quite incomplete [20, 21]. Especially
when taking into account the important interplay between
complexes sharing proteins, input data of predicted com-
plexomes seem more appropriate in this specific issue.

Abundances of reported deregulated complexes are
meaningful descriptors of cell type

To assess the information content of deregulated com-
plexes in an unbiased way, we tested their ability to act as
descriptors in simple random forest models [61] that were
trained to classify the monocyte data into classical and
non-classical samples.

Page 10 of 14

For each set of complexes (or TFs) tested we performed
100 iterations of stratified 10-fold cross-validation (CV)
to account for randomness in dataset partitioning and
tree building [61, 62]. The corresponding abundance val-
ues of complexes or TFs were used as the features in a
random forest classifier with 32 trees (sufficient accord-
ing to [63]). The number of features considered in each
tree split was automatically set to the square root of the
number of total input features according to the heuris-
tic established by [64]. Other parameters were kept at the
default setting as implemented in scikit-learn (v0.16) [65].
The performance for a set of complexes (or TFs) was then
reported as the mean accuracy over all cross-validation
iterations. We considered the following cases: (1) all com-
plexes reported by CompleXChange applied to both pre-
dicted and reference complexomes, (2) two stricter sets
for which we pruned the result for the predicted complex-
omes by demanding tighter q-values (g < 0.01 and g <
0.001), (3) permutation tests where we sampled random
complex sets as well as for (4) DE complexes (complexes
with at least one DE protein-coding gene associated, see
previous subsection), and (5) DE/all TFs (using protein
abundances). The results are summarized in Table 2.

The complexes reported by CompleXChange when
applied to the predicted complexomes showed mono-
tonically increasing mean accuracy and decreasing vari-
ance with increasing stringency and thus decreasing set
size (from 978 to 31, compare “sign. dereg. complexes”
entries in Table 2). Whereas the significantly deregulated
complexes with highest stringency gave the best over-
all accuracy of all feature sets tested, including DE TFs,
most non-random feature sets basically showed similar
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Fig. 7 Volcano plots of fold-changes in CORUM and hu.MAP protein complex abundances. The results for CORUM complexes are shown in the left
plot and the results on the basis of huMAP complexes on the right. Significantly deregulated complexes between classical and non-classical
monocytes are depicted as blue points and complexes below the significance threshold are colored grey. For the hu.MAP results, complexes that
contain RREB1 are shown in red. Fold-changes were computed as the ratios of mean abundances of respective complexes in the two groups
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Table 1 Comparing deregulated complexes of JDACO, CORUM
and hu.MAP

Results sets Exact Average overlap Reasonable
compared matches overlap [%)]
CORUM / 0 024 +0.12 325
JDACO

hu.MAP / 0 017 4+0.16 18.8
JDACO

hu.MAP / 1 0.08 £ 0.24 6.3

CORUM

hu.MAP (all) / 5 0.12+£0.19 119
CORUM (all)

"hu.MAP (all)” and "“CORUM (all)" depict the sets of all TFCs in the respective
datasets whereas all other sets cover the reported deregulated complexes. Overlap
between two protein complexes was quantified using the overlap score w [66],
"average overlap” between two result sets means the average of all best matches in
terms of w between the first (smaller) and second (larger) set of reported
deregulated protein complexes. The percentage of complexes in the first (smaller)
set with any reasonable match (w > 0.25, as in [26, 67, 68)) in the second (larger) set
is termed “reasonable overlap”

performance within their standard deviations. The signif-
icantly deregulated complexes reported on the basis of the
fixed protein complex datasets gave the lowest classifica-
tion performance of non-randomized descriptors (com-
pare non-randomized entries in Table 2). This strengthens
the assumption that predicted complexomes are favorable
currently.

Table 2 Cross-validation (CV) accuracies of feature sets examined

feature set set size CV accuracy [%]
sign. dereg. complexes (g < 0.05) 978 964+ 15
random complexes 978 86.6 £2.2
random complexes (filtered) 978 942 4+0.7
sign. dereg. complexes (g < 0.01) 429 96.6 + 1.1
random complexes 429 843434
random complexes (filtered) 429 935412
sign. dereg. complexes (g < 0.001) 31 970+ 04
random complexes 31 66.8 +99
random complexes (filtered) 31 884 £39
sign. dereg. CORUM complexes 77 936 £26
sign. dereg. hu.MAP complexes 16 855439
DE complexes 1841 963+ 1.5
DETFs 77 96.2 £ 14
all TFs 601 949+ 20

For the randomized complexes CV accuracy is reported as the mean across all
permutations and its standard deviation. For all other evaluated sets CV accuracy
depicts the mean and variance for the 100 iterations of CV
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As a baseline comparison to the CompleXChange
results for the predicted complexomes of varying strin-
gency, we evaluated how likely it is to get a similar
performance by chance. For this, we drew 10,000 ran-
dom complex sets of equal size from either all 87,945
predicted complexes seen in any sample or the filtered
set of 2,522 complexes. In all tested scenarios, the accu-
racy of the corresponding CompleXChange result set was
very unlikely to be achieved or exceeded by chance (all
p < 0.0003, see Additional file 1: Table S9 for statistics,
Table 2 for averages and Fig. 8 for observed distributions).
The hu.MAP-derived deregulated complexes, on the other
hand, were often even less predictive than random com-
plexes on average which again encourages to employ com-
plex prediction in this workflow (compare “sign. dereg.
hu.MAP complexes” and all “random complexes” entries
in Table 2).

Discussion

CompleXChange is a new platform-independent open-
source tool that enables the quantitative differential anal-
ysis of protein complexes derived from sample-specific
input protein complexomes and corresponding transcrip-
tome or proteome abundances. To achieve this, our
software implements both a fast algorithm to approxi-
mate numerical abundances for the protein complexomes
found in each sample and a differential analysis that
statistically compares the inferred complex abundances
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0.2 [ sign. deregulated complexes
[ random complexes (filtered)
I random complexes

o
o)}

accuracy

©
~

0.0
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Fig. 8 Comparison of CompleXChange results of varying stringency
with randomly selected deregulated complexes of equivalent size.
Comparison of CompleXChange results of varying stringency with
randomly selected deregulated complexes of equivalent size in terms
of information content
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between samples of two comparison groups. It thus rep-
resents a stand-alone solution for differential analysis of
protein complexomes that can be used for large problem
sizes. We chose to provide the software as a command-line
tool to simplify its application in pipelined workflows.

In the benchmarks detailed earlier we showed that our
approach gave better and biologically more reasonable
results than an alternative implementation of complex
abundance estimation by linear programming while run-
ning in a fraction of the time. To demonstrate an applica-
tion of CompleXChange on a practical example, we pre-
sented a case study on human monocyte subsets. In this
case study we also showed how profoundly different input
data workflows can be realized with CompleXChange, for
example using predicted complexomes or by employing
reference complexome data. As discussed above, some key
findings were supported by the existing literature and fur-
ther potentially interesting candidates were detected that
warrant future experimental studies. Notably, by com-
paring the CompleXChange results against those from a
differential gene expression analysis on the same input
data we illustrate that valuable additional information can
be gained from the analysis of differential complexes.

CompleXChange currently ignores the binding affini-
ties between interaction partners or exact complex stoi-
chiometries. We agree that these are possible limitations
of the approach. However, these are practical consider-
ations made due to the current lack of suitable experi-
mental data on an appropriate scale. The methodology,
algorithms and licensing allow for a simple adaption and
extension of the software if the according data should
become widely available in the future.

Conclusion

The increasing wealth of transcriptomic data and recently
introduced computational tools enable to infer protein
interactomes and complexomes in specific samples. With
CompleXChange this information can be exploited to
conduct differential analyses of the dynamic protein com-
plexome in a quantitative manner. We showed for simu-
lated data with known ground truth that its inferred com-
plex abundances were in better agreement with the artifi-
cial reference and made more sense biologically than the
runtime-intense mathematical optimization with linear
programming. When tested in a realistic scenario, Com-
pleXChange featured a performance regarding robustness
and limited amounts of samples that is well-suitable for
practical applications. Moreover, reported complexes held
significant information content on cellular identity and
partially orthogonal information to gene- and protein-
centric analyses, which are not covering the physical
interplay found in a cell. Hence, analysis of differential
complexomes should become even more valuable in the
future.
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Availability and requirements

Project name: CompleXChange

Project home page: https://sourceforge.net/projects/
complexchange/

Operating system(s): Platform independent.
Programming language: Java.

Other requirements: Java 8 or higher.

License: GNU GPLv3.

Any restrictions to use by non-academics: None.

Additional file

Additional file 1: This PDF contains supplementary text, Figures S1-S11
and Tables S1-59 that are not included in the main text.

Abbreviations

CM: classical monocytes; CV: cross-validation; GSEA: Gene Set Enrichment
Analysis; LCL: lymphoblastoid cell line sample; LP: linear programming; NCM:
non-classical human monocytes; TF: transcription factor; TFC: transcription
factor complex
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