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Abstract

Background: A microRNA (miRNA) sponge is an RNA molecule with multiple tandem miRNA response elements
that can sequester miRNAs from their target mRNAs. Despite growing appreciation of the importance of miRNA
sponges, our knowledge of their complex functions remains limited. Moreover, there is still a lack of miRNA sponge
research tools that help researchers to quickly compare their proposed methods with other methods, apply existing
methods to new datasets, or select appropriate methods for assisting in subsequent experimental design.

Results: To fill the gap, we present an R/Bioconductor package, miRspongeR, for simplifying the procedure of
identifying and analyzing miRNA sponge interaction networks and modules. It provides seven popular methods
and an integrative method to identify miRNA sponge interactions. Moreover, it supports the validation of miRNA
sponge interactions and the identification of miRNA sponge modules, as well as functional enrichment and survival
analysis of miRNA sponge modules.

Conclusions: This package enables researchers to quickly evaluate their new methods, apply existing methods to
new datasets, and consequently speed up miRNA sponge research.

Keywords: miRNA, ceRNA, miRNA sponge, miRNA sponge interaction networks, miRNA sponge modules, Human
breast invasive carcinoma

Background
MicroRNAs (miRNAs) are small non-coding RNAs with
~ 22 nucleotides. They usually induce repression or
translational inhabitation of target genes through partial
complementarities with multiple miRNA response ele-
ments (MREs) of the target RNA transcripts [1]. Previ-
ous studies [2, 3] have shown that miRNAs are involved
in a broad range of biological processes, such as cell
cycle control, cell apoptosis, cell differentiation and a di-
verse range of human cancers.
The competing endogenous RNA (ceRNA) hypothesis

[4] considers that all types of coding and non-coding
RNA transcripts may crosstalk with each other by shar-
ing common miRNAs. By competing with each other,
those ceRNAs (also known as miRNA sponges or

decoys), including long non-coding RNAs (lncRNAs),
pseudogenes, mRNAs and circular RNAs (circRNAs),
can release parental target mRNAs from miRNAs’ con-
trol [5]. The ceRNA hypothesis challenges the traditional
knowledge that coding RNAs only act as targets of miR-
NAs, and it provides a starting point for the investiga-
tion of the biological functions and mechanisms of
miRNA sponges.
Recently, several lncRNAs, pseudogenes, circRNAs

and mRNAs acting as miRNA sponges have been experi-
mentally identified and confirmed, together with their
important biological functions. For example, linc-MD1, a
muscle-specific lncRNA, activates muscle-specific gene
expression by regulating the expression of MAML1 and
MEF2C via sponging miR-133 and miR-135 [6].
PTENP1, a pseudogene of the PTEN tumor suppression
gene, can act as a sponge of PTEN-targeting miRNAs to
play a growth-suppressive role [7]. As for circRNAs,
CDR1as/ciRS-7 is encoded in the genome antisense to
the human CDR1 (gene) locus, and affects the activity of
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miR-7 target genes by sponging miR-7 [8, 9]. Tay et al.
[10] have validated two mRNAs (CNOT6L and VAPA)
as miRNA sponges that regulate tumor suppressor gene
PTEN, antagonise PI3K/AKT signalling, and show con-
cordant expression patterns and copy number loss with
PTEN in human cancers.
Although an increasing number of miRNA sponges

have been discovered, the wet lab experiment approach
for finding them is very time consuming and involves
high cost. Thus computational methods [10–18] have
been proposed to study miRNA sponges. For the identi-
fication of miRNA sponge interactions, the two princi-
ples, significant common miRNAs at sequence level and
positively correlated at expression level, are commonly
used in several computational methods. Based on the
identified miRNA sponge interaction network, the
miRNA sponge modules are identified by using network
clustering algorithms. Here, a miRNA sponge module is
defined as a cluster of miRNA sponges. It has been
shown that there is a great potential to reveal the bio-
logical mechanisms in cancer by studying miRNA
sponge networks and modules [5, 11, 19], and the com-
putational methods for identifying miRNA sponge net-
works and modules can help broaden our study of
miRNA sponges and generate hypotheses for wet lab
experiments.
Recently, some tools have been developed, including

spongeScan [20], miRNAsong [21], CircInteractome
[22], miRNACancerMAP [23], and JAMI [24], to study
miRNA sponges. Based on the sequence data of miRNAs
and RNA transcripts, the first three web-based tools,
spongeScan, miRNAsong and CircInteractome, regard
RNA transcripts containing multiple miRNA binding
sites as potential miRNA sponges. The principle of the
three tools is the same with the miRNA Homology (miR-
Homology) [12, 13] method. The miRNACancerMAP
tool uses the positive correlation (pc) method [14, 15] to
identify lncRNA related miRNA sponge networks. The
JAMI tool is a fast implementation of the hermes
method [17] for inferring miRNA sponge networks.
Although these tools have been successfully applied to

the study of miRNA sponges, there is still a lack of soft-
ware tools for systematically identifying and analyzing
miRNA sponge interaction networks and modules. Spe-
cifically, it is still difficult for researchers to choose suit-
able computational methods to identify miRNA sponge
interactions or modules in their own data, or compare
the performance of their newly developed methods with
existing methods. Moreover, it is time consuming for
both bioinformaticians and biologists to obtain existing
algorithms for their studies as there is not a tool which
contains a comprehensive collection of the algorithms.
To fill this gap, we have developed an R/Bioconductor
package, miRspongeR, to provide a pipeline for the

identification and analysis of miRNA sponge interaction
networks and modules. The advantage of the miRspon-
geR package is that it enables bioinformaticians and biol-
ogists to quickly compare their proposed methods with
existing methods, apply existing methods to their own
data, and select suitable methods for assisting in subse-
quent experimental design.

Implementation
Pipeline of miRspongeR
The miRspongeR package is written in R. The main pipe-
line of miRspongeR is given in Fig. 1, which can be sepa-
rated into three components for the identification and
analysis of miRNA sponge interaction networks and
modules:

� Identification of miRNA sponge interactions
� Identification of miRNA sponge modules
� Validation and analysis

For input data, a miRNA-target interaction refers to the
relationship of a miRNA and a validated or predicted tar-
get gene of the miRNA. The validated or predicted sites of
the target gene that bind to the miRNA are known as the
miRNA response elements. We say two genes share a
miRNA or have a shared miRNA if they both are targets
of the miRNA. When two miRNAs have a same target
gene and the same miRNA response elements or binding
sites on the target gene, we say the two miRNAs share
miRNA target sites or they have a sharing of miRNA tar-
get sites.
In the following subsections, we describe the three

components of the pipeline in detail.

Identification of miRNA sponge interactions
To identify miRNA sponge interactions, miRspongeR
provides the spongeMethod function which has imple-
mented seven popular methods: miRHomology [12, 13],
positive correlation (pc) [14, 15], sppc [16], hermes [17],
ppc [11], muTaME [10], and cernia [18]. In the follow-
ing, we describe each of the implemented methods in
detail.

(1) The miRHomology method

The miRNA Homology (miRHomology) method identi-
fies miRNA sponge interactions based on the homology
of the shared miRNAs. Firstly, the miRHomology method
generates all possible candidate RNA pairs that share a
set of miRNAs based on putative (predicted or validated)
miRNA-target interactions. Then, for each candidate
RNA pair (RNAi and RNAj), the hypergeometric test is
used to evaluate the significance of the shared miRNAs
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by these two RNAs. The significance p-value is calcu-
lated as follows:

p ¼ 1−
Xn−1

x¼0

K
x

� �
N−K
M−x

� �

N
M

� � ð1Þ

Here N denotes the number of all miRNAs of interest,
K is the number of miRNAs interacting with RNAi, M is
the number of miRNAs interacting with RNAj, and n is
the number of the shared miRNAs by RNAi and RNAj.
The RNA-RNA pairs with significant shared miRNAs
(e.g. p-value < 0.05) are regarded as miRNA sponge
interactions.

(2) The pc method

Pearson correlation [25] is a classical method to evalu-
ate the association between a pair of variables. The posi-
tive correlation (pc) method considers gene expression
data based on the above two steps of miRHomology
method. For the identification of miRNA sponge interac-
tions, the correlations between each RNA pair with sig-
nificant shared miRNAs are calculated. The RNA pairs
with significant positive correlations (e.g. p-value < 0.05)
are regarded as miRNA sponge interactions.

(3) The sppc method

Different from the pc method, the sensitivity partial
pearson correlation (sppc) method considers both
miRNA and mRNA expression data when inferring
miRNA sponge interactions. The sensitivity correlation
(SC) between each RNA pair with significant shared
miRNAs is defined as follows:

Fig. 1 Pipeline of the miRspongeR package. The pipeline mainly contains three components: Identification of miRNA sponge interactions, Identification of
miRNA sponge modules, and Validation and analysis. For the identification of miRNA sponge interactions, out of the eight implemented methods, seven
(miRHomology, pc, sppc, ppc, hermes, muTaME and cernia) are stand-alone methods and one (integrateMethod) is an ensemble method which integrates
the prediction results of the component methods. To understand the module-level properties of miRNA sponges, four module identification methods (FN,
MCL, LINKCOMM and MCODE) are provided to identify miRNA sponge modules based on the identified miRNA sponge interaction networks. For the
validation of miRNA sponge interactions, the ground truth data is used to validate predicted miRNA sponge interactions. Furthermore, enrichment analysis
is performed to identify potential diseases, biological processes and pathways associated with miRNA sponge modules. Survival analysis is also performed
to identify significant miRNA sponge modules which can distinguish the high and low risk tumor samples. Users can prepare their own datasets as the
input to miRspongeR
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SC ¼ ρij−ρijjn ð2Þ

In the formula, ρij is the Pearson correlation between
each candidate RNA pair (RNAi and RNAj), and ρij ∣ n

denotes the partial Pearson correlation between the ex-
pression levels of RNAi and RNAj, that is, the Pearson
correlation between the expression levels of RNAi and
RNAj when the expression of the n shared miRNAs of
RNAi and RNAj are controlled or adjusted (to specific
levels). A candidate RNA pair with high value of SC is
more likely to be a miRNA sponge interaction.

(4) The hermes method

As Pearson correlation method only captures linear as-
sociations between variables, it cannot handle the problem
of non-linear relationships well. For non-linear associa-
tions between miRNA sponges, the hermes method pre-
dicts miRNA sponge interactions via evidence of the
sponges competing for miRNA regulation based on mu-
tual information (MI) and conditional mutual information
(CMI). For each (RNAi, miRk, RNAj) triplet, the hermes
method calculates the statistical significance of the differ-
ence between the CMI and MI, i.e. ΔI = I[miRk; RNAi|
RNAj] − I[miRk; RNAi] from matched miRNA and gene
expression data using different CMI estimators [26]. The
p-values for each (RNAi, miRk, RNAj) triplet are calculated
using a null-hypothesis where the expression of the candi-
date RNAj is permutated m (e.g. 100) times. The final stat-
istical significance p-value of ΔI is computed by
converting the individual p-values, pk, for each miRk, to a
X2 test statistic ( X2 ¼ ‐2

Pn
k¼1 lnðpkÞ , where n is the

number of the shared miRNAs by RNAi and RNAj) using
Fisher’s combined probability test. The RNA pairs with
statistical significance of ΔI (e.g. p-value < 0.05) are
regarded as miRNA sponge interactions.

(5) The ppc method

The partial pearson correlation (ppc) method is a vari-
ant of the hermes method. For the linear associations be-
tween miRNA sponges, it identifies miRNA sponge
interactions via evidence the sponges competing for
miRNA regulation based on Pearson correlation and
partial Pearson correlation. For each (RNAi, miRk, RNAj)
triplet, the ppc method calculates the statistical signifi-
cance of ΔC =C[miRk; RNAi| RNAj] −C[miRk; RNAi]
from matched miRNA and gene expression data, where
C stands for Pearson correlation. The p-values for each
(RNAi, miRk, RNAj) triplet are also calculated using a
null-hypothesis where the expression of the candidate
RNAj is permutated m (e.g. 100) times. Similar to the
hermes method, the final statistical significance p-value
of ΔC is also computed by converting the individual

p-values, pk, for each miRk, to a X2 test statistic using
Fisher’s combined probability test. We regard the RNA
pairs with statistical significance of ΔC (e.g. p-value <
0.05) as miRNA sponge interactions.

(6) The muTaME method

For a putative (validated or predicted) miRNA-target
interaction, the target gene contains multiple validated
or predicted MREs to bind with the miRNA. Consider-
ing the influence of MREs information in identifying
miRNA sponge interactions, the muTaME method is im-
plemented based on the following four scores:

� The fraction of the shared miRNAs
� The density of the MREs for all shared miRNAs
� The distribution of MREs of the putative RNA-RNA

pairs
� The proportion between the overall number of

MREs for a putative miRNA sponge compared with
the number of miRNAs that yield these MREs

By adding the logarithm of the four scores together,
we obtain the combined score for a candidate RNA pair
(RNAi and RNAj). To compare the strength of the pairs,
we normalize their combined scores to obtain normal-
ized scores in the range of [0 1], and the RNA pairs
ranked high according to their scores (e.g. top 10%) are
regarded as miRNA sponge interactions.

(7) The cernia method

The cernia method is an updated version of the
muTaME method. It is implemented based on the fol-
lowing seven scores:

� The fraction of the shared miRNAs
� The density of the MREs for all shared miRNAs
� The distribution of MREs of the putative RNA-RNA

pairs
� The proportion between the overall number of

MREs for a putative miRNA sponge compared with
the number of miRNAs that yield these MREs

� The density of the hybridization energies related to
MREs for all common miRNAs

� The DT-Hybrid recommendation score
� The Pearson correlation between putative RNA-

RNA pair expression data

Similarly, the method obtains a combined score by
adding the logarithm of these seven scores, then normal-
izes the combined scores to be in the range of [0 1]. The
RNA pairs with high scores (e.g. top 10%) are regarded
as miRNA sponge interactions.
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(8) The integrative method

The above seven methods each have its own merit due
to different evaluating indicators. Thus, miRspongeR also
provides the integrateMethod function to obtain
high-confidence miRNA sponge interactions from the
predictions made by different methods using majority
voting. Specifically, for the predicted miRNA sponge in-
teractions made by the above seven computational
methods, we only retain those miRNA sponge interac-
tions that are predicted by at least k (e.g. 3) computa-
tional methods. Certainly, users can change the setting
to use more tools in the voting.
To help users further understand the common and

different characteristics of eight miRNA sponge interac-
tions identification methods, we have made a summary
of them in Table 1. If an input dataset contains expres-
sion levels of genes which change across different bio-
logical conditions, we say the data is dynamic; otherwise
it is static. Therefore, depending on the type of the data,
i.e. dynamic or static, used by an individual method, the
interactions can be divided into two types: dynamic and
static. The integrateMethod approach contains both dy-
namic and static interactions, thus the type of interac-
tions is hybrid. According to problem of linear or
non-linear relationships for individual method, the type

of interactions can also be divided into two types (linear
and non-linear). Since the integrateMethod approach
contains both linear and non-linear interactions, the
type of interactions is also hybrid. According to the spe-
cific needs, users can select a reasonable method for
their own. Moreover, regarding choosing the method to
achieve the best results and performance metrics, for the
same input data, the best method for the identification
of miRNA sponge interactions is the one that identifies
the largest percentage of experimentally validated
miRNA sponge interactions.

Identification of miRNA sponge modules
Since modularity is an important property of many bio-
logical networks, the discovery and analysis of modules
in biological networks have attracted much attention
within the bioinformatics community. To understand
the module-level properties of miRNA sponges, we im-
plement the netModule function to identify miRNA
sponge modules from miRNA sponge interaction net-
works. Here, a miRNA sponge module denotes a cluster
of miRNA sponges.
Users can select the FN [27], MCL [28], LINKCOMM

[29] or MCODE [30] method for module identification.
FN is a fast hierarchical agglomeration algorithm, and it
is implemented by greedily optimizing the modularity

Table 1 Summary of the eight methods for identifying miRNA sponge interactions

Methods Input Type of
interactions

Advantages/disadvantages

miRHomology miRNA-target interactions static • the number of miRNA sponges is largely overestimated
• ignore gene expression data and MREs information
• simple and fast

pc miRNA-target interactions, gene expression
data

dynamic, linear • ignore non-linear interactions
• ignore miRNA expression data and MREs information
• simple and fast

sppc miRNA-target interactions, gene expression
data

dynamic, linear • ignore non-linear interactions
• ignore MREs information
• employ sensitivity correlation to evaluate the influence of
miRNAs

hermes miRNA-target interactions, gene expression
data

dynamic, non-
linear

• ignore MREs information
• time consuming
• capture non-linear interactions by calculating the statistical
significance of ΔI

ppc miRNA-target interactions, gene expression
data

dynamic, linear • ignore non-linear interactions
• ignore MREs information
• time consuming
• capture linear interactions by calculating the statistical
significance of ΔC

muTaME miRNA-target interactions, MREs static • ignore gene expression data
• consider MREs information

cernia miRNA-target interactions, gene expression
data, MREs

dynamic, linear • ignore non-linear interactions
• ignore miRNA expression data
• consider MREs information

integrateMethod miRNA sponge interaction networks hybrid • contain dynamic and static interactions
• include linear and non-linear interactions
• high-confidence but time consuming
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for detecting community structures [27]. MCL relies on
the Markov cluster algorithm, and identifies modules in
biological networks by a mathematical bootstrapping
procedure. The procedure simulates random walks
within a biological network by the alternation of two op-
erators called expansion and inflation [28]. LINKCOMM
is a module identification method from the linkcomm R
package [29]. It clusters the links between nodes rather
than clustering nodes to identify modules. The identified
modules are allowed to have same nodes, consequently
uncovering the overlapping and dense community of a
biological network. MCODE identifies densely con-
nected modules based on vertex weighting (local neigh-
bourhood density) and outward traversal (from a locally
dense seed node to isolate the dense regions) [30].

Validation and analysis
Since the ground truth of miRNA sponge interactions is
still limited, it is hard to validate predicted miRNA
sponge interactions generated by computational
methods. In miRspongeR, we provide the spongeValidate
function to validate predicted miRNA sponge interac-
tions by using curated miRNA sponge interactions as a
source. As for the predicted miRNA sponge interactions
that are not included in the source for validation, users
need further wet lab experiments to know if the predic-
tions are correct or not. The ground truth of miRNA
sponge interactions is from miRSponge [31], LncCeR-
Base [32], LncACTdb v2.0 [33], and the three manually
curated literatures [5, 11, 34]. We include the ground
truth as a file in the package, and will continually update
it for accurately evaluating and comparing different
methods. Users can also use their own ground truth or
wet lab experiments to validate predicted results.
Furthermore, to understand potential diseases, bio-

logical processes and pathways associated with miRNA
sponge modules, we provide two functions, moduleDEA
and moduleFEA for functional enrichment analysis.
Firstly, we implement the moduleDEA function to make
disease enrichment analysis of miRNA sponge modules.
The disease databases used include Disease Ontology
database (DO, http://disease-ontology.org/), DisGeNET
database (DGN, http://www.disgenet.org/) and Network
of Cancer Genes database (NCG, http://ncg.kcl.ac.uk/).
Moreover, the moduleFEA function is implemented to
conduct functional GO, KEGG and Reactome enrich-
ment analysis of miRNA sponge modules. The ontology
databases used are Gene Ontology database (GO, http://
www.geneontology.org/), Kyoto Encyclopedia of Genes
and Genomes Pathway Database (KEGG, http://www.
genome.jp/kegg/), and Reactome Pathway Database
(Reactome, http://reactome.org/).
Since the survival analysis can indicate whether the

miRNA sponges in the discovered miRNA sponge

modules are good predictors of the metastasis risks of
cancer patients or not, it can provide us the clue that
the miRNA sponges may be associated with and poten-
tially contributing to the metastasis or survival of cancer
patients. In miRspongeR, we implement the moduleSur-
vival function to perform the survival analysis. A multi-
variate Cox model is used to calculate the risk score of a
sample. All the samples are divided into the high risk
and the low risk groups according to their risk scores,
and the Log-rank test is used to test for the difference
between groups. The Hazard Ratio (HR) between the
high and the low risk groups is also calculated.

Application
In this section, we apply the miRspongeR package to the
BRCA dataset. The matched Level 3 IlluminaHiSeq
miRNA and mRNA expression data of human breast inva-
sive carcinoma (BRCA) is obtained from Paci et al. [16].
The gene-level expression values are in Fragments Per
Kilobase Million (FPKM) units. Paci et al. obtained the ex-
pression data from The Cancer Genome Atlas (TCGA,
https://cancergenome.nih.gov/), and restricted the data to
72 individuals where the tumor and normal tissues were
from the same BRCA patients. A miRNA or mRNA with
missing values in more than 10% of the samples is re-
moved. The remaining missing values are imputed using
the k-nearest neighbours (KNN) algorithm in the impute
R package [35]. We use the limma R package [36] to infer
differentially expressed miRNAs and mRNAs between
tumour and normal samples. After the analysis, we iden-
tify 161 miRNAs and 5370 mRNAs which are differen-
tially expressed at a significant level (adjusted p-value
<1E-04, adjusted by Benjamini & Hochberg method). The
survival data of the 72 BRCA tumour samples is obtained
from TCGA.
To obtain high-quality candidate miRNA sponge inter-

action pairs, we use experimentally validated miRNA-target
interactions from miRTarBase v7.0 [37] for the case study.
We are only interested in the miRNA-target interactions
supported by strong experimental evidences (Reporter
assay or Western blot) in miRTarBase. Between 161 miR-
NAs and 5370 mRNAs which are differentially expressed,
we obtain 1251 unique miRNA-target interactions from
miRTarBase. The MREs information is obtained from Sar-
dina et al. [18]. They employ miRanda algorithm [38] to
predict binding sites, and MREs have the hybridization en-
ergy values no more than 0 are reserved. In total, we have a
list of 824,828 MREs related to the differentially expressed
miRNAs and mRNAs. By using the default ground truth in
the miRspongeR package, we have a list of 1465 unique vali-
dated miRNA sponge interactions in total.
For the identification of miRNA sponge interactions,

the cutoffs to be set by users are recommended as fol-
lows: 0.05 for the significant p-value cutoff of the shared
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miRNAs, 0.05 for the p-value cutoff of significant posi-
tive correlations for the pc method, and 0.1 for the sensi-
tivity correlation cutoff for the sppc method. A higher
value of the sensitivity correlation cutoff will generate a
smaller number of miRNA sponge interactions. As for
the hermes and ppc methods, we suggest use 0.05 as the
statistical significance p-value cutoff of evaluating ΔI
and ΔC. All the p-values above are adjusted by the Ben-
jamini & Hochberg method, and a smaller p-value cutoff
will identify a smaller number of miRNA sponge interac-
tions. The number of permutations for both the hermes
and ppc methods has been set to 100 by default in the
package. The cutoff of normalized score is set to 0.5 by
default in the package for the muTaME and cernia
methods. For the integrateMethod method, we only re-
tain the predicted miRNA sponge interactions which are
predicted by at least 3 out of the 7 component methods.

For the identification miRNA sponge modules in the
BRCA dataset, the module size cutoff for the FN, MCL,
LINKCOMM and MCODE methods is set to 3 by de-
fault in the package. Moreover, we conduct enrichment
and survival analysis of the identified miRNA sponge
modules by using default settings in the package.

Results
The miRspongeR package is developed for the identifica-
tion and analysis of miRNA sponge interaction networks
and modules. In this section, we show the usages of the
miRspongeR package by conducting a case study. For the
case study, the BRCA dataset used can be obtained from
https://github.com/zhangjunpeng411/miRspongeR_data-
set and the running scripts can be seen in
Additional file 1.

Fig. 2 UpSet plot [39] to show the intersections between predicted miRNA sponge interactions by the 7 built-in individual methods. Each
column corresponds to an exclusive intersection that includes the elements of the sets denoted by the dark circles, but not of the others. The
intersection size between different methods represents exclusive intersections, i.e. the intersection set not in a subset of any other intersection set
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In the case study, we only focus on studying mRNA re-
lated miRNA sponge interaction networks and modules. It
is noted that miRspongeR can be applied to study the
miRNA sponge interaction networks and modules involv-
ing other types of RNA (lncRNA, pseudogene, circRNA,
etc.). For instance, if we want to consider lncRNAs acting
as miRNA sponges, the input miRNA-target interactions
and MRE data to miRspongeR should contain
miRNA-lncRNA interactions and the gene expression data
should include matched lncRNA expression data.

Identification and validation of BRCA-related miRNA
sponge interactions
In this section, we use the miRspongeR package, includ-
ing the 7 methods introduced in the section Identifica-
tion of miRNA sponge interactions and the integrated
method (integrateMethod) to identify BRCA-related
miRNA sponge interactions.
As shown in Fig. 2, the numbers of predicted miRNA

sponge interactions by the 7 individual methods are dif-
ferent. The number of predicted miRNA sponge interac-
tions shared by the 7 methods is 5. Specifically, the
miRHomology method independently predicted 44
miRNA sponge interactions which are not predicted by
any of the other methods. The reason is that the miRHo-
mology method only uses a commonly used constraint
(significant sharing of common miRNAs) to identify
miRNA sponge interactions. By using the integrate-
Method method, we obtain a list of 87 high-confidence
miRNA sponge interactions. The detailed information of
predicted miRNA sponge interactions by the methods
can be seen in Additional file 2.
To investigate the overlap of any 2 of 7 individual

methods, we further use the Venn diagrams to show
pair-wise comparison of overlapping results for the 7 in-
dividual methods. The detailed information of pair-wise
comparison results can be seen in Additional file 3.
Furthermore, we use the ground truth to validate the

predicted miRNA sponge interactions. As a result, for all
the methods only 1 miRNA sponge interaction, (PTEN:-
ZEB1, where “:” denotes competing relationship), is vali-
dated by the ground truth. In terms of the number of
experimentally validated miRNA sponge interactions,
these methods perform the same. However, in terms of
the percentage of experimentally validated miRNA
sponge interactions, the sppc method performs the best.

Module identification from BRCA-related miRNA sponge
interaction network
Since the integrateMethod method integrates the results
of 7 individual methods (miRHomology, pc, sppc, hermes,
ppc, muTaME and cernia) to infer high-confidence
miRNA sponge interaction network, in this section, we
focus on module identification from BRCA-related

miRNA sponge interaction network discovered by this
integrated method. As shown in Table 2, the four mod-
ule identification methods (FN, MCL, LINKCOMM and
MCODE) obtain different results of the identified

Table 2 BRCA-related miRNA sponge modules using FN, MCL,
LINKCOMM and MCODE methods

Module
methods

Module
ID

#miRNA
sponges

miRNA sponges

FN 1 14 MYB, EIF4E, E2F3, CDC25A, DNMT3A,
VEGFA, BCL2, CCNE1, ETS1, DNMT3B,
BIRC5, KDR, FGF2, CCND3

2 12 NOTCH1, ZEB1, ZEB2, ZFPM2, TCF7L1,
ELMO2, KLHL20, KLF11, CCNE2, DLC1,
WASF3, WDR37

3 7 NFIA, FOXO1, BDNF, RECK, CREB1,
SNAI2, RUNX2

4 5 PTEN, KLF4, TIMP2, PPARA, BCL2L11

5 4 CDK6, MITF, KRAS, CCND2

6 3 SMAD4, TP53INP1, CASP3

MCL 1 5 PTEN, KLF4, TIMP2, PPARA, BCL2L11

2 12 NOTCH1, ZEB1, ZEB2, ZFPM2, TCF7L1,
ELMO2, KLHL20, KLF11, CCNE2, DLC1,
WASF3, WDR37

3 10 EIF4E, E2F3, CDC25A, VEGFA, BCL2,
CCNE1, ETS1, BIRC5, FGF2, CCND3

4 4 CDK6, MITF, KRAS, CCND2

5 3 SMAD4, TP53INP1, CASP3

6 5 NFIA, FOXO1, BDNF, RECK, SNAI2

LINKCOMM 1 4 MYB, ZEB2, ZEB1, DLC1

2 5 ZEB1, ZEB2, ZFPM2, KLF11, WDR37

3 3 FOXO1, RECK, SNAI2

4 4 E2F3, CDC25A, CCNE1, CCND3

5 7 PTEN, ZEB1, ZFPM2, TCF7L1, KLHL20,
KLF11, WDR37

6 3 CDC25A, BCL2, CCNE1

7 5 PTEN, TIMP2, KLF4, PPARA, BCL2L11

8 4 EIF4E, E2F3, BIRC5, FGF2

9 6 E2F3, MYB, ZEB2, CCNE2, TCF7L1, KLF11

10 4 NOTCH1, ZEB1, ZEB2, ETS1

11 3 VEGFA, E2F3, ETS1

12 7 ZEB1, ZEB2, ZFPM2, TCF7L1, KLHL20,
KLF11, DLC1

MCODE 1 25 CDK6, NFIA, EIF4E, DNMT3A, MITF,
BDNF, PIM1, KLF4, CREB1, SMAD4,
SMAD3, KRAS, CCND2, TIMP2, DNMT3B,
TWIST1, BIRC5, KDR, FGF2, PPARA,
RUNX2, TP53INP1, CASP3, SMAD2,
BCL2L11

2 24 MYB, PTEN, FOXO1, NOTCH1, ZEB1,
ZEB2, ZFPM2, E2F3, CDC25A, TCF7L1,
RECK, VEGFA, ELMO2, BCL2, KLHL20,
KLF11, CCNE2, CCNE1, ETS1, DLC1,
SNAI2, WASF3, WDR37, CCND3
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Fig. 3 Overall number of significantly enriched terms in BRCA-related miRNA sponge modules using FN, MCL, LINKCOMM and MCODE. The significantly
enriched terms include DO, DGN, NCG, GO, KEGG and Reactome terms

Table 3 Survival analysis of BRCA-related miRNA sponge modules using FN, MCL, LINKCOMM and MCODE

Module methods Module ID Chi-square p-value HR HRlow95 HRup95

FN 1 9.96 1.60E-03 2.75 1.41 5.38

2 8.32 3.92E-03 2.57 1.33 4.96

3 4.34 3.71E-02 1.95 1.00 3.80

5 4.72 2.98E-02 2.00 1.04 3.87

MCL 2 8.32 3.92E-03 2.57 1.33 4.96

4 4.72 2.98E-02 2.00 1.04 3.87

LINKCOMM 2 4.78 2.88E-02 2.03 1.04 3.94

5 14.67 1.28E-04 3.24 1.64 6.43

9 3.97 4.62E-02 1.94 1.01 3.73

10 5.41 2.00E-02 2.17 1.12 4.18

12 9.88 1.67E-03 2.81 1.45 5.46

MCODE 1 23.83 1.05E-06 4.52 2.26 9.03

2 23.84 1.05E-06 4.94 2.52 9.69

HRlow95 and HRup95 denote the lower and upper of 95% confidence interval of HR, respectively. The identified significant miRNA sponge modules can
distinguish the high and the low risk BRCA samples
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miRNA sponge modules. As LINKCOMM allows over-
lapping nodes between modules, it identified the largest
number of miRNA sponge modules.

Enrichment and survival analysis of BRCA-related miRNA
sponge modules
In this section, we conduct enrichment and survival ana-
lysis of the identified BRCA-related miRNA sponge
modules described in the previous section. Here, if a
term (DO, DGN, NCG, GO, KEGG or Reactome term)
is enriched in a miRNA sponge module with adjusted
p-value < 0.05 (adjusted by Benjamini & Hochberg
method), the term is a significantly enriched term. If a
miRNA sponge module can distinguish the high and the
low risk tumor samples (Log-rank p-value < 0.05, HR >
1.5), the miRNA sponge module is regarded as a signifi-
cant miRNA sponge module.
The overall number of significantly enriched terms can

be seen in Fig. 3. Overall, the identified modules by the
LINKCOMM method have the largest number of signifi-
cantly enriched DGN, GO and Reactome terms. The
identified modules by MCODE have the largest number
of significantly enriched DO and NCG terms. The mod-
ules identified by the FN method have the largest num-
ber of significantly enriched KEGG terms. For each
method, the number of significantly enriched terms in
each module can be seen in Additional file 4. Due to a
lack of comprehensive knowledge of enriched terms in-
directly and directly associated with BRCA, we use all
significantly enriched terms (DO, DGN, NCG, GO,
KEGG and Reactome terms) associated with the miRNA
sponge modules. It is noted that users can further inves-
tigate these significantly enriched terms in the context of
BRCA.
As shown in Table 3, the numbers of significant

miRNA sponge modules for distinguishing the high and
the low risk BRCA samples are 4, 2, 5 and 2 for FN,
MCL, LINKCOMM and MCODE methods, respectively.
This result indicates that LINKCOMM method identifies
the largest number of significant miRNA sponge
modules.

Discussion
miRspongeR has been released under the GPL-3.0 License,
and is available at http://bioconductor.org/packages/miR-
spongeR/ and https://github.com/zhangjunpeng411/miR-
spongeR. The user manual of miRspongeR provides
examples illustrating the use of the functions of miRspon-
geR, and can be seen in https://bioconductor.org/pack-
ages/release/bioc/vignettes/miRspongeR/inst/doc/miR-
spongeR.html.
The putative miRNA-target interactions are crucial for

the identification of miRNA sponge interaction. The
miRNA-target identification methods, such as miRanda

[38], TargetScan [40] and DIANA-microT [41], predict
many false positives and the number of miRNA target
genes is largely overestimated [42], affecting the accur-
acy of the candidate miRNA sponge interaction pairs.
Therefore, instead of predicted miRNA-target interac-
tions, we use experimentally validated miRNA-target in-
teractions in the case study. The experimentally
validated miRNA-target interactions can be used to pro-
vide high-quality candidate miRNA sponge interaction
pairs. According to the practical situation, users can also
use their own predicted miRNA-target interactions to
obtain candidate miRNA sponge interaction pairs.
Moreover, the number of candidate miRNA sponges is

closely associated with the putative miRNA-target inter-
actions used. In the case study, we only use the
miRNA-target interactions supported by strong experi-
mental evidences (Reporter assay or Western blot) in
miRTarBase. The maximum number of miRNA sponges
expected to be identified depends on the number of tar-
gets in the putative miRNA-target interactions. However,
experimentally validated miRNA-target interactions are
far from complete. A possible solution is to integrate
multiple experimentally validated datasets, such as miR-
TarBase [37], TarBase [43] and miRWalk [44], to obtain
a more comprehensive list of putative miRNA-target
interactions.

Conclusions
Recently, miRNA sponges have been demonstrated to
play important roles in human cancers by modulating
the expression of key oncogenes and tumor-suppressor
genes. Since biological experiments generate a large
amount of data associated with miRNA sponges, this
creates a strong demand for data analysis in statistics
computing environments such as R. In this paper, we
introduce an R/Bioconductor package that enables R
users to use popular computational methods for the
identification and analysis of miRNA sponge interaction
networks and modules. As the research into miRNA
sponges is just emerging, we will continuously include
new methods in the package in the future. We believe
that miRspongeR will be a useful tool for the research of
miRNA sponges.

Availability and requirements
Project name: miRspongeR
Project home page: http://bioconductor.org/pack-

ages/miRspongeR/
Operating system(s): Platform independent
Programming language: R
Other requirements: R (> = 3.5.0)
License: GPL-3
Any restrictions to use by non-academics: licence

needed
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method. (PDF 540 kb)

Additional file 4 The number of significantly enriched terms in each
BRCA-related miRNA sponge module using FN, MCL, LINKCOMM and
MCODE. The significantly enriched terms contain DO, DGN, NCG, GO,
KEGG and Reactome terms. (XLSX 9 kb)

Abbreviations
BRCA: Breast invasive carcinoma; ceRNA: Competing endogenous RNA;
circRNA: Circular RNA; CMI: Conditional mutual information; DO: Disease
ontology; FPKM: Fragments Per Kilobase Million; GO: Gene Ontology;
HR: Hazard Ratio; KEGG: Kyoto Encyclopedia of Genes and Genomes
Pathway; KNN: k-nearest neighbours; lncRNA: Long non-coding RNA;
MI: Mutual information; miRHomology: miRNA Homology; miRNA: microRNA;
MRE: miRNA response element; NCG: Network of Cancer Genes; pc: Positive
correlation; ppc: Partial pearson correlation; SC: Sensitivity correlation;
sppc: Sensitivity partial pearson correlation; TCGA: The Cancer Genome Atlas

Acknowledgements
We are grateful to the Bioconductor Project, for the valuable comments on
the codes to greatly improve the miRspongeR package.

Funding
JZ was supported by the National Natural Science Foundation of China
(Grant Number: 61702069) and the Applied Basic Research Foundation of
Science and Technology of Yunnan Province (Grant Number: 2017FB099).
TDL was supported by NHMRC Grant (Grant Number: 1123042). LL and JL
were supported by the Australian Research Council Discovery Grant (Grant
Number: DP140103617). TX was supported by the Presidential Foundation of
Hefei Institutes of Physical Science, Chinese Academy of Sciences (Grant
Number: YZJJ2018QN24). The publication costs were funded by the National
Natural Science Foundation of China (Grant Number: 61702069). The funding
bodies were not involved in the design of the study and collection, analysis,
interpretation of data or in writing the manuscript.

Availability of data and materials
The datasets in the current study are available at https://github.com/
zhangjunpeng411/miRspongeR_dataset.

Authors’ contributions
JZ and TDL conceived the idea of this work. LL, TX and JL refined the idea.
JZ designed and performed the experiments. TX, YX and CZ participated in
the design of the study and performed the statistical analysis. JZ, TDL, LL, TX
and JL drafted the manuscript. All authors revised the manuscript. All authors
read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Engineering, Dali University, Dali 671003, Yunnan, China. 2School
of Information Technology and Mathematical Sciences, University of South

Australia, Mawson Lakes, SA 5095, Australia. 3Institute of Intelligent Machines,
Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei
230031, China.

Received: 29 December 2018 Accepted: 29 April 2019

References
1. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.
2. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and

tumorigenesis. Br J Cancer. 2006;94:776–80.
3. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer.

2015;15:321–33.
4. Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta stone of

a hidden RNA language? Cell. 2011;146:353–8.
5. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk

and competition. Nature. 2014;505:344–52.
6. Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls

muscle differentiation by functioning as a competing endogenous RNA.
Cell. 2011;147:358–69.

7. Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of
gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:
1033–8.

8. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as
efficient microRNA sponges. Nature. 2013;495:384–8.

9. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of
animal RNAs with regulatory potency. Nature. 2013;495:333–8.

10. Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor
suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147:344–57.

11. Le TD, Zhang J, Liu L, et al. Computational methods for identifying miRNA
sponge interactions. Brief Bioinform. 2017;18:577–90.

12. Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-
ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq
data. Nucleic Acids Res. 2014;42:D92–7.

13. Sarver AL, Subramanian S. Competing endogenous RNA database.
Bioinformation. 2012;8:731–3.

14. Zhou X, Liu J, Wang W. Construction and investigation of breast-cancer-
specific ceRNA network based on the mRNA and miRNA expression data.
IET Syst Biol. 2014;8:96–103.

15. Xu J, Li Y, Lu J, et al. The mRNA related ceRNA-ceRNA landscape and
significance across 20 major cancer types. Nucleic Acids Res. 2015;43:
8169–82.

16. Paci P, Colombo T, Farina L. Computational analysis identifies a sponge
interaction network between long non-coding RNAs and messenger RNAs
in human breast cancer. BMC Syst Biol. 2014;8:83.

17. Sumazin P, Yang X, Chiu HS, et al. An extensive microRNA-mediated
network of RNA-RNA interactions regulates established oncogenic pathways
in glioblastoma. Cell. 2011;147:370–81.

18. Sardina DS, Alaimo S, Ferro A, et al. A novel computational method for
inferring competing endogenous interactions. Brief Bioinform. 2017;18:
1071–81.

19. Zhang J, Le TD, Liu L, et al. Identifying miRNA sponge modules using
biclustering and regulatory scores. BMC Bioinformatics. 2017;18:44.

20. Furió-Tarí P, Tarazona S, Gabaldón T, et al. spongeScan: a web for detecting
microRNA binding elements in lncRNA sequences. Nucleic Acids Res. 2016;
44:W176–80.

21. Barta T, Peskova L, Hampl A. miRNAsong: a web-based tool for generation
and testing of miRNA sponge constructs in silico. Sci Rep. 2016;6:36625.

22. Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: a web tool
for exploring circular RNAs and their interacting proteins and microRNAs.
RNA Biol. 2016;13:34–42.

23. Tong Y, Ru B, Zhang J. miRNACancerMAP: an integrative web server
inferring miRNA regulation network for cancer. Bioinformatics. 2018;34:
3211–3.

24. Hornakova A, List M, Vreeken J, et al. JAMI: fast computation of conditional
mutual information for ceRNA network analysis. Bioinformatics. 2018;34:
3050–1.

25. Pearson K. Notes on the history of correlation. Biometrika. 1920;13:25–45.
26. Wang K, Saito M, Bisikirska BC, et al. Genome-wide identification of post-

translational modulators of transcription factor activity in human B cells. Nat
Biotechnol. 2009;27:829–39.

Zhang et al. BMC Bioinformatics          (2019) 20:235 Page 11 of 12

https://doi.org/10.1186/s12859-019-2861-y
https://doi.org/10.1186/s12859-019-2861-y
https://doi.org/10.1186/s12859-019-2861-y
https://doi.org/10.1186/s12859-019-2861-y
https://github.com/zhangjunpeng411/miRspongeR_dataset
https://github.com/zhangjunpeng411/miRspongeR_dataset


27. Clauset A, Newman ME, Moore C. Finding community structure in very
large networks. Phys Rev E Stat Nonlinear Soft Matter Phys. 2004;70:066111.

28. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.

29. Kalinka AT, Tomancak P. linkcomm: an R package for the generation,
visualization, and analysis of link communities in networks of arbitrary size
and type. Bioinformatics. 2011;27:2011–2.

30. Bader GD, Hogue CW. An automated method for finding molecular complexes
in large protein interaction networks. BMC Bioinformatics. 2003;4:2.

31. Wang P, Zhi H, Zhang Y, et al. miRSponge: a manually curated database for
experimentally supported miRNA sponges and ceRNAs. Database (Oxford).
2015. https://doi.org/10.1093/database/bav098.

32. Pian C, Zhang G, Tu T, et al. LncCeRBase: a database of experimentally
validated human competing endogenous long non-coding RNAs. Database
(Oxford). 2018. https://doi.org/10.1093/database/bay061.

33. Wang P, Li X, Gao Y, et al. LncACTdb 2.0: an updated database of
experimentally supported ceRNA interactions curated from low- and high-
throughput experiments. Nucleic Acids Res. 2019;47:D121–7.

34. Tan X, Banerjee P, Liu X, et al. The epithelial-to-mesenchymal transition
activator ZEB1 initiates a prometastatic competing endogenous RNA
network. J Clin Invest. 2018;128:1267–82.

35. Hastie T, Tibshirani R, Narasimhan B, et al. impute: Imputation for microarray
data. R package version 1.58.0. 2019. https://doi.org/10.18129/B9.bioc.
impute.

36. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression
analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.
2015;43:e47.

37. Chou CH, Shrestha S, Yang CD, et al. miRTarBase update 2018: a resource
for experimentally validated microRNA-target interactions. Nucleic Acids Res.
2018;46:D296–302.

38. Betel D, Koppal A, Agius P, et al. Comprehensive modeling of microRNA
targets predicts functional non-conserved and non-canonical sites. Genome
Biol. 2010;11:R90.

39. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization
of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40.

40. Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target
sites in mammalian mRNAs. Elife. 2015;4:e05005.

41. Paraskevopoulou MD, Georgakilas G, Kostoulas N, et al. DIANA-microT web
server v5.0: service integration into miRNA functional analysis workflows.
Nucleic Acids Res. 2013;41:W169–73.

42. Pinzón N, Li B, Martinez L, et al. microRNA target prediction programs
predict many false positives. Genome Res. 2017;27:234–45.

43. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, et al. DIANA-TarBase
v8: a decade-long collection of experimentally supported miRNA-gene
interactions. Nucleic Acids Res. 2018;46:D239–45.

44. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target
interactions. Nat Methods. 2015;12:697.

Zhang et al. BMC Bioinformatics          (2019) 20:235 Page 12 of 12

https://doi.org/10.1093/database/bav098
https://doi.org/10.1093/database/bay061
https://doi.org/10.18129/B9.bioc.impute
https://doi.org/10.18129/B9.bioc.impute

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Pipeline of miRspongeR
	Identification of miRNA sponge interactions
	Identification of miRNA sponge modules
	Validation and analysis
	Application

	Results
	Identification and validation of BRCA-related miRNA sponge interactions
	Module identification from BRCA-related miRNA sponge interaction network
	Enrichment and survival analysis of BRCA-related miRNA sponge modules

	Discussion
	Conclusions
	Availability and requirements
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

