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Abstract

Background: In computational biology, the physical mapping of DNA is a key problem. We know that the double
digest problem (DDP) is NP-complete. Many algorithms have been proposed for solving the DDP, although it is still
far from being resolved.

Results: We present DDmap, an open-source MATLAB package for solving the DDP, based on a newly designed
genetic algorithm that combines six genetic operators in searching for optimal solutions. We test the performance
of DDmap by using a typical DDP dataset, and we depict exact solutions to these DDP instances in an explicit manner.
In addition, we propose an approximate method for solving some hard DDP scenarios via a scaling-rounding-adjusting
process.

Conclusions: For typical DDP test instances, DDmap finds exact solutions within approximately 1 s. Based on our
simulations on 1000 random DDP instances by using DDmap, we find that the maximum length of the combining
fragments has observable effects towards genetic algorithms for solving the DDP problem. In addition, a Maple source
code for illustrating DDP solutions as nested pie charts is also included.

Background
The physical mapping of DNA is a key problem in com-
putational biology [5]. A large DNA molecule is a long
string composed of four nucleotides, A, C, G and T. To
understand the structure of DNA molecules, it is of
interest to determine the occurrences of short sub-
strings, such as GAATTC, on the DNA. Double digest
experiments (DDE for short) are a standard approach for
constructing physical DNA maps [2]. Given two restric-
tion enzymes, denoted by A and B, this approach cuts a
target DNA sequence by using only enzyme A , only
enzyme B , and both enzymes simultaneously, in three
separate and parallel experiments [5]. As a result, we ob-
tain three multisets of short DNA fragments. However,
due to certain experimental limitations, only the length
information (i.e., The number of nucleotides) of these
short fragments can be measured with certain accuracy
using certain mature biological techniques, such as gel

electrophoresis. The objective of the double digest prob-
lem (DDP) is to reconstruct the original ordering of the
fragments in the target DNA molecule.
Since the first successful reconstruction of restriction

site mapping in the earlier 1970s [7, 11], the DDP problem
has become an intensively studied issue that covers a
variety of disciplines [6, 9]. Although the major concerns
come from the community of bioinformation, the chal-
lenges related to this problem have also attracted attention
from the artificial intelligence, algorithmic complexity,
and optimization communities. We now know that DDP
is strongly NP-complete [1, 2], and many algorithms have
been proposed for solving the DDP problem [3–6, 8–10,
12–15]. However, the DDP problem is still far from being
resolved. All of the algorithms developed to address this
problem have encountered significant difficulties as the
number of restriction sites increases. Moreover, even
for different DDP instances with the same size, the
hardness for finding an exact solution might vary
remarkably.
The main motivation of this work comes from three

considerations: First, almost all existing formulations of
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Table 1 Main results: separated and integrated effects of all six genetic operators. Instance 1,3,4,5,7,8 come from [13], instance 2' is
derived by using a scaling-rounding-adjusting process towards instance 2, m, n, k are the lengths of the input fragments A, B and C,
respectively. There are six genetic operators, RWS is selection operator defined as the well-known roulette wheel algorithm. PCC and
RSC are crossing operators, PCC is the combination of two permutations, RSC is Referencing Sorting Crossing, P4X, FLP, CSH are
mutation operators, P4X is a four-point mutating, FLP defined as the flipping of the given fragment. CSH defined as the cyclic
shifting of the given fragment. The average running time, average evolution generations and success rate are listed in the table. At
the right of the table, we draw pie charts of DDmap’s two solutions.
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the DDP problem use multiset as the basic data struc-
ture, while we find that it is even easier to model the
DDP problem by using vectors. Second, some recently
proposed genetic algorithms [3, 13] for addressing the
DDP problem should be improved. Third, it is of interest
to develop an open-source package for studying the
DDP problem by using easily accessible engineering
computation platforms, such as MATLAB.
Our main contributions are summarized as follows:

� A vector-based formulation of the DDP problem is
presented and illustrated step-by-step.

� A novel genetic algorithm for solving the DDP
problem is proposed by combining six genetic
operators, and a MATLAB package, DDmap, is
implemented by integrating the proposed genetic
algorithm and other necessary supporting and testing
widgets. Then, by using DDmap, exact solutions for
typical DDP test instances [13] are explicitly derived
and depicted. (See the right column of Table 1.)

� A relation between the hardness of certain DDP
instances and the maximum length of double digest
sequences is revealed based on our simulations
of 1000 random DDP instances. Meanwhile, an
approximate approach for typical hard DDP
instances is conceived based on this relation.

Results
To test the utility of DDmap, eight DDP instances,
referred to as INSj(j = 1⋯8), are taken from [13]. They
are shown in the following Table 2:
First, the integrated effects of the six aforementioned

genetic operators of DDmap are verified. For the instances
INS1, 3, 4, 5, 7, 8, DDmap performs considerably well, and
the related results are collected in Table 1. For each
instance, 100 trails were run using DDmap with respect to
each combination of six genetic operators. Then, the
average running time, the average evolution generation
and the success rate of finding exact DDP solutions are
counted. Two different exact solutions for the instances
INS1, 3, 4, 5, 7, 8 are also depicted in the right column of
Table 1. In addition, the average running time and the
average evolution generations of finding exact DDP
solutions are depicted in Fig. 1. From Table 1 and Fig. 1.
We can see that the genetic operators combination of
RWS + PCC performs best in running time, RWS +ALL
performs best in evolving generation, while other com-
binations of different genetic operators perform simi-
larly and equally effective. Moreover, the tendency of
running time curve and evolving generation curve are
very similar.
However, we find that DDmap performs very poorly

for INS2 and INS6. Upon further examination, we find

that INS6, is invalid, Simple calculation shows that as
for INS6, we have

45 ¼
X

a!� � ¼ X
b
!� �

≠
X

c!� � ¼ 19

because it violates the restriction condition of (5) (See
Definition 1).
For INS2, we run DDmap 100 trails and successfully

obtain exact solutions of INS2 in 67 trails. But the average
running time and evolution generations for reaching the
exact solution of INS2 are 122 s and 3828, respectively, i.e.,
approximately 1000 times slower than the results of other
test instances (see Table 1). Furthermore, we find that these
67 solutions are essentially the same: One solution is
depicted in Fig. 2(a), and another solution is just to read
out the sequences A, B and C of Fig. 2(a) in an reverse
order. It seems that the solution to INS2 ’s solutions are
very sparse, and thus, DDmap faces the difficulty of
escaping from so many local optima.

Table 2 Test instances from [13]. Suppose giving two restriction

enzymes, denoted by A and B, a!; b
!
; c! are the multisets of

short DNA fragments by cuts a target DNA sequence by using
enzyme A only, enzyme B only, and both enzymes
simultaneously.
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We deal with the INS2 by using the scaling-rounding-
adjusting approach. As expected, DDmap can find solutions
towards INS2′ very efficiently. For each combination of six
genetic operators, we run DDmap towards INS2′ 100 trials.
The average running time is no more than 2 s, the evolu-
tion generation is no more than 80, and the success rate for
finding exact DDP solutions is always 100%. The results are
already contained in Table 1 and Fig. 1. Now, we directly
take some INS2, ’s solution, (μ, ν) ∈ Sm × Sn, as an ap-
proximate solution of INS2. The resulted double di-
gest pie charts are depicted in Fig. 2(b). Compared to
the exact solution given in Fig. 2(a), we think this kind
of approximation is an interesting result in the sense that
the relative error, defined as the proportion of total length

of gaps between two miss-aligned fragments, is merely
4.8%, calculated by

115þ 17þ 256þ 171þ 117þ 188þ 280þ 1120
48502

¼ 0:0487:

Next, via a number of simulations, we find that
DDmap’s performance is tightly related to the maximum
length of a piece in the sequence of C, denoted by ρC =
max ci. This is reasonable considering that for a fixed
length of sequence C, denoted by LC = |C|, the smaller ρC
is, the denser the solutions, and thus, the easier for gen-
etic algorithms, such as DDmap, to meet an exact solu-
tion during the evolution process. Based on our
simulations towards 1000 random DDP instances with
different ρC, the relationship between the success rate of
finding exact DDP solutions with respect to ρC is
depicted in Fig. 3.

Discussion

♦ Cases of k ≠m+ n − 1

Note that in both INS4 and INS5, the given two en-
zymes cut the target DNA molecule at some of the
same sites and lead to the case where k ≠m+ n − 1.
At the beginning, DDmap performs very poorly on
INS4 and INS5. The performance of DDmap on INS4
and INS5 improves remarkably after we adopt the fol-
lowing simple preprocessing strategy:
• If k < m + n − 1, then introduce δ = (m + n − 1) − k

fragments with length 0 into.
the sequence c!;
• Otherwise, if k >m+ n − 1, then introduce δ = k − (m +

n − 1) fragments with length 0.

into the shorter sequence among a! and b
!
;

• Otherwise, do nothing.
An interesting observation is that the newly intro-

duced 0-length fragments will explicitly appear in the
pie charts of exact DDP solutions. For instance, Fig. 4(a)
shows that a 0-length fragment in sequence c! of INS4
appears at the fifteenth site, while Fig. 4(b) shows that
two 0-length fragments in sequence c! of INS5 appear at
the sixth and eighth sites, respectively.
Here, we follow the convention of reading a pie chart

from 0° to 180° or 360°.

♦ Comparison

Figure 5(a) and (b) are the comparison of the average
running time between DDmap and the algorithm in 2005
[13] and 2012 [3]. Operator 1–5 are the crossover and
mutation operator in DDmap. Because the crossover

(a)

(b)
Fig. 1 Main results: separated and integrated effects of all six
genetic operators. a is the average running time. b is the average
evolution generations. DDmap has six genetic operators, for each
instance, 100 trails were run by using DDmap with respect to each
combination of six genetic operators. Then draw bar charts of the
average running time. INS6 doesn’t have data because it is invalid
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operator in [13] is the same as our operator 2 and the two
mutation operators in [3] are similar to our operators op4
and op5, so we only implement the mutation operator
op6 in [13] and crossover operator op7 in [3]. Eight in-
stances are from the paper [13]. In the comparison experi-
ment, each instance is run 100 times for operators op1–7
respectively, and then we got the average running time
and the success rate of finding the exact DDP solution.

Through the experimental data, we found the data
of op6 is much larger than that of the other six opera-
tors, the data of the other six operators will be
neglected in the rectangular coordinate system, so we
choose the logarithmic coordinate system. Figure 5(a)
is the comparison between DDmap and the algorithm
in 2005 [13], the blue line is the average running time
of op6, it is higher than the other six lines, our

Fig. 2 Effects of scaling-rounding-adjusting method. a is an exact solution of INS2. b is an approximate solution of INS2, derived by using the
scaling-rounding-adjusting process towards INS2

Fig. 3 Success Rate vs. Maximum Length of Piece in C. DDmap’s performance is tightly related to the maximum length of piece in C, we
generated a series of random double digest instances with the maximum length of C ranging from 10 to 100, then test the DDmap’s success
rate, the line of success rate changing with the maximum length of C is shown in Fig. 3
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algorithm has a significant time advantage over the
[3]‘s algorithm. As can be seen from Fig. 5(b), the six
lines have little difference, however, the op7’s line is
always at the top, so our algorithm has a slight advan-
tage over that of [3].
The comparison of success rate is shown in Fig. 5(c).

The success rate of operators 1, 2, 3, 4, 5, 7 is 100%, they
are all effective for these instances. Operator 6 runs very
irregularly and the results are not very good.
Instance 2 and 6 does not appear in Fig. 5. In fact,

INS6 is invalid. As aforementioned, INS2 is very com-
plex, so we analyze it separately. To reset the maximum
evolution generation as large as 100,000, running each
operator 10 times towards INS2, the average running
time and the success rate is shown in Fig. 6(a) and (b),
respectively. We can see that the running time of op6 is
about 10 times longer than other operators, while the
running time of op7 is about twice longer than our
operators op1–5. The success rates of our five operators
are all 100%, however, op7’s success rate is 90%, but op6
does not produce the exact DDP solution.
In conclusion, DDmap is much better than the

algorithm in [13] and it is slightly better than [3]’s
algorithm.

Fig. 4 Appearance of 0-length fragments m, n, k are the length of
the input instance A B and C, when k ≠m+ n − 1, We introduce
some 0-length fragments into the sequence, (a) shows that a 0-length
fragment in sequence c! of INS4 appears at the fifteenth site, (b)
shows that two 0-length fragments in sequence c! of INS5 appear at
the sixth and the eighth sites, respectively

(a)

(b)

(c)
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Conclusions
An open-source MATLAB package DDmap based on a
newly designed genetic algorithm that combines six genetic
operators is designed for solving the double digest problem.
This algorithm finds exact solutions within approximately
1 s for typical DDP test instances. For some hard DDP
instances, DDmap performs very well via a

scaling-rounding-adjusting process. The experimental re-
sults of our algorithm confirm its efficiency.

Methods
Problem formulation
Let Sm denote the symmetric group on m indices {1,
2,⋯,m}. Then, for a given permutation π ∈ Sm and a
given vector a!¼ ða1;⋯; amÞ , the action of π on a!
derives a vector a!π ¼ ðaπðiÞ;⋯; aπðmÞÞ, reassembling of

the order of entries of a! according to π. Further, let
us define the accumulative sum vector of a!, denoted
by ASð a!Þ, and the step difference vector of a!, denoted
by ASð a!Þ, as follows:

AS a!� � ¼ Σ a!; 1
� �

;⋯;Σ a!;m
� �� � ð1Þ

and

SD a!� � ¼ X
a!; 1

� �
;
X

a!; 2
� �

−
X

a!; 1
� �

;⋯;
X

a!;m
� �

−
X

a!;m−1
� �� �

ð2Þ

where Σð a!; jÞ ¼
X j

i¼1
aið j ¼ 1;⋯;mÞ indicates the

partial sum of a!.
Now, the double digest problem (DDP) can be for-

mulated by the following steps:

� Given two vectors a!¼ ða1;⋯; amÞ and b
!¼ ðb1;

⋯; bnÞ with the restriction Σð a!;mÞ ¼ Σð b!;nÞ, we
define the combining sequence of a! and b

!
,

denoted by ∐ð a!; b
!Þ, as the concatenation of

vectors ASð a!Þ and ASð b!Þ and removing the tail
entry. That is,

∐ a!; b
!� �

¼ AS a!� �
1;⋯;AS a!� �

m;AS b
!� �

1
;⋯;AS b

!� �
n−1

� �

ð3Þ

� The sequence ∐ð a!; b
!Þ can be reassembled to

obtain a new sequence according to the

nondecreasing order, denoted by ⊔̂ð a!; b
!Þ.

� The double digest sequence of a! and b
!
, denoted

by DDSð a!; b
!Þ, can be defined as the step

difference vector of ⊔̂ð a!; b
!Þ. That is,

DDS a!; b
!� �

¼ SD ⊔̂ a!; b
!� �� �

ð4Þ

� Now, we introduce the following definition:

(a)

(b)
Fig. 6 Comparison of DDmap and algorithm in [3, 13] under the
condition of INS2. The maximum evolution generation is set to
100,000, running each operator 10 times, (a) is the average running
time of each operator. b is the success rate of each operator

(See figure on previous page.)
Fig. 5 Comparison of DDmap and algorithm in [3, 13]. Operators 1–5
are the crossover and mutation operators in DDmap, op6 is the
mutation operator in [13] and op7 is the crossover operator in [3]. Each
instance is run 100 times by using op1–7 respectively. a is a
logarithmic coordinate system figure, we can see the average running
time comparison between DDmap and the algorithm in [13] in (a). b is
the average running time comparison between DDmap and the
algorithm in [3]. c is the success rate comparison between DDmap and
the algorithm in [3, 13]
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Definition 1
A double digest problem (DDP) instance is specified

by three vectors a!¼ ða1;⋯; amÞ; b!¼ ðb1;⋯; bnÞ and
c!¼ ðc1;⋯; ckÞ with the restriction of

Σ a!;m
� � ¼ Σ b

!
; n

� �
¼ Σ c!; k

� � ð5Þ

and the objective is to find a pair permutations (μ, ν) ∈ Sm ×
Sn such that.

DDS a!μ
; b
!v� �

¼ c!π
for som π∈Sm ð6Þ

Remark 1
If two enzymes cut a target DNA molecule at disjoint sites,
then we have the condition k =m + n − 1. It was previously
suspected that this case might lead to easier reconstruc-
tion problems [2]. (However, our simulation does support
this conjecture, and details are given in the supplemen-
tary part). However, due to some unavoidable

experimental errors, this condition does not always
hold. Thus, in DDmap, we employ a very simple strat-
egy to address the cases of k =m + n − 1: Introducing
0-length fragments in sequence A,B, or C if necessary.
Our simulation results show that this method is consi-
derably robust.

Remark 2
If we take into consideration possible partial cleavage
errors, then the optimization goal (6) should be updated to

minμ∈Sm;ν∈Sn
�� DDS a!μ

; b
!ν� �

⊕ c!
��� ��� ð7Þ

where symbol ⊕ indicates the set exclusive operation,
and the two operands DDSð a!μ

; b
!νÞ and c! should be

regarded as unordered multisets. By doing so, the searching
space of the DDP solution is reduced to Sm × Sn, instead of
Sm × Sn × Sk. In fact,π can be easily extracted from any
valid solution (μ, ν). A simple method for obtaining π is

Fig. 7 Flowchart of main GA algorithm of DDmap. The input DDP instance includes the instances in [13] and random instances, after calculating
the fitness value, if not satisfied the stop condition, the crossover and mutation operators will be performed probabilistically, then generate new
offsprings and recalculate the fitness values
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to at first sort DDSð a!μ
; b
!νÞ to obtain a nondecreasing

sequence and then let π be the permutation specified
by the reverse index of the sorting subscripts. Appa-
rently, this step can be performed within the comple-
xity Ο(klogk).

Example 1

For given three vectors a!¼ ð1; 2; 3; 5Þ , b
!¼ ð2; 2; 3; 4Þ

and c!¼ ð1; 1; 1; 2; 2; 2; 2Þ as well as two permutations.

μ ¼ 1 2 3 4
2 4 3 1

� �
and ν ¼ 1 2 3 4

3 1 2 4

� �
, we can verify that

(μ, ν) is a valid solution for the DDP instance specified by

ð a!; b
!
; c!Þ . The pie charts of a solution and the corre-

sponding calculation steps and complexities are depicted
in Table 3.

The proposed genetic operators
Recall that the basic idea of a genetic algorithm consists of
the following concepts: an individual is totally specified by a
chromosome; a chromosome is the carrier of a gene, and
the position of a gene in a chromosome is called a locus;
the gene composition of an individual is called the geno-
type; and the fitness value, called phenotype, is the result of
mutual effects of genotype and external environments.
Thus, to design a genetic algorithm for a given optimization
problem, we need to specify how to represent a chromo-
some, evaluate the fitness value, design genetic operators,
and determine evolution strategies such as the population
size, the maximum evolution generation, the elitism keep-
ing method, the probabilities for each genetic operator, etc.

First, for a given DDP instance ð a!; b
!
; c!Þ, we directly

use a random pair of permutations (μ, ν) ∈ Sm × Sn to
represent a chromosome, and its fitness value is given by

f μ; νð Þ ¼ 1

1þ DDS a!μ
; b
!ν� �

⊕ c!
��� ��� ð8Þ

Second, the following 6 genetic operators are employed
in this work:

� RWS. This is a natural selection operator
defined as the well-known roulette wheel algorithm.

� PCC. This is a crossing operator defined as a
combination of two permutations. Given two
chromosomes (μ(1), ν(1)) and (μ(2), v(2)), this
operator produces two new offspring

μ 1ð Þ∘μ 2ð Þ∘ν 1ð Þ∘ν 2ð Þ
� �

and

μ 2ð Þ∘μ 1ð Þ∘ν 2ð Þ∘ν 1ð Þ
� �

respectively.

� RSC. This is a crossing operator defined as the
so-called referencing sorting (RS). Given a target
sequence a! and a reference sequence b

!
, assuming

both are defined over the same alphabet. Then,
during the sorting process, the swapping operation

Table 3 Illustration of the proposed formulation. This is the detailed process of solving the double digest problem, The calculation
process of example 1 is listed in (a). The pie chart for this example’s solution is in (b).
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of two elements in a! is performed only if they are

in the reverse order in the referencing sequence b
!
.

RS is a generalization of ordinary sorting in the
sense that any two elements can be compared even
if they do not come from a complete order. RS is
inspired by operator precedence grammars. More
details about RS and RSC are given in the
supplementary section. In fact, RSC is called
order preserving weighted crossover in [13].

� P4X. This is a four-point mutating operator defined
as follows: Given a chromosome (μ, ν), randomly
exchange two elements of μ and two elements of ν.

� FLP. This is a fragment mutating operator defined
as flipping of the given fragment. By flipping a
fragment (2, 5, 4, 1), we obtain (1, 4, 5, 2).

� CSH. This is a fragment mutating operator defined
as cyclic shifting of the given fragment. By cyclically
shifting a fragment (2, 5, 4, 1), we obtain (5, 4, 1, 2).

More details about the referenced sorting crossover
(RSC) genetic operator.
RSC is in fact the order preserving weighted crossover

given in [13]. Suppose two parent chromosomes are

p1 ¼ ð1; 3; 2; 1; 3; 4; 2; 2Þand
p2 ¼ ð1; 2; 2; 2; 4; 3; 3; 1Þ;

and the crossover point is 3. Then, the producing of
the offspring is given below:

(1) p1 is split into two pieces: p11 = (1, 3, 2) and
p12 = (1, 3, 4, 2, 2), and p2 is split into two pieces:
p21 = (1, 2, 2) and p22 = (2, 4, 3, 3, 1).

(2) The piece p12 is sorted by taking p2 as the referenced
sequence. Since in p2 there exists a chain 2 − 2 − 4 −
3 − 1 this leads to p ' 12 = (2, 2, 4, 3, 1).

(3) Similarly, p22 is sorted by taking p1 as the
referenced sequence. This time, we obtain p '
22 = (3, 1, 3, 4, 2) since there exists a chain 3 − 1 − 3
− 4 − 2 in p1.

(4) Two offspring chromosomes are

c1 ¼ p11‖p
0
12 ¼ 1; 3; 2; 2; 2; 4; 3; 1Þandc2 ¼ p21‖p

0
22 1; 2; 2; 3; 1; 3; 4; 2Þ:ð�

Among the above 6 genetic operators, RWS is
widely used in most genetic algorithms, and RSC was
first used in [13] to solve the DDP problem. Four
other genetic operators, although being easily con-
ceived, are new to DDP-oriented genetic algorithms,
as far as we know.
Third, the evolution strategies in this work refer to

[13]. That is, the population size and maximum

evolution generation are set to 50 and 10,000, respect-
ively. Elitists in each generation are kept, and the
crossing probability is set to 0.85. The linearly adap-
tive mutation probability in [13] is also used in our
work, but with a slight modification to ensure the cyc-
lic increment of mutation probability is nonnegative.
The details are as follows:
We follow the suggestion given in [13] by letting the

mutation probability vary linearly in cycles of 200 itera-
tions. However, in the original paper, this cycle varies from
2

mþn to 0.45, while in our work, the cycle varies from 2
mþn

to 0.55, considering that in the case of m = n = 2, the start
point would be 0.5, which is larger than 0.45.

Scaling-rounding-adjusting approach
Based on the above observation, we try to deal with the
instance INS2 in another way. A new test instance, INS2,
is derived by using a scaling-rounding-adjusting process
on INS2. The details of this process are as follows:

� Scaling and rounding. Because the minimum length
of pieces in sequence c! of INS2 is 1120, we take
0.001 as the scaling factor. That is, we multiply the

sequences a!; b
!
; c! by 0.001 and then round them.

By doing so, we obtain

a0
! ¼ ð6; 6; 7; 7; 7; 17Þ
b0
! ¼ ð4; 5; 6; 6; 7; 21Þ

c0
! ¼ ð1; 2; 3; 3; 3; 4; 4; 4; 5; 6; 16Þ

� Adjusting. Next, we find that

X
ð a0!Þ ¼ 50≠

X
ðb0!Þ ¼ 49≠

X
ð c0!Þ ¼ 51

That is, ð a!; b
!
; c!Þ is an invalid DDP instance. Intui-

tively, this occurs because the round operation, round(·),
introduces more errors. Thus, we try to adjust the
rounding operation in the previous step according to the
so-called rounding-up and rounding-down strategies:
- Rounding-up: round(x) is replaced by x ' = round(x +

0.1), and we obtain

a″
!¼ ð6; 6; 7; 7; 7; 17Þ
b″
	!

¼ ð4; 5; 6; 6; 8; 21Þ
c″
!¼ ð1; 2; 3; 3; 3; 4; 4; 4; 5; 6; 16Þ

This DDP instance is again invalid since
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X
ða″!Þ ¼ 50 ¼

X
ð b″
	!

Þ≠
X

ðc″!Þ ¼ 51

- Rounding-down: round(x) is replaced by x ' =
round(x − 0.1)

a‴
	! ¼ ð5; 6; 6; 7; 7; 17Þ
b‴
	!

¼ ð3; 5; 6; 6; 7; 21Þ
c‴
	! ¼ ð1; 2; 2; 3; 3; 3; 4; 4; 5; 5; 16Þ

Now, the DDP instance may be valid since

X
ð a‴	!Þ ¼

X
ð b‴
	!

Þ ¼
X

ð c‴	!Þ ¼ 48

Note that the constant 0.1 in rounding-up/round-
ing-down is a value defined by experience. A reason-
able domain of this constant would be the interval
[0.0001, 0.4999].
• Now, the newly derived DDP instance INS2, is given

by the three vectors ð a‴	!; b‴
	!

; c‴
	!Þ.

Finally, we would like to mention that all simu-
lations in this work are conducted on a X1 Carbon
laptop with Windows(TM) 8, Intel(R)Core(TM)i5 −
4300U CPU@ 1.90 GHz/2.49 GHz and 8GB RAM.
The complete genetic algorithm for solving the DDP
problem is implemented as a MATLAB package,
DDmap, and a Maple source code for drawing DDP
solutions as nested pie charts is also included in this
package.
The package DDmap consists of

� 13 MATLAB algorithms:
� permGA.m, the MATLAB genetic algorithm

for solving the DDP problem. This is the main
algorithm, and its flowchart is depicted in
Fig. 7. Note that this file also contains the
definitions of five genetic operators — RWS,
PCC, P4X, FLP, CSH and related MATLAB
functions for calculating the fitness values.

– referIndexSort.m, the MATLAB algorithm for
implementing the so-called referenced sorting
(based on index).

– opPermCross.m, the MATLAB algorithm for
implementing the RSC genetic operator.

– getInstance.m, the auxiliary MATLAB algorithm
for outputting test DDP instances in
[Sur-Kolay S. et al., 2005].

– randDDPinstance.m, the auxiliary MATLAB
algorithm for producing a valid DDP instance
according the given parameters.

– strABC.m, the auxiliary MATLAB algorithm
for producing Maple commands for reading data
before calling the Maple algorithm DDdraw.mws.

– simu1004.m, simu1004plots.m, simu1007.m, and
simu1008.m, the auxiliary MATLAB algorithms
for organizing simulations and producing the
related figures.

– Trans.m, the MATLAB algorithm for implementing
Scaling-rounding-adjusting approach for Cases
of INS2.

– Plot1.m, the auxiliary MATLAB algorithms for
comparison of DDmap and algorithm in [3, 13].

– Plot2.m, the auxiliary MATLAB algorithms for
comparison of DDmap and other algorithms
under the condition of INS2.

– 1 Maple algorithm, DDdraw.mws, is used for
drawing the DDP solution in nested pie charts,
with inputs A, B and C that are assigned by using
Maple commands produced by strABC.m.

– 43 Data files: 42 of them are named as
INSxx − ggg. TEX, where xx∈ {01, 03, 04, 05, 07, 08,
10} and ggg∈ {pcc, rsc, p4x, flp, csh, all}, and the
last is named as INS02 − rs − 1008. TEX. These data
files are in fact the running records of our
simulations towards the 7 valid DDP test instances
given in [13]. In these running records, many exact
DDP solutions are provided.
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