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Abstract

elements along the primary transcript.

Background: In eukaryotes, most genes code for multiple transcript isoforms that are generated through the
complex and tightly regulated process of RNA splicing. Despite arising from identical precursor transcripts,
alternatively spliced RNAs can have dramatically different functions. Transcriptome complexity is elevated further by
the production of circular RNAs (circRNAs), another class of mature RNA that results from the splicing of a
downstream splice donor to an upstream splice acceptor. While there has been a rapid expansion of circRNA
catalogs in the last few years through the utilization of next generation sequencing approaches, our understanding
of the mechanisms and regulation of circular RNA biogenesis, the impact that circRNA generation has on parental
transcript processing, and the functions carried out by circular RNAs remains limited.

Results: Here, we present a visualization and analysis tool, SpliceV, that rapidly plots all relevant forward- and back-
splice data, with exon and single nucleotide level coverage information from RNA-seq experiments in a publication
quality format. SpliceV also integrates analysis features that assist investigations into splicing regulation and
transcript functions through the display of predicted RNA binding protein sites and the configuration of repetitive

Conclusions: SpliceV is an easy-to-use splicing visualization tool, compatible with both Python 2.7 and 3+, and
distributed under the GNU Public License. The source code is freely available for download at https://github.com/
flemingtonlab/SpliceV and can be installed from PyPI using pip.
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Background

The majority of mammalian genes code for multiple
transcript isoforms that contribute substantially to the
vast complexity of both the mammalian transcriptome
and proteome (E. T. [25, 38]). Each mature isoform is
generated through a dynamic series of tightly coordi-
nated actions that begin to occur as the nascent tran-
script is being synthesized [3]. The growing precursor
RNA is sequentially bound by a myriad of RNA binding
proteins (RNABPs) and small nucleolar RNAs (snoR-
NAs; reviewed in Wahl et al [37]) as the exon-intron
boundaries become defined through these specific ribo-
nucleoprotein complex interactions. The assembled
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ribonucleoprotein complex, termed the spliceosome,
facilitates intron excision and covalent ligation of flank-
ing exons across the gene locus, ultimately generating a
mature transcript isoform.

While each exon-intron boundary inherently contains
a splice site, contiguous exons are not always spliced
together. Retained introns (Y. [18]), skipped exons [20],
and cryptic splice sites [14] commonly diversify the pro-
file of fully processed transcript isoforms. Splice site
proximity, defined by RNA secondary structure, is a
major factor in splice site selection [28]. Intron length
and the presence or absence of inverted repeats can
impact the physical distance between splice donor and
acceptor [33]. Branch point sequence motifs [43] and
nucleotides adjacent to splice sites [5] fine tune the
strength of snoRNA interactions. Further, variations in
polypyrimidine tracts can preferentially attract one
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RNABP over another [32]. An additional layer of regula-
tion is provided by the cellular abundance and availabil-
ity of individual RNABPs and snoRNAs, allowing for
tissue and context specificity of RNA processing and
alternative isoform expression [29].

The same splicing reaction that generates mature
mRNAs can also fuse a downstream splice donor to an
upstream splice acceptor (much like tying the end of a
string to the beginning), in effect circularizing the tran-
script [34]. These circular RNAs (circRNAs) are cova-
lently closed transcripts that inherently lack 5" or 3’
ends, thereby enabling them to escape exonuclease de-
struction. This class of RNA has recently been shown to
be evolutionarily conserved ([30]; P. L. [39]), highly abun-
dant in humans, and for some genes, is the most prevalent
transcript isoform [31]. The 3" to 5" back-splicing reac-
tion, required for circRNA biogenesis, correlates with the
speed of precursor transcript elongation (Y. [42]), occur-
ring more frequently at splice sites flanked by long introns
and introns containing reverse complementary sequences
[12]. To date, little is known regarding the function of the
vast majority of circRNAs. Of the relatively few that have
been characterized, some have been shown to serve as
microRNA sponges [11, 22], as direct regulators of paren-
tal gene expression (Z. [19]), in signaling between cells
[15] and even as templates for translation [16, 24]. Further
evidence of their importance in the cell is accumulating
and their functions and mechanisms of action are being
found to be generally quite distinct from their cognate lin-
ear counterparts [6].

Exploring the relationship between linear and circular
RNA isoforms of a common parental gene can be facili-
tated by utilizing Next Generation Sequencing (NGS)
technology. NGS based approaches have provided the
framework to study the abundance of individual tran-
script isoforms at a large scale, allowing investigators to
compare circular and linear isoform abundance. How-
ever, the majority of bioinformatic pipelines require
prior knowledge of transcript structure. While useful for
broad scale interpretations, these approaches fail to
resolve the abundances of both linear and circular
isoforms of each gene, the function of which can
dramatically differ from one another. Between linear
transcripts alone, alternatively spliced isoforms can code
for proteins that are truncated [4], lack specific func-
tional domains [26], have completely unique amino acid
sequences [1], and in some cases, alter cell fate entirely
[4, 10]. Here we present a visualization tool, SpliceV, that
facilitates detailed exploration and visualization of tran-
script isoform expression in publication quality format.
SpliceV facilitates within- and across-sample analyses
and includes the display of predicted cis and trans regu-
latory factors to further assist in the biogenesis and func-
tion studies. Together, SpliceV should be a useful tool
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for a wide spectrum of the RNA biology research
community.

Implementation

Our software package is written in Python 3 but is back-
wards compatible with Python 2.7, relying only upon the
third-party libraries, matplotlib [36], and pysam. Source
code can be found at https://github.com/flemingtonlab/
SpliceV and can be installed from PyPI using the Python
package manager, pip. SpliceV is written with a GNU
3.0 public license, provided with anonymous down-
load and installation. Full usage information can be
found in Additional file 1.

SpliceV generates plots of coverage, splice junctions, and
back-splice junctions with customizable parameters,
depicting expression of both the linear and circular iso-
forms of a given gene. Standard formats (BAM, GTE, and
BED) are accepted as input files. BAM files are sequen-
tially accessed by our software (rather than in parallel). In
practice, this means that SpliceV first determines the
chromosomal coordinates that mark the beginning and
end of the input gene. Next, it extracts reads that fall
within that range from each BAM file (one BAM file at a
time). As BAM files are indexed (either prior to running
SpliceV, or automatically by SpliceV), this process never
requires loading of the entire file into memory, and we
have no reason to believe that a personal laptop computer
would have difficulty running SpliceV on many BAM files
at once. Because junction calling sensitivity can be im-
proved using specialized software, canonical and
back-splice junction information can be extracted directly
from BAM files or input separately as BED-formatted files
containing the coordinates and quantities of each junc-
tion. The user is provided the flexibility of normalizing ex-
pression of each exon across all samples or for exon
normalization to be confined within each sample (this
helps visualize alternative splicing, intron retention, and
exon exclusion). As introns are generally much larger than
exons, an option to reduce intron size by a user-defined
amount is also provided. In an effort to guide interpret-
ation of gene specific splicing patterns, predicted or em-
pirically determined RNA binding protein binding sites
can be added to the plots (Fig. 1b-c; a stepwise tutorial to
reproduce these figures is outlined in Additional file 2) by
supplying a list of coordinates or utilizing the consensus
binding sequences determined by Ray et al [27]. Because
inverted ALU repeat elements impact RNA secondary
structure, we have also incorporated the option to add a
track of ALU elements to the plot.

Results

Multiple computational pipelines have been developed
to detect and quantify circRNAs from high throughput
RNA sequencing data ([13, 22, 40]; X.-O. [8, 41]). As
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Fig. 1 a SpliceV plot of SPPL2A expression in Akata cells. Coverage (exon level coverage; color intensity of each exon, single nucleotide level
coverage; height of the horizontal line bisecting each exon) and forward splice junctions (arches above exons) was derived from sequencing a
poly(A)-selected library preparation. Back-splice junctions (curves below exons) were obtained from sequencing a ribodepleted, RNase-R treated
library preparation. b SpliceV plot of FARSA in Akata cells. All junctions and coverage were derived from a ribodepleted, RNase-R treated sample. ¢
SpliceV plot of GSET expression in ribodepleted, RNase-R treated (back-splice junctions) and poly(A)-selected (coverage and canonical junctions)
SNU719 cells. Predicted binding sites for RNA binding proteins, RBM3, HNRNPL, HNRNPA1, PTBP1 are plotted along the FARSA transcript (b) and
RBFOX1, and MATR3 sites are plotted along the GSET transcript (c). ALU elements are marked in (c)

circRNAs lack a poly(A) tail, ribodepleted library prepa-
rations are essential for circRNA detection. RNA prepa-
rations can then be treated with the exonuclease, RNase
R, which exclusively digests linear RNAs, to increase the
depth of circRNA coverage. To demonstrate the utility
of SpliceV, we used libraries prepared from poly(A) se-
lected (enriched for polyadenylated linear RNAs) or
ribodepleted-RNase R-treated RNA from the Burkitt’s
Lymphoma cell line, Akata, and the gastric carcinoma
cell line, SNU719. Reads from each library were aligned
using the STAR aligner v2.6.0a [7] to generate BAM and
splice junction BED files. We further processed our
alignments using find_circ [22] to interrogate the un-
mapped reads for back-splice junctions. Our first plot
displays a prominent circular RNA formed via
back-splicing from exon 5 to 3 of SPPL2A (Fig. 1a). For

this plot, back-splicing (under arches) derived from
RNase R-seq data is plotted with forward splicing (over
arches) and exon level (exon color intensity) and single
nucleotide level (horizontal line graph) coverage from
poly(A)-RNA-seq data from Akata cells to illustrate
circRNA data in the context of linear poly(A) transcript
expression. Exon level coverage display provides easy
visualization of selective exon utilization: for example,
using forward- and back-splicing and coverage data
derived from RNase R-seq data (Akata cells) show
enriched coverage of the circular RNA exons 6-8 of the
FARSA gene (Fig. 1b). Nevertheless, the simultaneous
display of single nucleotide level coverage includes
additional information that can help provide more
detailed clarity in interpretation. For example, while the
last exon of SPPL2A (Fig. la) shows low exon level
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Fig. 2 a SpliceV plot of RNA coverage and splicing from normal stomach tissue (wild type TP53). b SpliceV plot of a gastric tumor with a 1 base
(T) deletion at a splice acceptor (chr17:7673610, HG38 genome build), disrupting the splicing from exon 8-9 and causing the utilization of a novel
cryptic downstream splice acceptor at position chr17:7673590; resulting in a frameshift deletion. ¢ SpliceV plot of a gastric tumor with a G> A
splice donor variant at chr17:7675993. Part of the intron is retained (chr17:7675884-7,675,993) and a novel intronic splice donor site is utilized,
with the same upstream acceptor. This introduces a frameshifting insertion into the protein coding sequence. Asterisks indicate the SNV location
and insets are enlarged representations of the transcript structure. Nucleotide sequences at the cryptic splice sites are labeled, with the junctions
occurring between the red and black bases in each figure. These samples were initially provided by The Cancer Genome Atlas [2], with
alignments obtained from the Genomic Data Commons [9]
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coverage, there is an evident drop in single nucleotide
level coverage soon after the splice acceptor site, likely
illustrating the utilization of an upstream poly(A) site (3"
UTR shortening [21]). Therefore, while exon level cover-
age provides illustrative qualities for some more macro-
scopic analyses (e.g. enriched exon coverage of
circularized exons (Fig. 1b in RNase R-seq data)), single
nucleotide coverage provides granularity when needed.

The need that initially inspired us to develop SpliceV
was the lack of available software to plot back-splicing in
the context of coverage and forward splicing (for ex-
ample, see Fig. la). This is not only useful for simple
presentation of circRNA splicing information, but can
also aid interpretation. For example, the display of for-
ward splicing and coverage from poly(A)-seq data in the
context of back-splicing data from RNase R-seq data for
the GSE1 gene provides evidence of circle formation of
exon 2 which precludes its inclusion in the cognate lin-
ear GSE1 isoform (Fig. 1c). In this case, exon 2 exclusion
introduces a frameshift, ablating the canonical function
of this gene.

To add utility to SpliceV in transcript biogenesis and
isoform function analyses, we also incorporated the
display of RNA binding protein predictions (Fig. 1b)
based on empirically determined binding motifs (Ray et
al) and user supplied ALU element sites (Fig. 1c). These
features can assist the user in assessing the mechanisms
of forward splicing, back splicing, alternative splicing, in-
tron retention, etc. Further, since loaded RNA binding
proteins control transcript localization as well as activity,
these features can help assist the user in investigating
transcript function.

To further illustrate the utility of SpliceV in investiga-
tional efforts, we next used SpliceV to visualize isoform
level expression in two Gastric Carcinomas and one nor-
mal gastric tissue sample from The Cancer Genome
Atlas (TCGA) [2]. Whole Exome Sequencing variant
calls revealed that each of the two tumor samples had
unique splice site mutations in the critical tumor sup-
pressor gene, TP53 [17]. The Genomic Data Commons
pipeline [9] for gene expression quantification revealed a
slight increase in TP53 RNA levels in the tumor
samples. Because the mutations in both tumors occurred
in intronic regions, the impact on protein output is not
easily determined. Using SpliceV to visualize RNA-seq
data (Fig. 2), however, revealed likely haplotypic ablation
of the mutated splice acceptor (Fig. 2b) or donor (Fig. 2c)
site in these two samples. This led to the utilization of
cryptic splice sites that produced frameshifts in each of
the resulting transcripts. Also evident in sample BR-8483,
based on the single nucleotide coverage line graph, is ex-
tensive intron retention, likely causing the resulting intron
retained transcript to be subjected to non-sense mediated
RNA decay. In both of these cases, SpliceV was able to
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assist in determining the negative impact of these two mu-
tations on TP53 function, findings that are otherwise
opaque to the user.

Conclusions

Here we present a new tool, SpliceV, that facilitates in-
vestigations into transcript biogenesis, isoform function
and the generation of publication quality figures for the
RNA biologist. SpliceV is fast (taking full advantage of
the random access nature of BAM files), customizable
(allowing users to control plotting aesthetics), and can
filter data and make cross-sample comparisons. It is
modular in structure, allowing for the inclusion of new
features in future package releases. SpliceV should pro-
vide value to the toolkit of investigators studying RNA
biology and function and should speed the time frame
from data acquisition, data analysis to publication of
results.

Availability and requirements
Project name: SpliceV

Project home page: https://github.com/flemingtonlab/
SpliceV

Operating system: Platform independent

Programming language: Python

Other requirements: Python 2.7 or Python 3.0+

License: GNU Public License

Any restrictions to use by non-academics: License
needed

Additional files

Additional file 1: Command line parameters for SpliceV. (PDF 251 kb)

Additional file 2: An example pipeline to generate the required files for
SpliceV analysis. (PDF 148 kb)

Abbreviations
circRNA: circular RNAs; RNABP: RNA binding protein; snoRNA: Small nucleolar
RNA
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