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Abstract

Background: With advancements in high-throughput technologies, the cost of obtaining expression profiles of
both mRNA and microRNA in the same individual has substantially decreased. Integrated analysis of these profiles
can help to elucidate the functional effects of RNA expression in complex diseases, such as cancer. However,
fundamental discrepancies are observed in the results from microRNA-mRNA target gene prediction algorithms,
and few packages can be used to analyze microRNA and mRNA expression levels simultaneously.

Results: To address these issues, an R package, anamiR, was developed. A total of 10 experimental/prediction
databases were integrated. Two analytical functions are provided in anamiR, including the single marker test and
functional gene set enrichment analysis, and several parameters can be changed by users. Here we demonstrate
the potential application of the anamiR package to 2 publicly available microarray datasets.

Conclusion: The anamiR package is effective for an integrated analysis of both RNA and microRNA profiles. By
characterizing biological functions and signaling pathways, this package helps identify dysregulated genes/miRNAs
from biological and medical experiments. The source code and manual of the anamiR package are freely available
at https://bioconductor.org/packages/release/bioc/html/anamiR.html.
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Background
With advancements in high-throughput technologies, the
cost of analyzing multiple gene expression profiles in the
same individual has dropped substantially. Many studies
have described attempts to analyze RNA and microRNA
(miRNA) profiles simultaneously. To date, only a few
miRNAs and their target genes have been validated
through biological experiments [1], and thus prediction al-
gorithms have been widely used to identify potential
miRNA-gene interaction pairs. The most popular method
for predicting target genes of miRNAs is that of matching
the 3’UTR of an mRNA to the “seed region” (a conserved
sequence of 2 to 8 nucleotides) of an miRNA, which as-
sumes perfect Watson-Crick complementarity between
the mRNA 3’UTR and the miRNA. In addition, the seed

region can be used to classify families and species of miR-
NAs. Consequently, the seed region has been demonstrated
to be a key element of miRNA-target gene prediction [2].
However, other research has shown that the pairing mech-
anism between miRNA and mRNA can occur anywhere
along the entire mRNA, which suggests that algorithms fo-
cusing on the seed regions can only identify a subset of all
potential miRNA-target gene pairs [3]. To address this
issue, other popular computational approaches, such as free
energy minimization and machine learning, have been de-
veloped. Measuring the minimum free energy can help to
assess the stability of binding sites between miRNA and tar-
get genes. A predicted miRNA-target pair with lower free
energy indicates that the binding is more stable and thus
more likely to be a true result [2, 4]. With the rapid accu-
mulation of massive amounts of data, machine learning al-
gorithms have also been implemented in many prediction
algorithms through training processes containing the entire
dataset of known miRNA targets [4]. In such approaches,
important features that can facilitate identification of pos-
sible target genes from miRNAs can be revealed. Good per-
formance has been reported for support vector machine [5]
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and generalized linear model [6] algorithms. Furthermore,
two machine learning based algorithms were implemented
to dissect the associations between miRNAs and diseases [7,
8], and their results demonstrated that utilizing data mining
approaches may effectively improve the prediction accuracy.
However, prediction results from different algorithms usu-
ally show large discrepancies [9]. For example, the propor-
tion of the miRNA-gene pairs that can be predicted by all 8
algorithms in our system is only 0.001% (Additional file 1:
Table S1). Therefore, inconsistent prediction results still
pose a major challenge to advanced analyses of miRNA tar-
gets. To address this issue, one possible solution is to use
several algorithms to analyze several experimental datasets
at the same time [10]. In this study, we developed an R
package, anamiR, for analyzing miRNA expression and gene
expression concurrently. A total of 8 target prediction algo-
rithms and 2 experimentally validated miRNA databases
were included. Users can analyze genome-wide expression
profiles of both miRNA and RNA without applying a preset
filter. The anamiR package provides 2 major functions: the
single marker test and functional gene set enrichment ana-
lysis. The former can be used to identify differentially
expressed RNAs/miRNAs, and the latter is used to
characterize their biological functions and signaling path-
ways. Alternatively, users can pre-select gene sets and/or
pathways of interest, and the anamiR package can reveal
dysregulated genes/miRNAs involved in them. The anamiR
package can substantially reduce the time and effort re-
quired to perform an integrated analysis of genome-wide
miRNA and gene expression.

Implementation
Characteristics of anamiR
The overall structure of the anamiR package is illus-
trated in Fig. 1. We collected both predicted and vali-
dated datasets containing the potential target genes of
miRNAs, as well as biological functions and pathway in-
formation, in the anamiR database. To address the issue
of low consistency across independent prediction algo-
rithms, we utilized an approach that selects the intersec-
tion of the prediction results. The same approach has
been used in our previous study [10]. Compared with
the previous study, we have added 8 new or updated
prediction algorithms, including different in silico ap-
proaches for predicting potential miRNA-gene pairs,
such as strong base pairing between 3′ UTR of mRNAs
and seed regions with variously complementary types
(i.e., TargetScan [11] and EIMMo [12]), additionally con-
sidering thermal dynamic stability of binding sites (i.e.,
rna22 [13], miRanda [14], MicroCosm [15], and PITA
[16]), incorporating machine learning methods (i.e.,
DIANA-microT-CDS [17] and miRDB [5]), and 2 experi-
mentally validated datasets (i.e., miRecords [18], and
miRTarBase [19]) in anamiR. The numbers of
miRNA-gene interaction pairs are summarized in Add-
itional file 1: Table S2. Also, four datasets containing in-
formation on biological functions and pathways in both
humans and mice were embedded in anamiR, including
KEGG [20], Reactome [21], BioCarta, and MouseCyc
[22]. Currently, only one published R package, miR-
Comb [23], has similar function to anamiR, and

Fig. 1 An overview of anamiR. The rounded rectangle with a dotted outline shown in grey indicates the core of the anamiR package. The input
data and output results are shown in green. The blue boxes represent two major workflows in the package. Three databases including pathway
information from four datasets (orange boxes), collections of miRNA- gene interaction pairs from eight prediction programs (white boxes), and
two experimentally validated datasets (purple boxes), and MSigDB are shown in yellow cylinders
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comparisons of the two are shown in Additional file 1:
Table S3. The primary advantages of anamiR with re-
spect to miRComb are the inclusion of experimentally
validated datasets and the greater number of functional
prediction algorithms.

Analytical workflows in the anamiR package
In the anamiR package, we have provided a general work-
flow that contains several statistical tests for performing
differential expression analysis, correlation analysis, and
functional analysis (Fig. 2a). Users need to provide 2 data
sheets of genome-wide expression levels of both miRNA
and genes, and information on sample grouping is also re-
quired to perform the statistical analyses. For each statis-
tical test and analysis step, all results can be generated as

output, and most analysis parameters are flexible and can
be changed by the user. To estimate the chances of ran-
domly identifying a significantly enriched biological func-
tion, a permutation test is performed.
In addition to the general workflow, the anamiR

package provides another workflow called
function-driven analysis (Fig. 2b). Users can select the
biological functions/pathways of interest on which to
perform these integrated analyses. All genes in the
corresponding functional pathways are analyzed, with
no filtering based on their statistical P-values. Such
an approach can not only reduce the number of tests
required to obtain an answer, but also take moderate
gene expression changes into consideration, even if
they do not reach statistical significance.

Fig. 2 The proposed workflows in the anamiR package. (a) The general workflow provides six steps including normalization (optional), differential
expression analysis, conversion of miRNA names (optional), correlation analysis, database intersection, and functional analysis. miRNA-gene interaction pairs
and correspondingly enriched pathways can be identified from the workflow using both mRNA and miRNA expression data. (b) The function-driven
analysis workflow is performed to identify significantly dysregulated pathways and to obtain potential miRNA-gene interaction pairs using genome-wide
expression profiles. Each box shown in blue represents a function in the anamiR package. The input data and output results are shown in green. Yellow
cylinders indicate databases for query and numbers of dataset collections are shown in parentheses
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Statistical approaches
In the anamiR package, we have provided four statistical
tests and/or algorithms by which to identify differentially
expressed genes and/or miRNAs: limma [24], t-test, Wil-
coxon rank sum test, and DESeq2 [25]. The default
P-value threshold for the statistical tests is defined as
0.05 and the default threshold for the expression ratio
between two phenotypes is set at 0.5. Both parameters
are user-adjustable. The Benjamini-Hochberg method is
performed to address the multiple testing issue. Three
measurements of the trend in the expression levels be-
tween gene and miRNA are provided: Pearson correl-
ation coefficient, Kendall rank correlation coefficient,
and Spearman’s rank correlation coefficient. Since the
expression level of a miRNA is negatively correlated to
the expression level of its target gene, the default cutoff

of the correlation (also user-adjustable) is defined as −
0.5, which corresponds to moderate correlation (Add-
itional file 1: Table S4 and Table S5). For those genes
showing negative correlation with their regulatory
miRNA, a hypergeometric test is performed to identify
significantly enriched pathways. Lastly, to address the
possibility of identifying a significant pathway through
miRNA enrichment analysis by random chance [26], a
permutation test is embedded in the anamiR package.
The random chance of identifying a significant pathway
is obtained by randomly selecting the same number of
genes in the enriched pathway and calculating the
enriched P-value. This procedure is repeated 5000 times
to generate a null distribution, and the empirical P-value
is determined by comparing the enrichment P-value ob-
tained from the real data with the P-value from the null
distribution. For the function-driven analysis workflow,
we employed the gage package [27] to perform
genome-wide functional enrichment analysis, and users

Table 1 Top 5 miRNA-gene interaction pairs with negative
correlation coefficients (GSE16558)

miRNA Target
gene

Number of
prediction
algorithms

Experimentally
validated

Correlation Referencesa

hsa-
miR-
485-5p

JMY 3 −0.522 [30, 32]

hsa-
miR-622

IRF2BP2 3 −0.469 [33, 34]

hsa-
miR-
186-5p

SNF8 3 −0.438 [34]

hsa-let-
7b-5p

RHOG 1 V −0.435 [35]

hsa-
miR-
155-5p

PELI1 4 V −0.433 [36]

aThe miRNA and/or gene was reported to be related to multiple myeloma

Table 2 Pathways identified by functional enrichment analysis
(GSE16558)

Category Function Number
of genes

Number of
genes
targeted by
miRNAs

P-
valuea

Empirical
p-valueb

Reactome Gene expression 1588 15 6.06E-
07

0.0002

Reactome Transcriptional
regulation by
TP53

345 7 6.90E-
06

0.0002

KEGG FoxO signaling
pathway

126 4 0.0001 0.0002

BioCarta p53 signaling
pathway

13 2 0.0003 0.0004

BioCarta Hypoxia and p53
in the
cardiovascular
system

21 2 0.0008 0.0005

aThe P-value was obtained by the hypergeometric test
bThe P-value was obtained by the permutation test

Table 3 Top 5 pathways identified by function-driven analysis
(GSE16558)

Category Function Number
of genes

Number
of genes
targeted
by
miRNAs

Number of
interaction pairs
with correlation
coefficient≤ −
0.3

KEGG Ribosome 88 29 62

Reactome Peptide Chain
Elongation

153 31 65

Reactome 3 UTR mediated
translational
regulation

176 39 79

Reactome Influenza Viral RNA
Transcription and
Replication

169 36 78

Reactome Nonsense
Mediated Decay
Enhanced by The
Exon Junction
Complex

176 41 78

Table 4 Top 5 miRNA-gene interaction pairs with negative
correlation coefficients (GSE60371)

miRNA Gene Number of predicted
algorithms

Correlation Referencesa

hsa-miR-
1260a

SH3BP5 3 −0.789

hsa-miR-
320d

UBE2C 3 −0.721 [39]

hsa-miR-
320d

BICD1 3 −0.709 [40]

hsa-miR-
320b

BICD1 3 − 0.706 [41]

hsa-miR-
1260a

LMNA 3 − 0.705 [42]
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can manually set the number of functional terms of
interest.

Results and discussion
Dataset description
To demonstrate the potential applications of the anamiR
package, 2 examples from real microarray datasets are
provided below. The first example (GSE16558) has 60
patients with multiple myeloma and 5 normal controls
[28], whereas the second example (GSE60371) contains
48 prostate cancer patients and 6 normal controls [29].
Both datasets are composed of paired miRNA and
mRNA expression data.

Example 1: multiple myeloma (GSE16558)
We analyzed the GSE16558 dataset by the general work-
flow algorithm (Fig. 2a), using limma with the default
parameters shown in the supplementary information
(Additional file 1: Table S6). The 5 interaction pairs with
the highest correlation coefficients between miRNA and
gene are shown in Table 1. A previous study has identi-
fied miR-485-5p as having dysregulated expression levels
in multiple myeloma [30], and its target gene, JMY, is re-
ported as a mediating and regulatory protein of TP53
[31]. Intriguingly, 3 out of the top 5 enriched pathways
were related to TP53 (Table 2), suggesting the inter-
action between miR-485-5p and JMY deserves further
investigation in multiple myeloma patients.
Alternatively, the top 5 enriched pathways from the

function-driven analysis (Fig. 2b) are shown in Table 3.
Notably, the most significant pathway was related to
ribosome function, and 3 of the 5 interaction pairs with
the largest negative correlations include miR-485-5p, in
agreement with the results from the general workflow
(Additional file 1: Table S7). Therefore, these results
demonstrate that anamiR is able to identify important
interaction pairs of miRNA and target genes in a specific
disease.

Example 2: prostate cancer (GSE60371)
Similar to the previous example, we utilized the general
workflow algorithm with the default parameters in
GSE60371 (Additional file 1: Table S6). Notably, 2 miR-
NAs from the miR-320 family were identified (Table 4),
and their down-regulation has been reported in prostate
cancer [37]. Intriguingly, the overexpression of UBE2C
was reported in prostate cancer [38] and its miRNA
regulator is miR-320d. Taken together, the dysregulation
of the miR-320 family and UBE2C deserve further inves-
tigation in prostate cancer.
As shown in Tables 5 and 6, the results showed that

the proportion of miRNA-gene pairs showing negative
Pearson correlation coefficients increase along with the
number of analyzed algorithms, suggesting better predic-
tion performances can be achieved by the integration of
multiple algorithms.

Conclusions
The anamiR package provides an integrated approach
for identifying paired mRNA and miRNA expression
profiles. The general workflow is utilized to predict the
target genes and their associated functional pathways for
miRNA simultaneously. Within gene sets and pathways
of interest, the function-driven analysis workflow is ap-
plied to identify miRNA-gene interaction pairs from
among the significant gene sets and pathways. We be-
lieve that approaches considering the associations be-
tween mRNAs and miRNAs, as well as regulation of
genes and pathways, can provide insight into dysfunction
in cancers.

Availability and requirements

� Project name: anamiR
� Project home page: https://bioconductor.org/

packages/release/bioc/html/anamiR.html
� Operating system(s): Platform independent

Table 5 The proportion of miRNA-gene pairs with negative correlations (GSE16558)

Pearson
Correlation

Number(s) of algorithm

=0 algorithm(s) (N = 19,114 pairs) > = 1 algorithm(s) (N = 5009 pairs) > = 3 algorithm(s) (N = 1174 pairs)

Correlation < − 0.1 196 (1.03%) 125 (3.91%) 52 (4.43%)

Correlation < − 0.3 29 (0.15%) 17 (0.34%) 9 (0.77%)

Correlation < −0.5 0 (0.0%) 0 (0.00%) 0 (0.00%)

Table 6 The proportion of miRNA-gene pairs with negative correlations (GSE60371)

Pearson
Correlation

Number(s) of algorithm

=0 algorithm(s) (N = 74,968 pairs) > = 1 algorithm(s) (N = 29,798 pairs) > = 3 algorithm(s) (N = 6611 pairs)

Correlation < −0.1 533 (0.71%) 450 (1.51%) 233 (3.52%)

Correlation < −0.3 290 (0.39%) 238 (0.79%) 133 (2.01%)

Correlation < −0.5 55 (0.07%) 43 (0.14%) 19 (0.29%)

Wang et al. BMC Bioinformatics          (2019) 20:239 Page 5 of 7

https://bioconductor.org/packages/release/bioc/html/anamiR.html
https://bioconductor.org/packages/release/bioc/html/anamiR.html


� Programming language: R
� Other requirements: R (> = 3.3.3),

SummarizedExperiment (> = 1.1.6), Bioconductor (>
= 3.4), stats, DBI, limma, lumi, agricolae, RMySQL,
DESeq2, SummarizedExperiment, gplots, gage,
S4Vectors

� License: GNU GPLv2
� Any restrictions to use by non-academics: None

Additional file

Additional file 1 Table S1. The total potential number of miRNA-gene
pairs obtained by tallying different prediction algorithms. Table S2. Num-
ber of miRNA/gene interaction pairs in the prediction algorithms and ex-
perimentally validated databases included in the anamiR package. Table
S3. Characteristics of anamiR and miRComb. Table S4. Pairs with nega-
tive correlation coefficients (GSE16558). Table S5. Pairs with negative cor-
relation coefficients (GSE60371). Table S6. The default parameters used
in the examples. Table S7. Top 5 interaction pairs with negative correl-
ation coefficients in the 5 pathways identified by function-driven analysis.
(DOCX 38 kb)
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