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Abstract

pathway.

Background: Insilico experiments, with the aid of computer simulation, speed up the process of in vitro or in vivo
experiments. Cancer therapy design is often based on signalling pathway. MicroRNAs (miRNA) are small non-coding
RNA molecules. In several kinds of diseases, including cancer, hepatitis and cardiovascular diseases, they are often
deregulated, acting as oncogenes or tumor suppressors. miRNA therapeutics is based on two main kinds of molecules
injection: mMiRNA mimics, which consists of injection of molecules that mimic the targeted miRNA, and antagomiR,
which consists of injection of molecules inhibiting the targeted miRNA. Nowadays, the research is focused on miRNA
therapeutics. This paper addresses cancer related signalling pathways to investigate miRNA therapeutics.

Results: In order to prove our approach, we present two different case studies: non-small cell lung cancer and
melanoma. KEGG signalling pathways are modelled by a digital circuit. A logic value of 1 is linked to the expression of
the corresponding gene. A logic value of 0 is linked to the absence (not expressed) gene. All possible relationships
provided by a signalling pathway are modelled by logic gates. Mutations, derived according to the literature, are
introduced and modelled as well. The modelling approach and analysis are widely discussed within the paper. MiRNA
therapeutics is investigated by the digital circuit analysis. The most effective miRNA and combination of miRNAs, in
terms of reduction of pathogenic conditions, are obtained. A discussion of obtained results in comparison with
literature data is provided. Results are confirmed by existing data.

Conclusions: The proposed study is based on drug discovery and miRNA therapeutics and uses a digital circuit
simulation of a cancer pathway. Using this simulation, the most effective combination of drugs and miRNAs for
mutated cancer therapy design are obtained and these results were validated by the literature. The proposed
modelling and analysis approach can be applied to each human disease, starting from the corresponding signalling
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Background

MicroRNA (miRNAs) are non coding RNA molecules,
18-22 nucleotide long, responsible of gene regulation at
post transcriptional level. They act interacting through
their “seed” region, binding the complementary region
(typically the 3'Untranslated Region (UTR)) of their RNA
messenger (mMRNA) target. MiRNA-mRNA interactions
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lead to mRNA degradation or translation repression. This
mechanism is responsible for the control of target gene
expression [1].

Moreover, their role as regulators of different physio-
logical and pathological conditions as cancer has been
validated [2]. Indeed, their expression is often deregulated
in tumors, and they can have an oncogenic or tumor-
suppressive role, depending on their target gene [3]. As
an example, miR-222 can have a dual role of oncogene
or tumor-suppressor in different cell types according to
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its target gene. miR-222 is over-expressed in lung can-
cer and it has PTEN tumor suppressor gene as target [4];
on the other hand, it is down-regulated in acute myel-
ogenous leukemia and it has c-kit oncogene as target [5].
In translational field, recent studies considered miRNAs
as therapeutic agents because of their regulative role [6].
On the basis of the dual role of miRNAs as oncogenes or
tumor-suppressor, there are two possible miRNA-based
drugs, called respectively antagomiR and miRNA-mimics.
The former are synthetic compounds that inhibit miRNA
action, by acting as their antagonists [7], the latter are
molecules that mimic miRNAs behaviour [6]. miRNA-
mimics were used as cancer therapeutic for the first time
in lung cancer [8, 9]. For example, miR-34 reached the
phase I trial for cancer treatment and antimiR targeted
miR-122 reached phase II trial for hepatitis [10].

Different strategies have already been applied in miRNA
therapeutics [1]. As example, sandwich RNA interfer-
ence (RNAI) inhibition involved the concurrent use of
a multiplex of miRNAs to target a single target gene
[11]. This strategy has the advantage to exhibit synergistic
anti-tumor efficiency than single therapy alone. Another
therapeutic approach is the use of a “cocktail” of differ-
ent miRNAs in order to interact with many targets at
the same time [12]. As previously said, miRNA drugs can
be divided into miRNA antagomiRs and miRNA mim-
ics. As an example, pre-clinical studies adopted antisense
oligonucleotides targeting miRNAs (AMOs) and Locked
Nucleic Acid (LNA) anti-miRs in phase I and II trials
[7, 13]. Both are duplexes of RNA analogues/miRNAs
able to degrade miRNA molecule and to recycle the
antagomiR.

miRNA therapeutics is actually carried out by in vitro
or in vivo experiments. These experiments are expensive
and time consuming. Therefore, in silico experiments play
a key role in the development of therapy for several dis-
eases, because they speed up the process of in vivo or in
vitro experiments. In this paper, following the same prin-
ciples of drug discovery experiments based on computer
simulations of logical circuits [14], we present a pathway
modelling approach based on digital circuits for miRNA
therapeutics studies. The proposed modelling and analy-
sis approach can be applied to each cancer pathway. The
proposed work aims at offering to biologists and clini-
cians a method to analyse drugs and miRNAs effects on a
specific disease.

Related works
Recently, several authors proposed novel approaches
to analyse signalling pathways based on logic circuits
[14-20].

In [14], authors propose the digital approach on the
growth factor signalling pathway. Relationships between
genes in the pathway are properly modelled using Boolean
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logic gates. Gene mutations are modelled as faults in
the Boolean network. Two type of faults are identified:
stuck-at-1 and stuck-at-0. The former provides the dis-
connection of the faulted net from the upstream gates
and the connection of the faulted net to a logic value
of 1, meaning that the gene is always expressed regard-
less of the other signals in the network. In the latter
fault, the faulted net is disconnected from the upstream
logic gates and connected to a logic value of 0, mean-
ing that the corresponding gene is not expressed. Stuck-
at-1 usually represents mutated oncogenes; stuck-at-0
usually represents mutated tumor suppressors. The out-
put of the network is made up of genes playing a key
role in the cell proliferation or apoptosis. The analysis
of the network is used to enumerate all possible faults
and to analyse effects of drugs for single faults in can-
cer therapy design. Existing data validate the proposed
approach.

In [15], the authors address the signalling pathway
of castration-resistant prostate cancer and the digital
approach is applied to achieve drug discovery. In the
literature, only data on a single drug are available and
combination with no more than two drugs are considered
to avoid excessive toxicity and side-effects. Notwithstand-
ing this, authors propose a combination of three drugs
as the most effective. Furthermore, authors propose the
stochastic analysis of node vulnerability to identify better
targets for drugs.

In [16], the authors propose a digital approach,
based on Karnaugh maps, to build a Boolean network
whose state transitions model a given biological path-
way. A family of Boolean networks is defined which
can generate trajectories consistent with given pathway
information.

In [17], the authors apply the digital approach to hypoxia
stress response pathway to obtain efficient therapeutic
interventions. The authors develop a Boolean model with
targeted drugs in a cell that mimics persistent hypoxia.
The hypoxic pathway is combined with apoptosis, cell sur-
vival and energy production processes. Simulation data
are confirmed by the literature.

In [18], the authors define a Boolean network to model
the cancer growth factor pathway. Faults are identi-
fied according to the stuck-at-1 and stuck-at-0 modelling
approach. The drug vector is identified and the drug
action on the faulted Boolean network is carried out.
Multiple faults are accounted for, with two or three simul-
taneous faults, and for each faulted network. A drug
vector is identified, which can completely rectify the fault
producing a fault-free output. The drug vector of each
faulted network consists of the minimum number of drugs
to limit side-effects. Then, the therapy with the fewest
drug and best fault coverage is identified based on the
circuit analysis.
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In [19], the authors focus on MAPK signal transduction
network which is modelled by a Boolean network, includ-
ing target locations of inhibitory drugs. By using a version
of the message passage algorithm, the probable locations
of dysregulation in the network is obtained.The model
results are compared with more extensive Markov chain
Montecarlo methods. The proposed method takes advan-
tages from a much smaller computation time. A method
to estimate the probability of a certain fault in the Boolean
network is therefore proposed.

In [20], the authors develop a model for cancer tissue
heterogeneity based on an ensemble of Boolean networks,
based on pathway knowledge. The number of networks
is equal to the number of major sub-populations in the
cancer tissue. The paper aims at finding out the extent to
which each network influences the behaviour of the tissue
by observing the behaviour of the outputs.

Methods

In this paper, we present a novel approach to miRNA
therapeutics based on logic circuits using the following
methodology.

In a cancer related signalling pathway, the inputs are
growth factors and tumor suppressors, the outputs are
genes playing a key role in proliferation or apoptosis. From
a generic perspective, this type of pathway can be seen
as a grey box with input and outputs (Fig. 1). Accord-
ing to the scientific literature presented in the previous
section, that grey box will be modelled by a digital circuit.
Because these kinds of circuits only account for discrete
signals of value zero or one, these circuits can be con-
sidered as Boolean networks, and from here on we will
use both expressions (digital circuit and Boolean network)
indifferently.

Gene mutations, that alter the pathway responses, are
introduced in the circuit as perturbations, meaning that
a fault in the Boolean network occurs every time a gene
is mutated. These faults are introduced in order to study
the effects of mutations on an otherwise healthy organ-
ism. After that, the circuit is analysed by fixing the input
vector with growth factors set to 0 and tumor suppressors
set to 1. This configuration corresponds to the healthy
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condition of the pathway, i.e. non-proliferative with apop-
tosis. This way, it is possible to analyse the circuit under
each mutation, observing how the mutations alter the out-
put and therefore identifying the most dangerous output
condition. In order to change this diseased status, drugs
or miRNAs are introduced. They act as control signals,
reducing the output to a less dangerous condition or even
to a fault-free condition in a complete fault-recovery sce-
nario. Summarizing, the circuit is analysed by fixing the
input vector, introducing all the mutations firstly, and
those drugs or miRNAs acting on their corresponding tar-
get secondly (Fig. 2). The “pathogenic degree” of the out-
put under the action of drugs and miRNAs is computed in
order to find the most effective drug or miRNA.

In the following, materials and methods are described
in detail. In the “Materials” subsection, we introduce
databases and resources used to build and analyse the cir-
cuit. In the “Logic circuit of the pathway” subsection, we
define the digital circuit and variables, as well as the trans-
formation rules from the biological pathway to the digital
circuit. In the “Simulation” subsection, we describe the
simulation setup and we define the score used to validate
simulation results. The modelling approach and analysis
can be applied to each human disease, starting from the
corresponding signalling pathway.

Materials

Biological pathways are retrieved from Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database [21]. It
is a database that integrates genomic, chemical and sys-
temic functional information, converting all the knowl-
edge acquired from different biological data of heteroge-
neous entities into metabolic pathways.

Mutations are derived from ClinVar [22] and KEGG
databases, by introducing all genes involved in the KEGG
pathway and selecting the targeted human disease. Clin-
Var is an NCBI resource, collecting different human clin-
ical variants related to different phenotypes, with sup-
porting evidence. Only pathogenic or likely/pathogenic
mutations (mutations with pathological or likely patho-
logical clinical significance) or mutations related to drug
response are selected (Table 1).

INPUTS - CIRCUIT OUTPUTS
(Genes (Cellular
activation response)
status)

playing a key role in cell proliferation or apoptosis

Fig. 1 Logic circuit of pathway. In cancer related pathways, inputs are usually growth factors and tumor suppressors. Outputs are usually genes
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Faults
(gene.
mutations)

NPUTS CIRCUIT OUTPUTS
(Fixed (Cellular
genes response)
activation

status)

Control Signals
(Drugs/miRNA)

Fig. 2 Logic circuit of pathway with mutations and drug/miRNAs. In cancer related pathways, inputs are usually growth factors and tumor
suppressors. Outputs are usually genes playing a key role in cell proliferation or apoptosis. Mutations are introduced as perturbations in the digital
circuit. Drugs or miRNA are introduced as control signals reducing the circuit outputs to less dangerous condition or even to a fault-free condition

For each mutated gene, the oncogenic or tumor sup-
pressive role is key to the definition of the digital equiv-
alent circuit. Tumor Suppressor Gene Database (TSGene
Database) is a comprehensive database of tumor sup-
pressor genes which is available from the University of
Texas, Health Science Center at Houston [23]. Search-
ing the mutated gene in the database is a key preliminary
step. Another key step consists of searching the mutated
gene in the Network of Cancer Gene (NCG) Database,
containing information about the gene function (onco-
gene or tumor suppressor) of 2372 cancer genes from 273
manually curated publications. NCG is maintained by the
Ciccarelli group which is a part of the School of Can-
cer Studies of King’s College London [24]. Growth factor
property for genes of the pathways are retrieved from
UniProt db [25].

KEGG provides information about drugs and their tar-
gets in the specific pathway under study. We considered

those drugs resulting approved or under investigation for
that specific cancer on DrugBank database [26]. If present,
other drugs provided only by DrugBank are considered.
miRNAs are selected from miRTarBase repository [27].
It allows the exploration of validated miRNA-target inter-
actions, through a collection of different experiment types
and literature filtering. Then, the validated miRNA-target
couples are filtered for a specific tissue type, shrinking
the study to a selected cohort of cases. This last step
is achieved through the use of miRTissue service [28].
Moreover it gives information about miRNA behaviour,
evidencing both target degradation and protein trans-
lation inhibition. The suitable miRNAs are obtained by
introducing all pathway genes, selecting “Degradation”
as interaction type and filtering results by the selected
case study, through p-value thresholds (p-value < 0.05).
Moreover, miRNAs post-filtering is required in order to
avoid circuit redundancy. To this end, we consider all the

Table 1 NSCLC case study. Gene mutations retrieved from ClinVar. Gene name, accession number, mutation, clinical significance and

literature references are reported, respectively

Gene Accession Mutation Clinical significance Ref
EGFR NM_005228 4(EGFR) €.2573T>G (p.Leu858Arg) Pathogenic-drug response ([611)
ERBB2 NM_001005862.2(ERBB2) €.2223_2234dupATACGTGATGGC Pathogenic/Likely pathogenic ([621)
(p.Ala745_Gly746insTyrValMetAla)

ALK NM_004304.4(ALK) €.3522C>A (p.Phel174Leu) Pathogenic/Likely pathogenic ([631)
PTEN NM_000314.6(PTEN) c697C>T (p.Arg233Ter) Pathogenic ([641)
KRAS NM_004985.4(KRAS) cA437C>T (p.Alat46Val) ((65])
BRAF NM_004333.5(BRAF) €.1794_1796dup (p.Thr599_Val600insThr) Pathogenic-drug response ([66])
PI3K NM_006218.3(PIK3CA) €.3140A>G (p.His1047Arg) Pathogenic/Likely pathogenic ([67,68])
AKT1 NM_005163.2(AKT1) C49G>A (p.Glu17Lys) Pathogenic/Likely pathogenic ([69, 701)
MEK/MAP2K1 NM_002755.3(MAP2KT1) c.167A>C (p.GIn56Pro) Pathogenic ([71,72])
EML4-ALK-p16 chr2:29446394.42552694 inversion Pathogenic ([73D)




Boscaino et al. BMC Bioinformatics 2019, 20(Suppl 9):344

miRNAs addressing multiple targets. If a target gene is not
covered by the other selected miRNAs, we also consider
miRNAs addressing only one target. Finally, we identified
clusters of miRNAs addressing the same targets and, in
this case, we consider a single representative of the cluster.

Logic circuit of the pathway

A KEGG pathway is a graph whose nodes are the
entries and edges are the relations. The circuit modelling
approach is based on the assumptions that nodes can be
modelled as Boolean variables and edges by logic gates.

KEGG uses the KEGG Markup Language (KGML) to
define entries, properties and relationships in pathways.
The KGML Document (which is available at https://www.
kegg.jp/kegg/xml/docs/) defines the whole set of the path-
way elements. In this paper, we propose a modelling
approach for entry and relation types of interest for the
specific purpose. The proposed approach aims at mod-
elling the dynamic interactions among genes, enzymes
and proteins to make an efficient drug discovery and tar-
get discovery analysis for a specific human disease. Since
only a subset of the elements included in a KEGG pathway
is fundamental for the specific goal, we refer to the KGML
Document, extrapolating data of interest and proposing
for these elements a suitable modelling approach.

In the KGML Document, entries are classified as:
ortholog, enzymes, reactions, genes, groups, compounds,
maps, brites and others. Enzymes, genes and compounds
are considered as signals in the pathway circuit. Ortholog
groups, brites and reactions are not considered for the
specific purpose. Orthologs are any of two or more
homologous gene sequences found in different species
and therefore this information is useless for the specific
purpose since a specific human disease is targeted. The
BRITE hierarchy file is created by KEGG to represent
functional hierarchy of KEGG objects and therefore is
useless for the specific goal. Reactions are classified into
reversible or irreversible but these information are not
useful to model dynamic events and interactions among
genes, enzymes and compounds.

In the KGML Document, the relation types are
firstly classified as ECrel (enzyme-enzyme), PPrel
(protein-protein), GErel (gene expression), PCrel
(protein-compound) and maplink (link to another
map)but, in this paper, these types of relations are not
considered. The circuit modelling is based on subtypes
of these relations which lead to a dynamic event. In
fact, dynamic events among signals are fundamental for
the circuit modelling, no matter which is the biological
nature of the specific signal (protein, gene, enzyme,
compound). Relations are then classified by subtypes as:
compound, hidden compound, activation, inhibition,
expression, repression, indirect effect, state change,
binding/association, dissociation, missing interaction,
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phosphorilation,  dephosphorilation,
ubiquitination and methylation.

The circuit modelling of biological pathways focuses
on dynamic events leading to activation, expression, inhi-
bition, repression, binding/association and dissociation.
Compounds, hidden compounds and state changes are
not accounted for. Compounds are shared with two suc-
cessive reactions in ECrel or intermediate of two inter-
acting proteins in PPrel. Hidden compounds are shared
with two successive reactions but are not displayed in the
pathway map. These are steady-state events not related to
dynamic actions.

The biological signalling pathway is converted to a dig-
ital circuit, made up of logic gates as BUFFER, NOT,
OR and AND gates. Each signal corresponding to a gene
in the pathway is considered as a Boolean variable. The
value of the variable is 1 if the gene is expressed, 0 oth-
erwise. Several input combinations can lead to different
output combinations. In literature, some transformation
rules from the biological pathway to the digital circuit and
drug modelling are given [14]. The whole set of trans-
formation rules is reported (Fig. 3): each row reports the
equivalence between the KEGG relationship, on the left,
and the corresponding logic gate with its truth table, both
on the right.

According to KEGG database components, the
modelled relationships are: activation/expression
(Fig. 3a); inhibition/repression (Fig. 3b); combined
activation (Fig. 3c); macromolecular complex and
binding/association (Fig. 3d) and dissociation (Fig. 3e) .

The activation relationship (Fig. 3a) is represented by
a logic BUFFER gate, meaning that if the input gene is
expressed, the output gene will be expressed. Otherwise,
the output gene will not be expressed. The repression
relationship (Fig. 3b) is represented by a logic NOT gate,
meaning that if the input gene is expressed, the output
gene will not be expressed and vice versa. A combined
activation relationship (Fig. 3c) is represented by a logic
OR gate, meaning that almost one among the input genes
must be expressed to express the output gene.

According to the literature, in this paper we model the
macromolecular complex (Fig. 3d) by an AND logic gate
[14], meaning that both genes must be simultaneously
expressed to express the output gene.

Binding/association relationships are modelled by a
logic AND gate, as well as macromolecular complex.
In fact, all bounded elements should be activated or
expressed to activate/express or inhibit/repress the down-
stream proteins, genes or enzymes. KGML code clearly
shows that binding/association relationships are intro-
duced with reference to groups entries; therefore, the
biological meaning of the binding/association relationship
is the same of biological groups (macromolecular com-
plexes). For this reason, we choose to model the groups as

glycosylation,
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Identifier Relation name | Pathway example Logic circuit Truth table
GRB2 SOS
a ) Activation/Expression G2 Sos m 0 0
1 1
- —_— p27 CDK2
b) Inhibition/Repression p27 K1 —|p S —— 0 1
1 0
PIP3 PDK1  PKB/AKT
PIP: FIFS 0 0 0
" - Q PKBifkt PKB/AKL
Combined activation 0 1 1
c) (T} @_ 1o o1
1 1 1
CDK4/6 CyclinD1  Rb
CDK4/6 0 0 0
Macromolecular complex- Rb
d) Binding/Association cyclin Dl} 2 (1] g
1 1 1
; Rb E2F
o - -
e) Dissociation D 0 0
1 1
Fig. 3 KEGG pathway logic modelling. In a the activation/expression relationship is modelled by a logic buffer gate. In b the inhibition/repression
relationship is modelled by a logic NOT gate. In € the combined activation is modelled by a logic OR gate. In d the macromolecular complex
activation and the binding/association relationship is modelled by a logic AND gate. In e the dissociation relationship is modelled by a buffer gate

unique biological entities no matter which is the relation
that creates these macromolecular complexes.

The relationship of dissociation (Fig. 3e) is considered
as an activation as well. Indeed, in a macromolecular com-
plex, a protein inhibits the other. In order to activate
the latter protein, the macromolecular complex should
be dissociated. As an example from KEGG database, the
macromolecular complex is made up of Rb and E2F pro-
teins (Fig. 3e). When they are bound, Rb inhibits E2F. In
the pathway, Rb protein releases and consequently acti-
vates E2F, which leads to cell cycle progression (G1/S
progression).

In the proposed structure of the circuit, we decided to
not represent molecular events involved in the activation
or deactivation of proteins, as phosphorylation. Indeed,
these modifications do not affect the circuit relationships
and logic gates. In fact, logic gates account for expression
or inhibition of molecular species, not considering how
inhibition or expression is achieved.

Missing interaction relationship, which is for example
represented in KEGG database as an arrow with a sidelong
segment, is not accounted for in the pathway logic circuit
because the corresponding genes are not related to each
other and consequently do not alter the final results.

Indirect activation (represented in a KEGG pathway as
a dashed arrow) means that other intermediate genes,
which are not included in the pathway, are involved. Indi-
rect activation is considered as well as direct activation in
order to not increase the complexity of the corresponding

pathway since it does not alter the circuit functionality and
final results.

As an example, a detail of the non-small cell lung cancer
(see Case study 1) KEGG pathway and its corresponding
circuit are shown (Fig. 4).

Notice that each gene reported into the graphical rep-
resentation of a KEGG pathway can represent a family
instance; for example RAS corresponds to the KRAS gene
and RAF to the BRAF gene. Of course, metadata reported
in KEGG markup language (KGML) specifies the gene
which is effectively involved in the pathway. SOS gene is
activated by GRB2 and therefore a buffer gate is used.
KRAS and BRAF genes are activated by two genes and
therefore two OR gates are used. Finally, MEK is activated
by BRAF and ERK by MEK gene and two buffer gates are
used.

Simulation
The input and output of the signalling pathway are rep-
resented by two binary vectors whose size is equal to the
number of input and output genes, respectively, where
each bit is equal to 1 if the corresponding gene is expressed
(active), 0 otherwise. In a cancer related signalling path-
way, the inputs of the pathway are growth factors and
tumor suppressors. The output of the signalling pathway
consists of genes playing a key role in proliferation or
apoptosis.

If all growth factors are set to 0 and tumor suppres-
sors are set to 1, the output is non-proliferative, meaning
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Fig. 4 Simplified pathway model. At the top, a detail of KEGG non-small cell lung cancer pathway is shown. At the bottom, the corresponding
digital circuit is shown. SOS gene is activated by GRB2 and therefore a buffer gate is used. KRAS and BRAF genes are activated by two genes and
therefore two OR gates are used. Finally, MEK is activated by BRAF and ERK by MEK gene and two buffer gates are used

that in this condition apoptosis without proliferation is
involved. This is the best and less dangerous condition
for the specific disease under study. Yet, because of gene
mutations, even without growth factors and with active
tumor suppressors, active proliferation with or without
apoptosis could be obtained. Mutations are introduced as
perturbations in the circuit, meaning that a fault in the
Boolean network occurs every time a gene is mutated.
Mutations are modelled by stuck-at-1 or stuck-at-0 faults
[14]. Mutations of oncogenes are represented by stuck-
at-1 faults, mutations of tumor suppressors by stuck-at-0
faults. The former consists of the disconnection of the
faulted net from the upstream gates and the node is forced
to a logic value of 1. The latter consists of the discon-
nection of the faulted net from the upstream gates and
the node is forced to a logic value of 0. In order to study
the influence of multiple gene mutations, in the same cir-
cuit these are applied by using a multiplexer component.
With the aid of the multiplexer gate, the circuit could be
automatically driven by the so-called control signal. The
multiplexer gate features one output and multiple inputs,
two in this case. For example (Fig. 5), EGFR and stuck-at
value (logic value of 1 in this case) are the two inputs. A
control signal managing the inputs is included. The mul-
tiplexer aims at connecting the output to one and one
only input, according to the value of the control signal. In

this case, two inputs are included and therefore the con-
trol signal is a binary signal assuming a logic 1 or logic 0
value. The control signal is an artificial signal, driven by
the user to apply the corresponding mutation. If the multi-
plexer control signal is equal to 0, the input will be routed
to the output and thus no mutation is active. If the mul-
tiplexer control signal is equal to 1, the stuck-at value will
be routed to the output, thus disconnecting the upstream
gates from the downstream gates of the logic circuit and
consequently implementing the corresponding mutation.

A test vector is defined to enumerate and analyse the
effect of all involved faults (mutations) in the Boolean net-
work. The input test vector is identified by forcing to 0
each growth factor and forcing to 1 the tumor suppres-
sors. If no growth factor is present and tumor suppressors
are active, the output of the network corresponding to
a healthy organism is non proliferative. By applying the
input test vector and analysing the circuit under each
mutation by observing the output vector, it is possible to
check the level of proliferation caused by the mutation.
During the simulation process, therefore, the input test
vector represents a fixed input of the network.

Drugs modify the circuit functionality altering the out-
put of each mutation thus recovering faults and leading to
less proliferative output. Effects of drugs can be analysed
by the output of the digital circuit. The presence of drugs

Output

STUCK-AT WALUE

EGFR Stuck-at-value |Control signal Output
0 0 0
1 0 1
0 1 0
1 1 1

Control signal

Fig. 5 Mutations modelling. Multiplexer gate modelling the gene mutation and the corresponding truth table. If the control signal equals a logic
value of 0, the input will be routed to the output. If the control signal equals a logic value of 1, the stuck-at value will be routed to the output
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is modelled by using a drug vector with values set to 1 if
the corresponding drug is applied to the circuit, O other-
wise. In the digital circuit, drugs are properly introduced
following the literature approach [14]. Drugs are intro-
duced in the circuit by a combination of NOT and AND
gates (Fig. 6), meaning that if drug is applied (correspond-
ing to a logic value of 1) the output gene is inhibited [14].
In fact, the output of the AND gate follows the input if the
drug is O (due to the inversion of the NOT gate).

For the fist time, in this work we introduce miRNAs into
a logic circuit of a pathway. MiRNAs are modelled as well
as drugs and are inserted in the circuit considering their
gene targets. Once again, given the test vector, it is pos-
sible to observe the corresponding output affected by the
mutations in the network. By analysing the output vector,
miRNAs role in fault-recovery can be studied, thus iden-
tifying the best miRNA for each mutation and the best
combination of miRNAs for all involved mutations.

In order to measure the “pathogenic degree” of a specific
output condition, we defined a proper score. In literature,
authors proposed a score based on the number of tran-
scription factors and the number of active key proteins,
considering on a non-linear many-to-one map [14]. In
order to evaluate the effects of drugs and miRNAs on
mutations, in this paper, a linear combination of prolifer-
ative and pro-apoptosis genes is proposed. The proposed
score is quite easy to compute because it is a linear combi-
nation of output bits and allows biologists and clinicians to
quantify the “pathogenic degree” of the output condition.
The proposed score is obtained by counting the number
of active proliferative genes and the number of active key
pro-apoptosis genes and then computing the difference
between them. The minimum score corresponds to the
least proliferative output and condition. If the output is
made up of seven bits, as given by:

Output =[a,b,c,d,e,f,g] (1)

where a,b,c,d corresponds to proliferative genes and
e,f,g corresponds to pro-apoptosis genes, the score is
given by:

S=P—-A (2)
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where P is the sum of the bits corresponding to prolifera-
tive genes, as given by:

P=a+b+c+d (3)

and A corresponds to the sum of the last three bits
corresponding to pro-apoptosis genes, as given by:

A=e+f+g (4)

In this example, a possible output vector can be Out-
put=[1010111]. In this case, the score is equal to S=P-A,
where P=2 corresponding to the sum of the first four
bits representing proliferative genes and A=3 represent-
ing the sum of the last three bits corresponding to the
pro-apoptosis genes. In this example, the score is equal
to S=-1. The most proliferative condition corresponds to
Output=[1111000]. The score is equal to S=4 meaning cell
proliferation without apoptosis. The less dangerous con-
dition corresponds to Output=[0000111], whose score is
equal to
S=-3, corresponding to absence of proliferation with
apoptosis. The scores S=4 and S=-3 are unique, each
corresponding to a specific configuration of output bits.
Other scores cannot be associated to a specific bits config-
uration, but the aim is at identifying dangerous conditions
no matter of which specific gene is expressed or not, but
only considering their role and the number of active genes.

A cumulative score is assigned to each drug or miRNA
by summing the scores of each mutated output under
the effect of the drug or miRNA under study. The most
effective drug or miRNA corresponds to the minimum
cumulative score.

Flowchart of the proposed method

In this Section, we summarize the methods described
in the previous subsections by means of a flowchart
(Fig. 7). The figure includes two dashed boxes. On the
left, the dashed box shows the processing steps adopted
to transform the selected pathway into an equivalent dig-
ital circuit, as described in the “Logic circuit of the path-
way” Section. On the right, the dashed box reflects the
processing steps described in the “Simulation” Section.
Cylinders stand for databases, rectangular blocks repre-
sent processing steps, parallelograms are input or output
data of other rectangles, black rectangles are manually

Input@
Drug/miRMNA fa > 0—

Output

Drug/miRNA Input Output
0 0 0
0 1 1
1 0

Fig. 6 Drug or miRNA modelling. Drug or miRNA interaction model and the corresponding truth table.lf drug or miRNA is applied (corresponding to
a logic value of 1) the output gene is inhibited. Otherwise, the output equals the input, not affecting the circuit functionality
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Fig. 7 Flowchart of the proposed model. From the KEGG pathway database, the user selects a cancer pathway and by digital circuit transformation
rules, the equivalent circuit of the selected pathway is obtained. By applying simulation rules, drugs or miRNAs are introduced in the circuit as well
as gene mutations, according to the explanation given in the “Simulation” section. Looking at the KEGG pathway, we identify pro-apoptotic and
proliferative genes. Therefore, the simulation ready circuit is ready. After applying the input test vector, simulation is running thus resulting in the

curated processing steps, “cloud” components represent
small subcharts (Fig. 8).

Starting from the selected pathway from KEGG path-
way database, the transformation rules described in the
“Logic circuit of the pathway” section are applied. This
way, we obtain the equivalent digital circuit, correspond-
ing to the selected pathway. Then, we can introduce drugs
or miRNAs in the circuit, as described in the “Simulation”
section.

More in detail (Fig. 8), as described in the “Materials”
section, drugs are retrieved from KEGG drug and Drug-
Bank databases. The user filters out the drug list based on
approved/investigational status of the drug itself. miRNAs
are retrieved from miRTarBase and miRTissue databases

as described in the “Simulation” section. miRNAs post-
filtering occurs to avoid circuit redundancy.

Simulation rules include the modelling of gene muta-
tions, drugs and miRNAs, according to the “Simulation”
section. Simulation ready digital circuit includes, there-
fore, the mutations, drugs or miRNAs. More in detail, in
Gene Databases subchart (Fig. 8) we can see how the gene
mutations are retrieved from ClinVar database and tumor
suppressors or oncogenes are identified by TSG and NCG
databases in order to identify stuck-at-1 and stuck-at-
0 faults. Info about about pro-apoptotic or prolifera-
tion features of the output genes are manually extracted
from KEGG pathway. As previously described in the
“Simulation” section, the input test vector is identified

<
Drug Bank

<
mirTarBase

Approved/ I\
Investigational
filter

To Simulation Rules

from UniProt), tumor suppressors and oncogenes are identified

"
miRTissue

miRNA-target
interactions
filter

To Simulation Rules

——
UniProt
——

Clinvar

To Input Test Vector Generator

To Simulation Rules

Fig. 8 A detail of the proposed flowchart. On the left “cloud” component drug databases are explained: Drugs are selected from KEGG drug and
DrugBank databases and then filtered by approved or investigational status. In the middle “cloud” component, miRNAs selection is explained:
miRNAs are selected from miRTarBase and miRTissue databases: post-filtering occurs as discussed in the “Simulation” section. In the right “cloud” the
gene databases are explained: mutations are retrieved from ClinVar and applied to simulation rules as well as information about tumor suppressive
or oncogenic role of mutated genes, retrieved from TSG and NCG databases; in order to generate the input test vector, growth factors (retrieved
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Table 2 NSCLC case study: Drugs, left column, and their
corresponding targets, right column, related to the proposed
case study

Drug Target
Osimertinib EGFR
Alectinib ALK
Dabrafenib BRAF
Trametinib BRAF,MEK
Everolimus AKT
BKM120 PI3K

and applied to the simulation ready digital circuit before
performing the simulation. Growth factors and tumor
suppressors are retrieved from databases, as described in
the “Materials” section and the user generates the input
test vector by fixing at 1 the tumor suppressors and at
0 the growth factors. After running the simulation, the
system outputs the simulation scores.

Results and discussion

In this Section, we present two different case studies in
order to prove that our method can be successfully applied
to different cancer disease pathways. Case study 1 deals
with non-small cell lung cancer (NSCLC); case study 2 is
about melanoma. For each scenario, firstly we introduce
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a brief description of the selected pathology, and then
we present the circuit design and the simulation setup;
finally, we report and discuss the obtained results for the
drug discovery simulation and the miRNA therapeutics
simulation, respectively.

Case study 1: non-small cell lung cancer

The non-small cell lung cancer represents the 80% of
lung cancers. Molecular mechanism governing lung can-
cer pathogenesis and progression has been the focus of
many research works during the last years and these
efforts aim at developing new approaches based on tar-
geted therapies. This is in accordance with the progressive
discovery of different mutations in several genes involved
in different biological processes regulating lung cancer
development and progression. As an example, epidermal
growth factor receptor (EGFR) [29], anaplastyc lymphoma
kinase (ALK) [30], and Kirsten rat sarcoma viral onco-
gene homolog (K-RAS) [31] mutations, are considered
prognostic and predictive biomarkers and targets for per-
sonalized drugs [32, 33]. In this context, the use of miRNA
therapeutics as “next generation targeted drugs” seems
to be promising [34]. Indeed, some in vitro and in vivo
preclinical studies began to investigate the use of specific
miRNAs in assisting various chemotherapeutic strate-
gies of intervention in NSCLC [35]. We decided to test
our logic circuit on this cancer type because different
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pathogenic mutations are reported from the literature in
different genes belonging to different cellular pathways,
and there is a good knowledge of the cellular steps govern-
ing lung cancer pathogenesis and progression. As example
MAPK signalling pathway is a well known signalling cas-
cade in which different genes can be mutated in NSCLC.
11 different gene mutations were inserted in our circuit
(Table 1). For drug discovery analysis, 6 different drugs
(Table 2) were selected.

NSCLC circuit design and simulation

NCLSC KEGG pathway (Fig. 9) is the starting point in
order to build its related digital circuit. Inputs are three
growth factors, inducing proliferation, EGE, TGA and
EML4-ALK and two tumor suppressors, p16 and PTEN.
There are seven key genes as outputs: four of them induce
proliferation (i.e. CCND1, E2F, MST1, STAT3/5) and the
other three are pro-apoptosis genes (i.e. BAD, CASP9 and
FORKHEAD, FORKHEAD is also known as FOXO3).
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Fig. 11 Non small cell lung cancer pathway circuit with mutations. Mutations are modelled by multiplexer logic gates. EGFR mutated model is

included in the red box
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Closely following the transformation rules (Fig. 3), the
equivalent circuit of the whole KEGG non-small cell lung
cancer pathway is obtained (Fig. 10, red and blue boxes
identify proliferative and pro-apoptosis genes, respec-
tively). The logic circuits implementation and simulation
are carried out by Logisim software [36].

The logic circuit is analysed by observing the output
vector under each mutation and a specific input test vec-
tor. In this case, the test vector is made up of five bits that
represent the repression of three growth factors and the
activation of two tumor suppressors, [EGETGA,EML4-
ALK, p16,PTEN], where growth factors are set to 0 and
tumor suppressors are set to 1. The test vector is then
equal to [00011]. The output vector is [CCND1, E2F,
MST1, STAT3/5, BAD, CASP9, FORKHEAD]. The test
vector generates a non-proliferative output with apopto-
sis, which is equal to [0000111], corresponding to a score
S=-3. Correctly, if no growth factor is present and tumor
suppressors are active, the output is non proliferative with
apoptosis.

Because of mutations, the circuit is altered in its func-
tionality, thus eventually leading to proliferative out-
put or inhibition of pro-apoptosis genes even with no
growth factor and active tumor suppressors. The input
test sequence [00011] allows testing all faults caused by
mutations.

The logic circuit is modified accounting for eleven
mutations (Table 1), introducing the multiplexer gates
(Fig. 11).

For this case study, the score or ranking is calculated
by summing the first four bits (proliferative genes) and
subtracting the last three bits (pro-apoptosis genes). The
least score corresponds to the least dangerous output.
For example, the non proliferative output [0000111] is
assigned to a score of S=-3, corresponding to a non
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proliferative output with apoptosis. The best score is
consequently S=-3. The most proliferative output corre-
sponds to [1111000], associated to a score of S=4, meaning
that proliferation without apoptosis is obtained.

NSCLC drug discovery simulation results
For the case study, drugs of interest are obtained from
KEGG drugs and DrugBank databases (Table 2).

The drug we analyse are: Osimertinib which targets
EGER gene, Alectinib which targets ALK gene, Dabrafenib
which targets BRAF gene, Trametinib which targets BRAF
and MEK genes , Everolimus which targets AKT gene
and BKM120 which targets PI3K gene. Then, the drug
vector is [Osimertinib, Alectinib, Dabrafenib, Trametinib,
Everolimus, BKM120].

In the corresponding logic circuit with drugs (Fig. 12),
the part corresponding to the EGFR mutated cancer is
included in the red box, corresponding to the first row of
Table 1. The drug action is applied to the output of the
multiplexer stage, that represents the mutation. In fact,
Osimertinib targets EGFR. Consequently, if Osimertinib
is active, it inhibits the EGFR gene. Whatever the out-
put of the multiplexer is, i.e. gene mutated or not, the
drug inhibits the EGFR gene. If Osimertinib is not active,
the downstream gates are connected to the multiplexer
output. Then, if the control signal is zero, the down-
stream gates are connected to the EGFR gene, otherwise
the downstream gates are connected to the logic stuck-at
value of 1.

Given a fixed input representing the test vector, the cir-
cuit is simulated in order to find the best drug for each
mutation and the best combination of two drugs for all
involved mutations. Combinations with no more than two
drugs are accounted for, in order to avoid considerable
side-effects.
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Table 3 NSCLC case study. Effects of drugs, in terms of the score defined in “Simulation” Section, on gene mutations

Drugs EGFR ERBB2 EML4-ALK  PTEN KRAS BRAF PIK3CA  AKT MEK EML4-ALK+p16  Ranking
Score obtained by a single drug
Everolimus 2—-1 1—-2 30 0—-3 2—-1 2—-2 1—-2 0—-3 2—-2 4 —1 -15
BKM120 2—-1 1T—-2 3—-0 0—0 2—-1 2—-2 1—-3 0—0 2—-2 4 =1 -10
Alectinib 2—2 1T—=1 3—-3 0—0 2—2 2—-2 1T—1 0—0 2—-2 4—-3 -4
Trametinib 2—1 1—=0 32 0—0 2—1 2—-3 1—-0 0—20 22— -3 4—2 0
Dabrafenib 2—1 1—0 32 0—0 2—1 2—-3 1—0 0—0 2—-2 42 1
Osimertinib 2 — -3 T—1 33 0—0 2—2 2—>-2 11 0—0 2—-2 44 4
Score obtained by the combination of two drugs
Everolimus 2—-1 1—-3 3—-1 0—-3 2—-2 2—-3 1—-3 0—-3 22— -3 4 — -1 -23

We computed the effect of each drug on each mutation
(Table 3). For each mutation on the rows and for each drug
on the columns, the scores of the faulted output without
and with drug are shown, separated by an arrow. The best
drug generates the most non proliferative output (lowest
ranking) for the selected mutation. As an example, the
best drug for EGFR mutated non small cell lung cancer is
Osimertinib. Among selected drugs, Everolimus is one of
the most effective drugs because it acts on all mutations
except two, with two rectified faults for which the output
is equal to the fault-free output.

Combinations of two drugs are tested. The best com-
bination consists of Everolimus/Trametinib (Table 4).
For each mutation (first-column), faulted output with-
out drugs (second column), faulted output under
Everolimus/Trametinib (third column) and faulted with
and without drug ranking, separated by an arrow,(fourth
column) are shown. The analysed combination is the
best among tested. Everolimus/Trametinib acts on each
mutation and six absolutely non proliferative outputs are
achieved (minimum ranking S=-3). Six faults are com-
pletely rectified to fault-free output. In five mutations
(EGFR, EML4-ALK, KRAS,PI3K,EML4-ALK+p16), the
action of combined Everolimus/Trametinib is stronger
than single drugs Everolimus or Trametinib. These
theoretical results are confirmed in literature, where
that combination is tested on 67 patients in phase IB
[37]. The study is reported on clinicaltrials.gov. Yet,
the study does not proceed to phase II since ade-
quate dose providing an acceptable tolerability and drug
exposure was not found. However, the combination
has been tested, thus validating the proposed digital
approach.

NSCLC miRNA therapeutics simulation results

miRNAs are expressed in normal tissues. In case of
cancer, some miRNAs are found to be over- or under-
expressed. miRNA targets which are involved in the

biological pathway of the specific cancer disease can be
thus over- or under-expressed, leading to proliferation or
anti-apoptosis.

As introduced in the “Materials” subsection, we retrieve
tissue specific validated miRNA-target interactions by
miRTissue tool. Lung adenocarcinoma is selected as tissue
specific. Degradation is selected as interaction type and all
genes involved in the non small cell lung cancer are intro-
duced in the search box. All involved miRNAs are then
filtered by a p-value less than 0.05 and by targets. As a
result, we obtained 106 miRNA-target interactions.

Among those interactions, we select the corre-
sponding miRNAs addressing multiple targets as well
as miRNAs targeting a single gene not covered by
other selected miRNAs. As a result, 38 miRNAs are
selected.

Some miRNAs share exactly the same targets. Since
from a circuit perspective miRNAs sharing the same tar-

Table 4 A detailed view of effects of Everolimus/Trametinib on
gene mutations, highlighting the circuit output without (second
column) and with drug (third column), and the corresponding
change in the score

Mutation Faulted output Faulted output Score change
without drug with drug
EGFR [1010000] [0010111] 2—-1
ERBB2 [1000000] [0000111] 1—-3
EML4-ALK [1011000] [0011111] 3—-1
PTEN [0000000] [0000111] 0—-3
KRAS [1010000] [0010111] 2—-2
BRAF [1000111] [0000111] -2—-3
PIK3CA [1000000] [0000111] 1—-3
AKT [0000000] [0000111] 0—-3
MEK [1000111] [0000111] -2—-3
EML4-ALK+p16 [1111000] [0011111] 4—-1
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Table 5 NSCLC case study. miRNAs and their targets selected for
the proposed case study

mMiRNA Target

let-7¢ CCNDT1, KRAS
let-7g AKT,CCND1
mir-130b RASSF1,STAT3
mir-142 CCND1,FOXO3, ERK
mir-15a AKT, CCND1
mir-17 PKC, STAT3
mir-18a CCND1,TGFA
mir-191 BRAF
mir-193b CCND1, PKC
mir-27a SOS

mir-27b PDK1

mir-29a AKT,CDK4
mir-30e KRAS, TGA
mir-330 BAD

mir-335 FOXO3,JAK3
mir-34a CDK6,MEK
mir-375 PI3K,PKC
mir-4778 PKC, STAT/3
mir-4789 CCNDT1, STAT5
mir-497 CDK4, GRB2

gets have the same effect on the circuit functionality,
we consider a representative miRNA for each group to
avoid circuit redundancy. The representative is chosen
as the most common in the literature in order to per-
form a comparison with literature results. As a result
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of the post-filtering process, 20 miRNAs are obtained
(Table 5).

The circuit is modified to introduce miRNAs replacing
drugs (Fig. 13). The circuit is analysed to identify the best
miRNA for each mutation and the best combination of
two miRNAs for all involved mutations.

Simulation results are shown (Table 6). In the last col-
umn, a cumulative ranking is introduced. The cumulative
ranking is obtained by summing the ranking on each row.
Each miRNA corresponds to a cumulative ranking. The
minimum cumulative ranking corresponds to the most
effective miRNA. The best combination is let-7c/let-7g
corresponding to a cumulative ranking of -27. The best
single miRNA is let-7g corresponding to a cumulative
ranking of -24. As an example, miR-330 and miR-335
worsen the output of two mutations, thus they should be
treated with antimiR.

Results are validated by the literature, where let-7 fam-
ily is recognized as a potential therapeutic for murine lung
cancer. It was analysed by injecting miRNAs by lentivi-
ral vectors [38—44]. let-7 family is particularly efficient
for KRAS mutated murine lung cancer in terms of reduc-
tion of the tumor formation [39]. In lung squamous cell
carcinomas (subtype of the non-small cell lung cancer),
low levels of let-7 are founded. let-7 plays a key role in
tumor progression and formation, mainly through KRAS.
In addition, The ectopic expression of let-7g in KRAS
G12D mutated murine lung cancer induces both cell cycle
arrest and cell death [40]. Inducing let-7g by lentiviral
vectors, significant growth reduction of both human and
murine non-small cell lung cancer is observed. let-7g
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Table 6 NSCLC case study. Network scores obtained considering miRNAs acting on mutated gene targets. The table is organized
considering the score obtained by a single miRNA, by a pair of miRNAs and by three miRNA, respectively. The last column, called
ranking, represents the sum of the scores of a miRNA, or combination of miRNAs, corresponding to each gene target

mMiRNA EGFR ERBB2  EML4-ALK  PTEN KRAS BRAF PIK3CA  AKT MEK EML4-ALK+p16  Ranking
Score obtained by a single miRNA
let-79 2—-2 1—=-3 3—=- 0—-3 252 2—-3 1-3 03 2—=-3 4—-- -24
mir-15a 2—-2 1—=-3 3—-] 0—-3 2—--2 -2—--3 153 0->-3 -2—-3 4—-] -24
mir-29a 2—--2 1—--2 3-0 0—-3 2—--1 2--2 1--2 0->-3 -2--2 4-0 -13
let-7¢c 2—--3 1-0 3-1 0—-0 2—1 2—--3 1-0 00 -2—-3 41 -6
mir-375 2—--1 1—--3 30 0—-0 2—-1 2—>-2 1-1 0—-0 2—-2 41 4
mir-27a 2—-3 1—=1 3—3 0—-0 22 -2—-2 1-—1 0—-0 -2—=-2 4-—4 -3
mir-4789 2—1 1—0 3—1 0—0 2—1 2—-3 1—=0 0—0 2—=-3 41 -2
mir-330 2—2 1=1 3—3 0—0 2—2 2—=-1 1=1 0—0 2—-1 4—-4 -2
mir-497 2—>-3 11 3—=3 0—-0 2—=2 -2-=-2 11 0—-0 2—=-2 43 0
mir-18a 2—1 1—-0 3—2 0—0 2—1 2—--3 1-0 0—-0 -2—-3 42 0
mir-193b 2—1 1—-0 32 0—-0 2—1 2—--3 1-0 00 -2—-3 4->2 0
mir-34a 2—1 1—-0 32 0—-0 2—1 2—>-3 11 0—-0 2—-3 42 0
mir-27b 2—>2 11 33 0—-0 22 -2—>-2 1-1 0—-0 -2—>-2 44 0
mir-142 2—1 1—-0 3->2 0—-0 2—1 2—>-2 1-0 050 -2—>-2 42 2
mir-30e 2—-3 1-=1 3—>2 0—0 2—2 2—=-2 1-=1 0—0 2—-2 4-=3 2
mir-191 2—1 1—-0 3—=2 0—-0 2—=1 2—--3 1-0 00 -2—-2 42 3
mir-335 2—2 1T—=1 32 0—-0 2—=2 -2-=-1 1-=1 0—-0 -2—=-1 4->3 3
mir-17 2—2 1T—1 3—2 0—0 2—2 2—>-2 1-=1 0—-0 -2—-2 4-3 5
mir-130b 2—1 1T—1 31 0—-0 2—1 2—>-2 11 0—-0 2—-2 42 5
mir-4778 2—>2 11 32 0—-0 22 -2—>-2 1-1 0—-0 -2—-2 4-3 5
Score obtained by the combination of two miRNAs
let-7¢/let-7g 2—--3 153 3->-2 0—-3 252 2—--3 153 0->-3 253 4->-2 -27
let-7g/mir-17 2—>-2 1—--3 3->-2 0—-3 2-»-2 2—--3 1--3 0->-3 2—->-3 4->-2 -26
let-7g/mir-20a 2—-2 1—=-3 3—=- 0—-3 2—--2 2—-3 153 03 -2—=-3 4—=-] -24
let-7g/miR-335 2—=-1 1—--2 3-- 0—--2 2—--1 2—--2 152 0->-2 2—=-2 4-- -16
mir-20a/mir-335 2—=2 11 32 0—-0 2—2 2--1 1->1 0—-0 -2—-1 4-3 3
mir-335/mir-17 2—>2 11 32 0—-0 2—2 -2—--1 1-1 0—-0 -2—-1 4-3 3
mir-20a/mir-17 2—>2 11 32 0—-0 2—-2 -2--2 1-1 0—-0 -2—-2 4-3 5
Score obtained by the combination of three miRNAs
let-7g/mir-17/mir-20a 2—-2 1—-3 3—-2 0—-3 2—--2 2—-3 153 03 2—=-3 4-=-2 -26

mediated tumor suppression is more efficient in KRAS
mutated tumors than with other mutations [40]. All these
results confirm that miRNA mimics of the let-7 family
is a potential treatment for the NSCLC and these results
are confirmed by the circuit simulation. Furthermore, the
proposed analysis approach highlights the efficiency of
let-7 family mimics even for the other mutated genes.
Our in silico experiments allow to highlight more specific
results than the existing in vitro or in vivo experiments.
While in the literature let-7 miRNA family is considered
as a whole, the proposed circuit simulation identifies two

specific miRNAs of the family; let-7c and let-7g together
act as tumor suppressors in several mutated types of
NSCLC, not only in KRAS mutated ones.

Case study 2: melanoma

Among cancer pathways in KEGG, we selected the
melanoma disease as the second case study. Malig-
nant melanoma is a highly aggressive tumor with high
metastatic potential [45]. Although there are still many
weaknesses in the comprehension of its pathogenesis,
genetic studies have brought about many improvements



Boscaino et al. BMC Bioinformatics 2019, 20(Suppl 9):344

Page 16 of 22

e
I — — —® Proliferation
DNA
———»0 ———» Survival
DNA
p33

Eeiibl] *,
DN&
s

O——® G1/S progression

-
danag— P 52 *0-® [Bax | [(Bak

DN&

Uncontrolled proliferation
Increased survi

= FOLK Genoraic i

MITF Tareet senes — —p  RoEsistance to cheraotherapy
DNA gl Swrvival

MELANOMA
Noral reelanocyte Melanocyte —
| MAPK signaling
: BRAF . pathway
! Raf |—»[ MEK |—»[ERK | ————————
! 7 7 -
| [6F ] RTK |-—»{ Ras
Benign nevus O—®[PKBlbk} ————————————
| 2
: ! +p - Survival
! _ PI3K-ikt
: signaling pathwray
|
|
: Genetic alterations
* : Oncogenes : BRAF, NRAS, CDK4
Dysplastic nevus MITF
: Turmor suppressors :  PTEN, INK4a/ARF, p53
¥
-gzlowth phase ~ Dovnuegulation
o
| S .
______ Disruptionof the  — — —
: [Ecap I‘( > kemtimcyle-n}v’zhmcy‘te adhesion # fuvesion
53 signali
|
Vertical-growth phase
|
' =
Ietastatic melanoma
05218 114513
(c) Kanehisa Laboratories
Fig. 14 Melanoma KEGG pathway. The figure shows all KEGG relationships of activation, inhibition and combined activation involved in the
melanoma pathway

in the last years. Indeed, the best oncogenes studied
linked to this pathology are NRAS and BRAF muta-
tions, both as prognostic factors and targeted therapeu-
tic agents [46, 47]. Both NRAS and BRAF genes act
via the mitogen-activated protein kinase (MAPK) sig-
nalling cascade, leading to the regulation of different
cellular processes as proliferation, cell cycle progression,
differentiation and apoptosis, and involve different other

relevant proteins as cyclin D1, cyclin E, p21, p16, CDK4/6
(cyclin-dependent kinase 4/6) and others [48]. Dysreg-
ulation of any of these points of the pathway may also
play a role in some cases of malignant melanomas [49].
PTEN is another relevant gene whose inactivating muta-
tion can be associated with malignant phenotype in
30% of melanomas. Moreover, recent studies evidenced
potential cooperation between PTEN and BRAF gene;

Table 7 Melanoma case study. Gene mutations retrieved from ClinVar. Gene name, accession number, mutation, clinical significance

and literature references are reported, respectively

Gene Accession Mutation Clinical significance Ref

BRAF NM_004333.4 €.1799T>G (p.Val600Gly) Pathogenic ([747)
RAF(ARAF) NM_001654.4 c.640T>G (p.Ser214Ala) Likely pathogenic ([750)
NRAS NM_002524 .4 €.182_183delAAINsGG (p.GIn61Arg) Pathogenic ([7e1)
RAS (KRAS) NM_004985 .4 ¢.35TA>C (p.Lys117Asn) Pathogenic/Likely pathogenic ([751)
AKT1 NM_005163.2 €235C>A (p.GIn79Lys) Likely pathogenic (771
PI3K NM_006218.3 C.3140A>T (p.His1047Leu) Pathogenic ([78)
MEK/MAP2K1 NM_002755.3 c.157T>C (p.Phe53Leu) Pathogenic ([791)
CDK/CDKN2A NM_000077 .4 ¢.148C>T (p.GIn50Ter) Pathogenic (801
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Fig. 15 Melanoma cancer pathway digital circuit. The figure shows the equivalent digital circuit of the melanoma cancer pathway which has been
retrieved from the KEGG pathway database. In red boxes proliferative output genes and in the blue box the pro-apoptotic output gene are included

for instance, authors associate the simultaneous pres-
ence of inactivating mutations in the former and acti-
vating mutations in the latter with the metastatic pro-
cesses in melanoma mouse models [50]. The melanoma
pathway retrieved from the KEGG database (Fig. 14)
has two inputs: a growth factor (GF) and an oncogene
(NRAS). Therefore the test vector is [GENRAS]=[0,0].
The output vector consists of three proliferative genes
(E2F,CDK4/6,CCND1) and a pro-apoptotic gene (BAD).
The output vector is [E2F, CDK4/6, CCND1, BAD]. By
ClinVar, we selected eight mutations, filtering all genes
in the targeted pathway by “melanoma” condition field
(Table 7).

Melanoma circuit design and simulation
We built the equivalent digital circuit for the melanoma
case study (Fig. 15), obtained by following the given

transformation rules (Fig. 3) applied to the melanoma
pathway from KEGG database. Starting from a specific
input test vector, we analyse the circuit by observing the
output vector for each mutation. In this case study, the
input vector consists of two bits [GF, NRAS], representing
the inhibition of one growth factor and an oncogene. We
define the fixed input test vector by forcing to 0 the growth
factor and the oncogene. The input test vector is equal to
[00]. The output vector is [E2F, CDK4/6, CCND1, BAD].
The input test vector generates a non-proliferative output
with apoptosis, corresponding to the output vector [0001].
The associated score is equal to S=-1. Correctly, if no
growth factor is active and the input oncogene is inhibited,
the output is non-proliferative with apoptosis. Because of
mutations, the circuit is altered in its functionality thus
leading to proliferative output with eventually inhibited
apoptosis.

H
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MD!
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Fig. 16 Melanoma pathway digital circuit with mutations and drugs. The circuit includes gene mutations modelled by multiplexers and the drugs
modelled by a combination of NOT and AND gates, as discussed in the “Simulation” section
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Table 8 Melanoma case study: Drugs, left column, and their
corresponding targets, right column, related to the proposed
case study

Drug Target
Omacetaxine CCND1
Ribociclib CDK4/6
Dabrafenib BRAF, RAF
Trametinib BRAF,MEK
Everolimus AKT
BKM120 PI3K

Melanoma drug discovery simulation results

To identify the “pathogenic degree” of each mutation, we
ran a simulation of the melanoma pathway logic circuit
for each mutated gene. By applying mutation-target drugs
(Fig. 16), simulation results highlight the best drug or
drug combination for each mutation. By analysing sim-
ulation results, we identify the best drugs combination
for the melanoma case study. We identified the set of
drugs by selecting in the KEGG database suggested drugs
that are known as “approved” in the DrugBank database.
We take into account six drugs (Table 8): Trametinib tar-
gets MEK and BRAF, Dabrafenib targets RAF and BRAF,
BKM12o targets PI3K gene, Omacetaxine targets CCND1
and Ribociclib targets CDK4/6. The drug vector is [Tram-
etinib, Dabrafenib, BKM120, Everolimus, Omacetaxine,
Ribociclib]. Given the fixed input test vector, simulations
are carried out under each drug and each mutation to
obtain the best drug combination for the selected dis-
ease. As for the NSCLC, combinations with no more than
two drugs are considered to avoid significant side-effects.
Table 9 shows results for drug discovery. Among selected
drugs, Everolimus is the most effective being able to rec-
tify almost all mutations. The best combination of two
drugs is Everolimus/Ribociclib, achieving a cumulative
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score of S=-8 which is the maximum allowable value for
the selected case study.

Melanoma miRNA therapeutics simulation results

Also in melanoma disease, the role of miRNA is well-
known [51]; for instance, authors investigated their
potential use as nano molecules administered to can-
cer patients [52]. According to these studies, we tested
miRNA therapeutics also in the melanoma case study.
For miRNA therapeutics, we selected eleven miRNAs,
filtering out results of miRNA-target validated inter-
actions retrieved from miRTarBase. We obtained 637
miRNAs. In this case study, filtering results by miR-
Tissue were not possible because the tissue filter for
melanoma is not available. Among those interactions,
we selected miRNAs addressing multiple targets. Some
miRNAs share the same target, and therefore those miR-
NAs have the same effect on the pathway circuit. To
avoid circuit redundancy, we selected a representative
miRNA for each group. As a result of the post-filtering
stage, we picked eleven miRNAs (Table 10). The anal-
ysis of the logic circuit with miRNA-target interactions
(Fig. 17) reveals the best miRNA for each mutation.
Table 11 lists results with miRNA therapeutics. It clearly
shows several miRNAs give the best cumulative score
of $=-8: let-7b, mir-155, mir-497, mir-16, mir-124, mir-
302a. Recently, authors highlighted some of them for
their role in cell cycle regulation, apoptosis, and can-
cer therapy [53]. In the following, we further discuss
each of the miRNAs producing the best score. let-7b
is often down-regulated in melanomas compared with
healthy controls and it could also be involved in the
transition from nevi to primary melanomas through the
targeting of key cell cycle regulators [54]. An interest-
ing study also shows that let-7 was down-regulated in
vemurafenib (BRAF-V600 inhibitor) resistant melanoma
cells. Introducing miR-7 in this cell, through miR-7 mim-
ics, re-establishing their expression would reverse the

Table 9 Melanoma case study. Effects of drugs, in terms of the score defined in “Simulation” Section, on gene mutations

Drugs BRAF RAF NRAS RAS AKT PI3K MEK CDK4/6 Ranking
Score obtained by a single drug
Everolimus -1 = -1 1= 0— -1 0—-1 0—-1 0— -1 1= 0—0 -7
BKM120 1= -1 1= -1 0— -1 0— -1 0—0 0—-1 1= -1 0—0 -6
Ribociclib -1 — -1 1= -1 0—0 0—0 0—0 0—0 1= -1 0— -1 -4
Trametinib -1 — -1 -1 = -1 0—0 0—0 0—0 0—0 -1 = -1 0—-0 -3
Dabrafenib -1 = -1 -1 = -1 0—0 0—0 0—0 0—0 -1 = -1 0—0 -3
Omacetaxine 1= -1 -1 — -1 0—0 0—0 0—0 0—0 -1 — -1 0—0 -3
Score obtained by the combination of two drugs
Everolimus/Ribociclib -1 = -1 -1 — -1 0— -1 0— -1 0— -1 0— -1 -1 = -1 0— -1 -8
Everolimus/BKM120 1= -1 1= -1 0— -1 0— -1 0— -1 0— -1 1= -1 0—20 -7
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Table 10 Melanoma case study. miRNAs and their targets
selected for the proposed case study

miRNA Target

mir-124 CDK,AKT,NRAS,RAF PI3K
mir-145 CDK,NRAS,BRAF
mir-155 CDK,KRAS,AKT,PI3K
mir-497 CDK,AKT,MEK,RAF,PI3K
let-7A CDKKRAS,NRAS,PI3K
mir-16 CDKKRAS,AKT,RAF,PI3K
let-7b CDK,AKT,NRAS,RAS,MEK
mir-143 KRAS,AKT,PI3K,BRAF
mir-429 CDKKRAS,RAF

mir-7 KRAS,AKT,RAF,PI3K,MEK
mir-302a CDK,AKT

drug resistance [53, 55]. Although miR-155 is described
as an oncogenic miRNA in different cancer types, other
studies support its role as pro-apoptotic in melanoma
cells, suggesting a potential use as a therapeutic agent
in decreasing tumor aggressiveness [56]. As regards mir-
497-5p, literature provides a fascinating study of increased
levels of this miRNA during treatment correlates with
prolonged progression-free survival in 26 patients with
metastatic cutaneous malignant melanoma treated with
MAPK inhibitors [57]. Moreover, it has been shown
to reduce cancer phenotype in the melanoma cell line
(A375) [58]. Indeed a genome-scale lentiviral human
miRNA expression library was used in the study and
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other miRNAs showed the same power to limit can-
cer cell proliferation, as miR-16, that also reported the
best score in our method. Also, miR-124 and miR-302a
are promising biomarkers in melanoma as their func-
tion is to inhibit proliferation and migration of cancer
cell lines in melanoma [59, 60]. In particular, this second
case study aims to offer a selection of miRNAs that are
especially promising candidates for application in cancer
therapy.

Conclusions
In this paper a novel approach for in silico study of the
effects of drugs and the development of miRNA therapeu-
tics is proposed. The proposed method is based on a logic
circuit representation of a cancer pathway and was tested
on NSCLC case study. For this disease a suitable pathway
was selected and then transformed into a logic circuit that
allows the biologists and clinicians to simulate the effects
of drugs and miRNAs on gene mutations. We found con-
firmation of the positive effects of drugs in contrasting
cells non-apoptosis and proliferation, and we compared
these effects with the effects of some miRNAs and miRNA
families. We evaluated these effects by using a cumulative
score based on the combination of these two mechanisms.
We can conclude that this pathway circuit method can
help to guide in vitro and in vivo experiments towards
the most effective therapeutic miRNAs/drugs in human
diseases, starting from the corresponding pathway. We
are actually investigating a method to automatically trans-
form the signalling pathway to the corresponding digital
circuit.

ART

DBAD

NRAS

| Mux]

nras_cTR[a]

mir-124 faf——>0 Rrefe

B
mir-1.45 fa >0 _qm[a]
mir-155 fa——>0

[
g CTR

JEHY

T 3
mir-497 fa——>>0

let-7afpa}——>0

CDK4_CTR
L

mir-16 [ f——i>0
let-7b]

=]

mir-143 [ ——>0
mir-20 faf——>0

VVVVVVVYV

mir-7 pr——>0

mir-302a pa f——_>>0-

vV

MDM2 P53

the miRNA-target interactions

P21

MoM2 [ > o>
Fig. 17 Melanoma pathway digital circuit with miRNA. Mutations are modelled by multiplexer and a combination of NOT and AND gates models




Boscaino et al. BMC Bioinformatics 2019, 20(Suppl 9):344

Table 11 Melanoma case study. Effects of miRNAs, in terms of the score defined in “Simulation” Section, on gene mutations
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mMiRNA BRAF RAF NRAS RAS AKT PI3K MEK CDK4/6 Ranking
Score obtained by a single miRNA

mir-124 -1— -1 1= -1 0— -1 0— -1 0—-1 0— -1 -1 — -1 0—-1 -8
mir-155 1= -1 1= -1 0— -1 0—-1 0—-1 0— -1 1= -1 0—-1 -8
mir-497 -1 =1 1= 0— -1 0—-1 0—-1 0— -1 -1 = -1 0—-1 -8
mir-16 1= -1 1= -1 0— -1 0— -1 0— -1 0— -1 1= -1 0— -1 -8
let-7b -1 =1 1= -1 0—-1 0— -1 0—-1 0—-1 -1 =1 0—-1 -8
mir-302a -1 = -1 -1—-1 0—-1 0— -1 0—-1 0—-1 -1 = -1 0—-1 -8
let-7a -1 —-1 -1—-1 0—-1 0— -1 0—0 0—-1 -1 —-1 0—-1 -7
mir-143 -1 — -1 1= -1 0—0 0— -1 0—-1 0— -1 1= -1 0—0 -7
mir-7 -1— -1 1= -1 0— -1 0— -1 0—-1 0— -1 -1 — -1 0—0 -7
mir-145 -1 = -1 1= 0—-1 0—0 0—0 0—0 -1 =1 0— -1 -5
mir-429 -1 = -1 1= 0— -1 0—-1 0—0 0—0 -1 = -1 0—-1 -5
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