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Abstract

Background: Automatically understanding chemical-disease relations (CDRs) is crucial in various areas of
biomedical research and health care. Supervised machine learning provides a feasible solution to automatically
extract relations between biomedical entities from scientific literature, its success, however, heavily depends on
large-scale biomedical corpora manually annotated with intensive labor and tremendous investment.

Results: We present an attention-based distant supervision paradigm for the BioCreative-V CDR extraction task.
Training examples at both intra- and inter-sentence levels are generated automatically from the Comparative
Toxicogenomics Database (CTD) without any human intervention. An attention-based neural network and a stacked
auto-encoder network are applied respectively to induce learning models and extract relations at both levels. After
merging the results of both levels, the document-level CDRs can be finally extracted. It achieves the precision/
recall/F1-score of 60.3%/73.8%/66.4%, outperforming the state-of-the-art supervised learning systems without using
any annotated corpus.

Conclusion: Our experiments demonstrate that distant supervision is promising for extracting chemical disease
relations from biomedical literature, and capturing both local and global attention features simultaneously is
effective in attention-based distantly supervised learning.
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Background
Chemical/Drug discovery is a complex and onerous
process which is often accompanied by undesired side
effects or toxicity [1]. To reduce the risk and speed up
chemical development, automatically understanding in-
teractions between chemicals and diseases has received
considerable interest in various areas of biomedical re-
search [2–4]. Such efforts are important not only for im-
proving chemical safety but also for informing potential
relationships between chemicals and pathologies [5]. Al-
though many attempts [6, 7] have been made to manu-
ally curate amounts of chemical-disease relations
(CDRs), this curation is still inefficient and can hardly
keep up to date.

For this purpose, the BioCreative-V community for the
first time proposed the challenging task of automatically
extracting CDRs from biomedical literature [8, 9], which
was intended to identify chemical-induced disease (CID)
relations from PubMed articles. Different from previous
well-known biomedical relation extraction tasks, such as
protein-protein interaction [10, 11] and disease-gene as-
sociation [12, 13], the BioCreative-V task required the
output of the extracted document-level relations with
entities normalized by Medical Subject Headings
(MeSH) [14] identifiers. In other words, participants
were asked to extract such a list in terms of <Chemical
ID, Disease ID> pairs from the entire document. For in-
stance, Fig. 1 shows the title and abstract of the docu-
ment (PMID: 2375138) with two target CID relations,
i.e. <D008874, D006323 > and < D008874, D012140>.
The colored texts are chemicals and diseases with the
corresponding subscripts of their MeSH identifiers, and
same entities are represented in the same color.
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Since relation extraction task can be cast as a classifi-
cation problem, many supervised machine learning
methods [15–23] have been investigated to extract CID
relations. However, since supervised learning methods
usually require a set of instance-level training data to
achieve high performance, CID relations annotated at
document level in the CDR corpus are not directly ap-
plicable and have to be transformed to relation instances
for training classifiers. Erroneous relation instances are
inevitable during this transformation [18], leading to flat
F1-score around 60% without knowledge base features,
in large part due to the small scale of the CDR corpus
with only 1000 abstracts in the training and develop-
ment sets totally.
Distant supervision (DS) provides a promising solution

to the scarcity of the training corpora. It automatically
creates training instances by heuristically aligning facts
in existing knowledge bases to free texts. Mintz et al.
[24] assumes that if two entities have a relationship in a
known knowledge base, then all sentences that contain
this pair of entities will express the relationship. Since its
emergence, distant supervision has been widely adopted
to information extraction in news domain [24] as well as
in biomedical text mining [25–28]. However, the original
assumption by Mintz et al. [24] does not always hold
and false-positive instances may be generated during
automatic instance construction procedure. The critical
issue in distant supervision is, therefore, how to filter
out these incorrect instances. Many methods have been
proposed to tackle this problem [30–33] and show
promising results in their respective settings, but few
[26–28] have demonstrated superiority in performance
over supervised ones on the benchmark corpora in the
biomedical domain.
We present a distant supervision paradigm for the

document-level CDR task and propose a series of
ranking-based constraints in order to filtering out the
noise of training instances generated by distant supervi-
sion. Specifically, intra- and inter-sentence training in-
stances are first projected respectively from the CTD
database. Then, a novel neural network integrated with

an attention mechanism is applied to address the
intra-sentence level relation extraction. The attention
mechanism automatically allocates different weights to
different instances, thus is able to selectively focus on
relevant instances other than irrelevant ones. Meanwhile,
a stacked auto-encoder neural network is used to extract
the relations at inter-sentence level. Its encoder and de-
coder facilitate higher level representations of relations
across sentences. Finally, the results at both levels are
merged to obtain the CID relations between entities at
document level. The experimental results indicate that
our approach exhibits superior performance compared
with supervised learning methods. We believe our ap-
proach is robust and can be used conveniently for other
relation extraction tasks with less efforts needed for do-
main adaptation.

Related works
Thanks to the availability of the BioCreative-V CDR
corpus, researchers have employed various supervised
machine learning methods to extract the CID rela-
tions, including conventional machine learning and
deep learning.
Early studies only tackled the CID relation extraction

at intra-sentence level using statistical models, such as
the logistic regression model by Jiang et al. [15] and the
Support Vector Machine (SVM) by Zhou et al. [16]. Lex-
ical and syntactic features were used in their models.
Later, the CID relation extraction at inter-sentence level
is also considered. An integrated model combining two
maximum entropy classifiers at intra- and inter-sentence
levels respectively, is proposed by Gu et al. [17], where
various linguistic features are leveraged. In addition to lin-
guistic features, external knowledge resources are also
exploited to improve performance. During the BioCreative-V
official online evaluation, Xu et al. [19] achieved the best per-
formance with two SVM classifiers at sentence and docu-
ment levels, respectively. Rich knowledge-based features
were fed into these two classifiers. Similar to Xu et al. [19],
Pons et al. [20] and Peng et al. [21] also applied SVM models
with knowledge features including statistical, linguistic, and

Fig. 1 The title and abstract of the sample document (PMID: 2375138)
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various domain knowledge features for the CID relations.
Additionally, a large amount of external training data was
exploited in Peng et al. [21] as well.
Recently deep learning methods have been investigated

to extract CID relations. Zhou et al. [22] used a Long
Short-Term Memory (LSTM) network model together
with an SVM model to extract the CID relations. The
LSTM model was designed to abstract semantic repre-
sentation in long range while the SVM model was meant
to grasp the syntactic features. Gu et al. [23] proposed a
Convolutional Neural Network (CNN) model to learn a
more robust relation representation based on both word
sequences and dependency paths for the CID relation
extraction task, which could naturally characterize the
relations between chemical and disease entities. How-
ever, both the traditional learning and deep learning
methods suffer from the same problems of the scar-
city of the CDR corpus and the noise brought about
by the transformation from document-level relations
to instance-level relations.
As an alternative to supervised learning, distant super-

vision has been examined and show promising results in
biomedical text mining, mostly in Protein-Protein Inter-
action (PPI) extraction. Thomas et al. [27] proposed the
use of trigger words in distant supervision, i.e., an entity
pair of a certain sentence is marked as positive (related)
if the database has information about their interaction
and the sentence contains at least one trigger word. Ex-
periments on 5 PPI corpora show that distant supervi-
sion achieves comparable performance on 4 of 5
corpora. Bobić et al. [26] introduced the constraint of
“auto interaction filtering” (AIF): if entities from an en-
tity pair both refer to the same real-world object, the
pair is labeled as not interacting. Experiments on 5 PPI
corpora show mixed results. Bobić and Klinger [25] pro-
posed the use of query-by-committee to select instances
instead. This approach was similar to the active learning
paradigm, with a difference that unlabeled instances are
weakly annotated, rather than by human experts. Experi-
ments on publicly available data sets for detection of
protein-protein interactions show a statistically signifi-
cant improvement in F1 measure. Poon et al. [28]
applied the multi-instance learning method [30] to
extracting pathway interactions from PubMed abstracts.
Experiments show that distant supervision can attain an
accuracy approaching supervised learning results.

Distant supervision
Multi-instance learning is an effective way to reduce
noise in distant supervision [29–33] with the at-least--
one assumption stating that in all of sentences that con-
taining the same entity pair, there should be at least one
sentence which can effectively support the relationship.
Formally, for the triplet r(e1, e2), all the sentences that

mention both e1 and e2 constitute a relation bag with
the relation r as its label, and each sentence in the bag is
called an instance. Suppose that there are N bags {B1,
B2,⋯, BN} existing in the training set and the i-th bag
contains m instances Bi = { bi1 , b

i
2 ,⋯, bim } (i = 1,⋯, N).

The objective of multi-instance learning is to predict the
labels of unseen bags. It needs to first learn a relation ex-
tractor based on the training set and then predict rela-
tions for the test set by the learned relation extractor.
Specifically, for a bag Bi in the training set, we need to
extract features from the bag (from one or several valid
instances) and then use them to train a classifier. For a
candidate bag in the test set, we need to extract features
in the same way and use the classifier to predict the rela-
tion between a given entity pair.
In order to alleviate the noise problem caused by dis-

tant supervision, we adopt an attention-based neural
network model to automatically assign different weights
to different instances. This approach is able to selectively
focus on the relevant instances through assigning higher
weights to relevant instances and lower weights to the
irrelevant ones.

Materials and methods
Figure 2 illustrates the main architecture of our approach.
We first heuristically align facts from a given knowledge
base to texts and then use this alignment results as the
training data to learning a relation extractor. We then
conduct the relation extraction at two levels. For the
intra-sentence level, we propose an instance-level
attention-based model within a multi-instance learning
paradigm. For the inter-sentence level, we propose a
stacked auto-encoder neural network with simple and ef-
fective lexical features, which further improves the ensem-
ble performance of the document-level CID relation
extraction task. We finally merged the classification re-
sults from both levels to acquire the final document-level
CID relations between entities.
The BioCreative-V CDR corpus composes of 1500 bio-

medical articles collected from MEDLINE database [8, 21]
which are further split into three different datasets for
training, developing and testing, respectively. All chemi-
cals, diseases and CID relations in the corpus are manually
annotated and indexed by MeSH concept identifiers, i.e.,
the relations were annotated in a document between en-
tities rather than between entity mentions. It is important
to note that since the official annotation results didn’t an-
nounce the inter-annotator agreement (IAA) of the CID
relations, Wiegers et al. [34] reported an approximate esti-
mate score of 77%. Table 1 reports the statistics on the
numbers of articles and relations in the corpus.
In our distant supervision paradigm, the CTD data-

base [6, 7] was used as the knowledge resource and its

Gu et al. BMC Bioinformatics          (2019) 20:403 Page 3 of 14



relation facts were aligned to the PubMed literature to
construct training data. For fair comparison with other
systems and maximal scale of training data, the entity
alignment procedure was devised as follows:

i. Construct the PubMed abstract set (PubMedSet)
according to the CTD database, from which the
abstracts already annotated in the CDR corpus are
removed;

ii. A named entity recognition and normalization
process is conducted to identify and normalize the
chemicals and diseases in the PubMedSet abstracts;

iii. For every abstract, if a chemical/disease pair is
curated in the CTD database as the relation fact
‘Marker/Mechanism’, then the pair is marked as a
positive CID relation, otherwise as a negative one.

For instance, the chemical-disease relational facts <
D013752, D011559 > and <D013752, D009325 > curated
in CTD can be aligned with the following discourse from

the literature (PMID:10071902) which is collected into
PubMedSet:

a) Tetracyclines[D013752] have long been recognized as
a cause of pseudotumor cerebri[D011559] in adults,
but the role of tetracyclines[D013752] in the pediatric
age group has not been well characterized in the
literature and there have been few reported cases.

b) We retrospectively analyzed the records of all
patients admitted with a diagnosis of pseudotumor
cerebri[D011559] who had documented usage of a
tetracycline[D013752]-class drug immediately before
presentation at the Hospital For Sick Children in
Toronto, Canada, from January 1, 1986, to
March 1, 1996.

c) Symptoms included headache (6 of 6),
nausea[D009325] (5 of 6), and diplopia (4 of 6).

Among these texts, the relational fact <D013752,
D011559 > totally co-occur three times in sentence a)
and b), and the fact thus can generate an intra-sentence
level relation bag with three instances inside, however,
the 2nd occurrence doesn’t convey the relationship,
therefore it is a false positive. Differently, the relational
fact < D013752, D009325 > has no co-occurrence within
a single sentence, the nearest mentions of chemical
tetracycline and disease nausea thus generate the

Fig. 2 The system workflow diagram

Table 1 The CID relation statistics on the corpus

Task Datasets # of Articles # of CID Relations

Training 500 1038

Development 500 1012

Test 500 1066
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relation instance to form an inter-sentence level relation
bag. In a similar way, this paradigm of distant supervi-
sion can be extended to other relation extraction tasks
as well, such as PPI/DDI (Protein-Protein Interaction/
Drug-Drug interaction) extraction [26, 27] and pathway
extraction [28].
Note that excluding the CDR abstracts from PubMed-

Set is important because involvement of any CDR ab-
stracts would either reuse the CDR training set or
overfit our models for the CDR test set, thus diminishing
the strength of distant supervision.
Table 2 reports the statistics on the final generated

training set, which contains ~ 30 K PubMed abstracts
with ~ 9 K chemicals and over 3 K diseases, between
which more than 50 K positive relations are obtained, in-
cluding both intra- and inter-sentence levels. The sheer
size of the training set is remarkable since manually la-
beling such big corpus would be a daunting task.

Intra-sentence relation extraction
In our attention-based distant supervision approach for
intra-sentence relation extraction, a relation is consid-
ered as a bag B of multiple instances in different sen-
tences that contain the same entity pair. Thus, our
attention-based model contains two hierarchical mod-
ules: the lower Instance Representation Module (Fig. 3)
and the higher Instance-Level Attention Module (Fig. 4).
The former aims to obtain the semantic representation
of each instance within the bag, while the latter can
measure the importance of each instance in the bag in
order to integrate into the bag representation and
thereby predicts the bag’s label.

Instance Representation Module
Figure 3 illustrates the architecture of our Instance Rep-
resentation Module consisting of two layers: Embedding
Layer and Bidirectional LSTM Layer. The module takes
as an input instance a sentence that contains a target en-
tity pair and output a high-level representation vector.
The words and their positions in the sentence are first
mapped to low-dimensional real valued vectors called
word embeddings [35] and position embeddings [36, 37]
respectively. Then the two embeddings are concatenated
into a joint embedding to represent each word. Finally, a

recurrent neural network based on bidirectional LSTM
is used to encode the sequence of joint embeddings.

Embedding Layer
The Embedding Layer is used to transform each word
in the sentence into a fixed-length joint embedding
concatenated by a word embedding and its position
embedding. Word embeddings are encoded in terms of
column vectors in an embedding matrix T∈ℝdT�jVT j ,
where dT is the dimension of the word embeddings and
|VT| is the size of the vocabulary. Thus, the word em-
bedding wi for a word wi can be obtained using
matrix-vector product as follows:

wi ¼ Tuwi ð1Þ

where the vector uwi has the value of 1 at index wi and
zeroes otherwise. The parameter T is the vocabulary
table to be learned during training, while the hyper-par-
ameter dT is the word embedding dimension.
Position embeddings [36] encode the information

about the relative distance of each word to the target
chemical and disease respectively, and they are also
encoded by column vectors in an embedding matrix P∈
ℝdP�jVP j , where |VP| is the size of vocabulary and dP is a
hyper-parameter referring to the dimension of the pos-
ition embedding. We use pc

i and pdi to represent the pos-
ition embeddings of each word to the target chemical
and disease respectively.
After obtaining the word embedding wi and the

position embeddings pci and pd
i , we concatenate these

vectors into a single vector ti as the joint embedding
of the word.

t i ¼ wi;p
c
i ;p

d
i

� � ð2Þ

Bidirectional LSTM Layer
Recurrent Neural Networks (RNNs) are promising deep
learning models that can represent a sequence of arbitrary
length in a vector space of a fixed dimension [38–40]. We
adopt a variant of bidirectional LSTM models introduced
by [41], which adds weighted peephole connections from
the Constant Error Carousel (CEC) to the gates of the
same memory block.
Typically, an LSTM-based recurrent neural network

consists of the following components: an input gate it
with corresponding weight matrix W(i), U(i) and b(i); a
forget gate ft with corresponding weight matrix W(f ), U(f )

and b(f ); an output gate ot with corresponding weight
matrix W(o), U(o) and b(o). All these gates use the current
input xt and the state hi-1 that the previous step gener-
ated to decide how to take the inputs, forget the

Table 2 Statistics on the generated training set

Types Count

PMIDs 30,884

Chemical Entities 9113

Chemical Mentions 358,395

Disease Entities 3525

Disease Mentions 267,196

Relations 54,729
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memory stored previously, and output the state gener-
ated later. These calculations are illustrated as follows:

it ¼ σ W ið Þ � xt þU ið Þ � ht−1 þ b ið Þ
� �

ð3Þ

f t ¼ σ W fð Þ � xt þU fð Þ � ht−1 þ b fð Þ
� �

ð4Þ

ot ¼ σ W oð Þ � xt þU oð Þ � ht−1 þ b oð Þ
� �

ð5Þ

ut ¼ tanh W gð Þ � xt þU gð Þ � ht−1 þ b gð Þ
� �

ð6Þ

ct ¼ it � ut þ f t � ct−1 ð7Þ
where σ denotes the logistic function, ⊗ denotes
element-wise multiplication, W(*) and U(*) are weight

Fig. 3 The architecture of the Instance Representation module

Fig. 4 The architecture of the instance-level attention module
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matrices, and b(*) are bias vectors. The current cell
state ct will be generated by calculating the weighted
sum using both previous cell state and the informa-
tion generated by the current cell [41]. The output of
the LSTM unit is the hidden state of recurrent net-
works, which is computed by Eq. (7) and is passed to
the subsequent units:

ht ¼ ot � tanh ctð Þ ð8Þ
We use a bidirectional LSTM network to obtain the

representation of sentences since the network is able to
exploit more effective information both from the past
and the future. For the i-th word in the sentence, we
concatenate both forward and backward states as its rep-
resentation as follows:

hi ¼ h f
i ; h

b
i

h i
ð9Þ

where h f
i is the forward pass state and hbi is the back-

ward pass state. Finally an average operation is per-
formed to run over all the LSTM units to obtain the
representation of the relation instance sj:

s j ¼ 1
n

Xn
i¼1

hi ð10Þ

Instance-Level Attention Module
Figure 4 presents the architecture of our attention-based
model which includes four parts: Attention Unit, Feature
Representation Layer, Hidden Layer and Output Layer.
The attention model is supposed to effectively adjust the
importance of the different instances within a relation
bag, i.e., the more reliable the instance is, the larger
weight it will be given. In this way the model can select-
ively focus on those relevant instances.

Attention Unit
The attention unit is designed for calculating the weights
of different instances. In order to incorporate more se-
mantic information of instances, our attention unit in-
troduces Location Embedding, Concept Embedding and
Entity Difference Embedding for weight calculation.

Location Embedding Since instances are usually lo-
cated at different positions in the literature, such as title
and abstract, we believe that the location information is
of great significance for determining the importance of
instances in a relation bag. Therefore, Location Embed-
ding is designed to capture the relative location feature
of each instance. Location embeddings are encoded in
terms of column vectors in an embedding matrix L∈
ℝdL�jVLj , where dL is the dimension of the location em-

beddings and |VL| is the size of the vocabulary. Specific-
ally, in our work, four different location markers are
used to represent the location information of each in-
stance as shown in Table 3:

Concept Embedding In order to incorporate more se-
mantic information of entities, we use Concept Embed-
ding to represent entities, which consists of entity
identifier embeddings and hyponymy embeddings.
Identifier embeddings encode entity identifiers into

low-dimensional dense vectors and are encoded in terms
of column vectors in an embedding matrix E∈ℝdE�jVE j ,
where dE is the dimension of the identifier embeddings
and |VE| is the size of the vocabulary.
Previous research [18, 23] has found that the hyper-

nym/hyponym relationship between entities also im-
prove the performance of relation extraction. We use a
binary hyponym tag to determine whether an entity is
most specific in the document according to the MeSH
tree numbers of each entity identifier. We then convert
the hyponym tag into low-dimensional dense vector as
its hyponym embeddings. Hyponym embeddings are
encoded by column vectors as well in an embedding
matrix Q∈ℝdQ�jVQj , where dQ is the dimension of the
hyponym embeddings and |VQ| is the size of the vocabu-
lary. After obtaining the identifier embedding ei and the
hyponym embedding qi, the concept embedding ci is
generated by concatenating these two vectors as follows:

ci ¼ ei; qi½ � ð11Þ

Entity Difference Embedding Recently, many know-
ledge learning approaches regard the relation between
entities as a translation problem and achieve the
state-of-the-art prediction performance [42–44]. The
basic idea behind these models is that, the relationship r
between two entities corresponds to a translation from
the head entity e1 to the tail entity e2, that is, e1 + r ≈ e2
(the bold, italic letters represent the corresponding vec-
tors). Motivated by these findings, we also use the differ-
ence value between the concept embeddings of e1 and e2
to represent the target relation between them:

r ¼ c1−c2 ð12Þ

Table 3 Feature names and their locations

Name Location

T At the title.

A_Fst At the first sentence of the abstract.

A_Lst At the last sentence of the abstract.

A_Mdl In the middle of the abstract.
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Bag Representation According to [45], the semantic
representation of bag S for a certain pair of entities relies
on the representations of all its instances, each of which
contains information about whether, and more precisely
the probability that, the entity pair holds the relation in
that instance. Thus, we calculated the weighted sum of
instances contained in bag S to obtain the bag
representation.
Suppose a given relation bag S contains m instances,

i.e., S = {s1, s2, …, sm}, then the representation of S can be
defined as:

u ¼
Xn

k¼1

αksk ð13Þ

where sk is the instance representation and αk is its at-
tention weight. We argue that the weight is highly
related to the instance representation, the instance loca-
tion and the entity difference embedding, thus, we calcu-
late αk as follows:

αk ¼ exp Γ sk ;mk ; rð Þð ÞX
l

exp Γ sl;ml; rð Þð Þ ð14Þ

where Г(∙) is a measure function that reflects the rele-
vance between each instance and corresponding relation
r and is defined as:

Γ sk ;mk ; rð Þ ¼ vT tanh W s � sk þWm �mk þW r � rþbsð Þ
ð15Þ

where sk, mk are the instance representation and loca-
tion embedding respectively, and r is the entity differ-
ence embedding defined in Eq. (12) while Ws, Wm and
Wr are respective weight matrices, bs is the bias vector,
and vT is the weight vector. Through Eqs. (13) to (15),
an instance-level attention mechanism can measure and
allocate different weights to different instances, thus give
more weights to true positive instances and less weights
to wrongly labeled instances to alleviate the impact of
noisy data.

Feature Representation Layer
The bag representation and the chemical/disease embed-
dings are conjoined to produce the feature vector
k = [c1;c2;u] as the input to the hidden layer.

Hidden Layer
In the hidden layer, both Linear and non-linear opera-
tions are applied in order to convert the vector k to the
final representation z as follows:

z ¼ tanh W 1k þ b1ð Þ ð16Þ
Note that, a dropout operation is performed on vector

z during the training process to mitigate the over-fitting

issue. However, no dropout operation on z is needed
during the testing process.

Softmax Layer
The softmax layer which takes as input the vector z cal-
culates each instance confidence of the relations:

o ¼ soft max W 2z þ b2ð Þ ð17Þ
where the vector o denotes the final output, each dimen-
sion of which represents the probability that the instance
belongs to a specific relationship.
The following objective function is then adopted in

order to learn the network parameters, which involves
the vector o together with gold relation labels in the
training set:

J θð Þ ¼ −
1
m

Xm
i¼1

logp yijxi; θð Þ þ λ θk k2 ð18Þ

where the gold label yi corresponds to the training rela-
tion bag xi and p(yi|xi,θ) thus denotes the probability of
yi in the vector o, λ denotes the regularization factor and
θ = {T, E, Q, Ws, Wm, Wr, bs, v, W1, b1, W2, b2} is the
parameter set.

Inter-sentence relation extraction
Different from intra-sentence relations, an inter-sen-
tence relation spans multiple sentences, it is, there-
fore, difficult to find a unified text span containing an
entity pair. We thus propose a simple and effective
stacked auto-encoder neural network with entity lex-
ical features. Figure 5 depicts the structure of our
stacked auto-encoder model which consists of four
components: Input Layer, Encoder Layer, Decoder
Layer and Output Layer.

Input Layer
We take as the input the lexical features of an entity
pair, including the word embeddings of entity men-
tions, the concept embeddings and the frequency em-
beddings of two entities. These embeddings are
concatenated into the feature vector l, which is then
fed into the encoder layer.
For entity mentions, an embedding matrix D∈ℝdD�jVDj

is used to convert the entity mentions into word embed-
dings through a look-up operation, where dD is the di-
mension of the word embeddings and |VD| is the size of
the vocabulary. If an entity has multiple mentions, then
we use average operation to obtain the final representa-
tion vector of mentions.
Similar to intra-sentence relation extraction, the em-

bedding matrices F∈ℝd F�jV F j and G∈ℝdG�jVG j are used
to acquire two parts of the concept embeddings, i.e., the
identifier embedding and the hyponym embedding,
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where dF and dG are the dimension of embeddings while
|VF| and |VG| are the size of two vocabularies,
respectively.
Finally, we calculate the frequency of entities and use

an embedding matrix M∈ℝdM�jVM j to convert the fre-
quencies into embeddings as well.

Encoder Layer
The encoder layer applies linear and non-linear transfor-
mations on the feature vector l to obtain the
higher-level feature vector a and defined as follows:

a¼ tanhðW3 lþ b3Þ ð19Þ

Decoder Layer
The decoder layer applies linear and non-linear transfor-
mations as well to obtain the higher-level feature vector
j and defined as follows:

j¼ tanhðW4aþ b4Þ ð20Þ

As in the hidden layer in intra-sentence relation ex-
traction, a dropout operation is performed on j during
training while no dropout during testing.

Softmax Layer
Similar to intra-sentence relation extraction, the vector j
is routed into the softmax layer to produce the final out-
put vector o, which contains the probability for each re-
lation type.

o ¼ softmax W 5 j þ b5ð Þ ð21Þ

Likewise, the same objective function as in
intra-sentence relation extraction is used to train the
network:

J θð Þ ¼ −
1
m

Xm
i¼1

logp yijxi; θð Þ þ λ θk k2 ð22Þ

where the gold label yi corresponds to the training in-
stance xi and θ = {D, F, G, M, W3, b3, W4, b4, W5, b5} is
the set of parameters.
After the relation extraction at both intra- and

inter-sentence levels, their results are merged to gener-
ate the final document-level CID relations between che-
micals and diseases.

Results
In this section, we first present our experiment settings,
then we systematically evaluate the performance of our
approach on the corpus.

Experiments settings
We use the PubMedSet corpus constructed through the
entity alignment as the training data to induce the
models and randomly select one tenth of the training
data as the development data to tune the parameters.
After training, the extraction model is used to extract
the CID relations on the test dataset of the CDR corpus.
In addition, we preprocess the training corpus using the
following steps:

Fig. 5 The stacked auto-encoder neural network
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Remove characters that are not in English;
Convert all uppercase characters into lowercase letters;
Replace all numbers with a unified symbol;
Use TaggerOne [46] to recognize and normalize the
chemicals and diseases.

The RMSprop [47] algorithm was applied to fine-tune
the model parameters. GloVe [48] was used to initialize
the look-up Tables T and D. Other parameters in the
model were initialized randomly. Table 4 shows the de-
tails of the hyper-parameters for both attention-based
model and stacked auto-encoder model.
All experiments were evaluated by the commonly

used metrics Precision (P), Recall (R) and harmonic
F-score (F).

Experimental results
For comparison, we fine-tuned an intra-sentence level
Hierarchical Recurrent Neural Network (Intra_HRNN)
as the baseline system. Specifically, the baseline system
used two fine-tuned bidirectional LSTM layers to extract
relations. The first bidirectional LSTM layer, which is
used to obtain the representations of instances, is the
same with the attention model. The second bidirectional
LSTM layer is used to obtain the representations of
relation bags without attention. Table 5 shows the
intra-sentence level performance of Intra_HRNN and
our attention model (Intra_Attention) on the test set
with gold standard entity annotations, respectively. The

ablation tests were also performed with one of the four
features removed when calculating attention weights.
From the table, we can observe that:

� The F1 score of the baseline system Intra_HRNN
can reach 58.4%, indicating that the HRNN
structure can well integrate the overall
information to capture the internal abstract
characteristics of entity relations. However, when
using the attention-based distant supervision, the
F1 score at intra-sentence level can finally reach
as high as 60.8%. This suggests that the attention
mechanism can effectively evaluate the import-
ance of different instances and represent the fea-
tures of the relation bag.

� Among all the features, when the identifier
embeddings is separated from the feature set, the
system performance drops significantly and the F1
score is only 57.5%. This suggests that the identifier
embeddings can reflect effective semantic
information behind entities. Likewise, other three
embeddings also contribute to improve the
performance. The experimental results indicate that
these features are complementary to each other
when performing relation extraction at intra-
sentence level.

Similar to intra-sentence level, we also used
fine-tuned an inter-sentence level Hierarchical Recur-
rent Neural Network (Inter_HRNN) as the baseline
system to replace the stacked auto-encoder model.
Table 6 shows the performance of the baseline system
and our Stacked Auto-encoder approach (Stacked_Au-
toencoder), respectively.
As shown in the table, the performance at inter-sen-

tence level is relatively low. This indicates that the

Table 4 Hyper-parameters for two models

Method Hyper-parameter Value

Attention-based Model Learning rate 0.004

LSTM hidden state dimension 200

Mini-batch size 500

Word embedding dimension 300

Position embedding dimension 50

Identifier embedding dimension 100

Hyponym embedding dimension 50

Location embedding dimension 50

Hidden layer nodes 250

Dropout rate 0.3

Stacked Auto-encoder Model Learning rate 0.008

Mini-batch size 400

Word embedding dimension 300

Identifier embedding dimension 100

Hyponym embedding dimension 50

Encoder layer nodes 250

Decoder layer nodes 50

Dropout rate 0.3

Table 5 The performance of the Attention-based model on the
test dataset at intra-sentence level

Methods P(%) R(%) F(%)

Intra_HRNN (Baseline) 62.0 55.2 58.4

Intra-Attention 62.2 59.5 60.8

- Descriptor Embedding 61.1 54.2 57.5

- Hyponym Embedding 61.7 56.6 59.0

- Location Embedding 61.9 56.7 59.2

- Entity Difference Embedding 62.1 56.9 59.4

Table 6 The performance of the Stacked Auto-Encoder model
on the test dataset at inter-sentence level

Methods P(%) R(%) F(%)

Inter_HRNN (Baseline) 27.0 19.8 22.8

Stacked_Autoencoder 55.7 14.2 22.6
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expressions of relations across sentences are complex
and diverse, therefore it is hard to capture effective se-
mantic information between two involved entities across
sentences. When only taking inter-sentential relation
into consideration, the F1 score of the baseline system
Inter_HRNN can reach 22.8%, while the performance of
our stacked auto-encoder network could reach 22.6%.
However, compared with the baseline system, though
the stacked auto-encoder model has a relatively lower
recall, it has a significant advantage in precision.
After extracting relations at both levels, we merge the

results to obtain the final document level CID relations.
We investigated four combinations of the above different
various intra-sentence and inter-sentence models and
show in Table 7 the overall performance of the CID
relation extraction on the test set using gold entity
annotations.
It can be found from the table that the overall extrac-

tion performance of ‘Intra_HRNN + Inter_HRNN’ is
relatively low, of which the F1 score can only reach
57.4%. Our approach ‘Intra_Attention + Stacked_Au-
toencoder’ obtained the best performance, with the F1
score as high as 66.4%. In addition:

� Methods with ‘Intra_Attention’ outperform ones
with ‘Intra_HRNN’ by ~ 2 units of F1 as comparison
of ③ with ① and ④ with ②. This is consistent with
the performance improvement reported in Table 5,
justifying the intra-level attention mechanism which
effectively considers the importance of different in-
stances in a relation bag.

� Methods with ‘Stacked_Autoencoder’ dramatically
outperform ones with ‘Inter_HRNN’ by ~ 7 units of
F1 as comparison of ② with ① and ④ with ③.
Interestingly, for only inter-sentence evaluation in
Table 6, though the two models maintain compar-
able F1-scores, ‘Stacked_Autoencoder’ drastically im-
proves the performance of precision. This boost of
precision enables ‘Stacked_Autoencoder’ to elimin-
ate more false inter-sentence positive instances than
‘Inter_HRNN’, leading to higher overall precision,
and thus more balanced F1-scores.

Figure 6 further compares the Precision-Recall curves
of the four different combinations mentioned above. As
is depicted in the figure, the curve of our model (i.e.

“Intra_Attention + Stacked_Autoencoder”) is superior to
other models, which shows a higher precision along with
the recall. This suggests our distant supervision model
can effectively extract the document level CID relations.

Discussion
In this section, error analysis is first presented and
then the comparison with other state-of-the-art sys-
tems is given.

Error analysis
After careful examination of the experimental results,
we classified the errors into four categories as follows:

� Complex expressions: if the instances in a certain
relation bag fails to clearly express the
corresponding CID relation, our distant supervision
paradigm is unable to extract the relation correctly.

� Imprecise location information: in the intra-sentence
level relation extraction, the location information of
some unreliable instances would degrade the per-
formance of our attention-based approach.

� Limited information on discourse: the inter-sentence
relations are usually expressed through discourse
and co-reference. In addition to conventional intra-
sentence linguistic features, discourse analysis fea-
tures derived from discourse parsing should be ac-
quired to extract inter-sentence relations.

� Manual annotation disagreement: our investigation
reveals that some extracted relations are considered
as false positive, but actually should be true positive.
These errors may arise from the fact that the IAA of
the relation annotation is relatively low which is
described in section Materials.

Comparison with related works
We compare our work with the relevant works [17, 19–
23, 49] in Table 8, which reports the performance of
each system on the test dataset using gold standard en-
tity annotations. We roughly divide these methods into
four groups: rule-based, machine learning (ML) without
additional resources, machine learning using external
knowledge bases (KBs) and distant supervision.
In the table, it shows that the rule-based system [49]

obtained a competitive performance with the F-score of
60.8%. However, their construction process of the
hand-crafted rules is laborious and time-consuming.
Compared with the rule-based approach, machine learn-

ing methods have shown a promising capability of extract-
ing CID relations. Zhou et al. [22] proposed a hybrid
method which combined an LSTM network with a tree
kernel-based SVM for the sentence-level CID relations.
After employing heuristic rules in the post-processing
(PP) stage their F1-score reached 61.3%. Gu et al. [17]

Table 7 The overall performance on the test dataset

Methods P(%) R(%) F(%)

① Intra_HRNN + Inter_HRNN 46.5 75.0 57.4

② Intra_HRNN + Stacked_Autoencoder 58.2 71.6 64.2

③ Intra_Attention + Inter_HRNN 46.9 79.3 59.0

④ Intra_Attention + Stacked_Autoencoder 60.3 73.8 66.4
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proposed different maximum entropy models, i.e.
Intra_ME and Inter_ME, for intra- and inter-level relation
extraction, respectively. They leveraged various linguistic
features to extract the CID relations and the final per-
formance of their method reached as high as 58.3%. Gu et
al. [23] proposed a convolution neural network model
based on contextual and dependency information and the
final F1 score of their method reached 61.3%. Compared
with the above methods, our distant supervision can auto-
matically expand the size of training data through a
weakly annotating procedure and obtain more relevant
representations of relations, it therefore achieved the best
performance with the F1 score of 66.4%. Particularly, our

method promotes the intra-sentence performance signifi-
cantly to the F1 score of 60.8%.
Among the systems using knowledge base [19–21],

Peng et al. [21] extracted CID relations using an SVM
model with rich features and augmented the training set
with 18,410 external curated data in CTD, achieving the
final F1 score as high as 71.8%. Similarly, Pons et al. [20]
and Xu et al. [19] also used abundant knowledge-based
features with fine-tuned SVM classifiers and achieved
the F1 score of 70.2 and 67.2%, respectively. For a fair
comparison, we also integrated the knowledge feature
into the distant supervision paradigm and obtained the
F1 score of 72.1%. This suggests that our method can

Fig. 6 The precision-recall curve of different combinations

Table 8 Comparisons with the related works

Methods Systems Description P(%) R(%) F1(%)

Distant Supervision Ours Intra_Attention 62.2 59.5 60.8

Intra_Attention + Stacked_Autoencoder 60.3 73.8 66.4

ML without KB Gu et al. 2016 [17] Intra_ME 60.4 50.3 54.9

Intra_ME + Inter_ME 62.0 55.1 58.3

Gu et al. 2017 [23] CNN 59.7 55.0 57.2

CNN + Inter_ME + PP 55.7 68.1 61.3

Zhou et al. 2016 [22] LSTM + SVM 64.9 49.3 56.0

LSTM + SVM + PP 55.6 68.4 61.3

ML with KB Ours Intra_Attention + Stacked_Autoencoder + KBs 67.9 77.0 72.1

Xu et al. 2016 [19] SVM + KBs 65.8 68.6 67.2

Pons et al. 2016 [20] SVM + KBs 73.1 67.6 70.2

Peng et al. 2016 [21] Extra training data + SVM + KBs 71.1 72.6 71.8

Rule-based Lowe et al. 2016 [49] Heuristic rules 59.3 62.3 60.8
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effectively take advantage of the knowledge base features
as well.

Conclusions
This paper exhibits a distant supervision paradigm for
the automatic chemical-induced disease relation extrac-
tion. The paradigm is built on an attention-based model
and a stacked auto-encoder network model for intra-
and inter-sentence relation extraction, respectively. Ex-
perimental results show that the attention mechanism
considering various features of concepts and contexts is
effective on intra-sentence relation extraction under dis-
tant supervision paradigm. Furthermore, its combination
with the auto-encoder model at inter-sentence level
achieves the best performance on the CID relation ex-
traction task without direct application of KB.
We believe the success of distantly supervised CID re-

lation extraction can be generalized to other relation ex-
traction tasks in the biomedical literature. In future
work, we intend to adopt dependency information for
relation extraction in distant supervision paradigm,
though this will bring about the heavy burden of de-
pendency parsing. On the other hand, discourse struc-
ture will be explored to further improve the relation
extraction performance at inter-sentence level.
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