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Abstract

attempt to compare candidate models.

doesn’t show support for activation of Kruppel by Bicoid.

estimates of Bayes factors obtained.

Background: The gap gene system controls the early cascade of the segmentation pathway in Drosophila
melanogaster as well as other insects. Owing to its tractability and key role in embryo patterning, this system has been
the focus for both computational modelers and experimentalists. The gap gene expression dynamics can be
considered strictly as a one-dimensional process and modeled as a system of reaction-diffusion equations. While
substantial progress has been made in modeling this phenomenon, there still remains a deficit of approaches to
evaluate competing hypotheses. Most of the model development has happened in isolation and there has been little

Results: The Bayesian framework offers a means of doing formal model evaluation. Here, we demonstrate how this
framework can be used to compare different models of gene expression. We focus on the Papatsenko-Levine
formalism, which exploits a fractional occupancy based approach to incorporate activation of the gap genes by the
maternal genes and cross-regulation by the gap genes themselves. The Bayesian approach provides insight about
relationship between system parameters. In the regulatory pathway of segmentation, the parameters for number of
binding sites and binding affinity have a negative correlation. The model selection analysis supports a stronger
binding affinity for Bicoid compared to other regulatory edges, as shown by a larger posterior mean. The procedure

Conclusions: We provide an efficient solver for the general representation of the Papatsenko-Levine model. We also
demonstrate the utility of Bayes factor for evaluating candidate models for spatial pattering models. In addition, by
using the parallel tempering sampler, the convergence of Markov chains can be remarkably improved and robust
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Background

In this paper, we explore models for the developmen-
tal process of segmentation in Drosophila, providing an
efficient model solver. We use the Bayesian framework
for inference and model selection. The process by which
multicellular organisms develop from a single fertilized
cell has been the focus of much attention. It was postu-
lated that organisms are patterned by gradients of certain
form-producing substances. Boveri [1] and Horstadius [2]
used this idea to explain the patterning of the sea urchin

*Correspondence: asifzuba@usc.edu

"Molecular and Computational Biology, USC, 1050 Childs Way, Los Angeles, CA
90089-2532, US

Full list of author information is available at the end of the article

embryo. The idea was given further impetus by the dis-
covery of the Spemann organizer [3] which suggested
that morphogenesis is the result of signals released from
localized group of cells. In 1952, Turing, working on the
problem of spatial patterning, coined the term morphogen
to describe ‘form-producers. He used mathematical mod-
els to show that chemical substances could self-organize
into patterns starting from homogeneous distributions
[4]. However, a definitive example of a morphogen was
only provided in 1987 by the discovery of Bicoid function
in the Drosophila embryo [5, 6] and subsequent visual-
ization of its gradient [7, 8]. Not surprisingly, patterning
in the Drosophila embryo has been the focus of both
developmental and systems biologists.
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The formation of several broad gap gene [9] expression
patterns within the first two hours of development char-
acterizes early Drosophila embryogenesis. Taken together,
the gap genes constitute one of the four regulatory lay-
ers in the cascade of segmentation pathway in Drosophila
embryo. Expression of gap genes is regulated by maternal
genes [10] and they also participate in mutual repression
[11]. Thus, activation by maternal gradients, combined
with spatially specific gap-gap cross repression helps to
establish, sharpen and maintain the broad overlapping
domains of the gap gene expression along the Anterior-
Posterior (A-P) axis. The gap gene network is one of the
few examples of a developmental gene network which has
been studied extensively using data-driven mathematical
models [12-14] in order to reconstruct the regulatory
structure of the gap gene network. However, there con-
tinues to be active discussion [15, 16] on how maternal
gradients and mutual gap gene repression contribute to
the formation of gap stripes.

Mathematical representation of the gap gene network
through quantitative dynamical systems has helped inves-
tigate regulatory structure of this network along with spe-
cific properties of this representation such as the strength
of interaction, cooperativity of regulators, etc. However,
there is a deficit of a rigorous framework within which
putative representations can be compared and allows one
to conduct formal statistics of relative fit. In a seminal
paper, Jaeger et al. [12] used a dynamical model where a
genetic inter-connectivity matrix described the regulatory
parameters. Based on measures of model fit, they argued
that dual regulatory action of Hunchback on Kruppel is
not essential for to explain gap gene domain formation.
While this may be valid, they do not provide a rela-
tive goodness of fit of the model against a representation
that assumes dual-regulation. Perkins et al. [17] did an
extensive study of gap gene regulatory relationships and
compared proposed networks in literature. However, their
study does not provide a measure of statistical significance
for model comparison. Essentially, the question we want
to ask is how to chose between competing hypothesis for
the network structure in a statistically rigorous manner ?
In addition, real data is often contaminated with measure-
ment noise and we need methods that can help us deal
with this uncertainty.

Addressing the latter point, one way to handle error
associated with experimental observations is to model it
as Gaussian noise. If we know or are willing to assume
a model for the error variance, then an estimate of
the parameters can be sought by maximizing the like-
lihood in a least squares sense. This is the maximum
likelihood estimate (MLE) [18] of the parameters. How-
ever, this point estimate suffers from being unrepresen-
tative and is often intractable, especially if the likelihood
is multimodal.
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An alternative approach is the Bayesian framework
which allows one to not only account for experimental
error by propagating it to the model parameters but also
a way to integrate our prior beliefs on the distribution of
model parameters. In this manner, a posterior distribution
of the model parameters is obtained which encapsulates
our belief in the parameter values given uncertainty in
measurement. Indeterminacy of model parameters and
correlations between indeterminate parameters are incor-
porated into the marginal likelihood (evidence). Direct
computations of integrals involved in Bayesian methods
are difficult and so researchers tend to use Markov chain
Monte Carlo (MCMC) methods like Gibbs sampling or
Metropolis-Hastings algorithm [19]. Bayesian approaches
have enjoyed great success in genetics [20] and we and
others [21] expect that they will provide more satisfactory
solutions to inference problems in computational systems
biology.

In addition, the Bayesian approach allows us to assess
which of the competing models is better supported by the
data by comparing the ratios of marginal likelihood of the
models. The process of comparing models is more for-
mally known as model selection and the ratio of marginal
likelihoods is also called the Bayes factor [22]. It follows,
that in order to use Bayes factors, one needs to esti-
mate the marginal likelihood of a model. However, this
task becomes increasingly intractable with growing model
dimensionality and a conventional Metropolis-Hastings
sampling approach generally leads to poor mixing prop-
erties and unreliable conclusions. To overcome this diffi-
culty, we use the parallel tempering Markov chain Monte
Carlo (PT-MCMC) sampling technique [23]. Briefly, this
method runs parallel chains at different temperatures (or
degree of smoothness of likelihood surface) and allows
exchanges between the chains based on the Hastings ratio.
The end result is a chain that mixes well and also doesn’t
get stuck in local optima. Another benefit of this approach
is that it allows one to use path integration to compute the
thermodynamic estimator [24] of the marginal likelihood.
This estimator has been shown to be reliable when work-
ing with Bayes factors [25] in the context of differential
equations.

We currently focus on the Papatsenko-Levine formal-
ism [26], which exploits a fractional occupancy based
approach to incorporate activation of the gap genes by
the maternal genes and cross-regulation by the gap genes
themselves. An advantage of this formalism is that it
incorporates non-linear effects between regulatory inter-
actions and is closer to a mechanistic view of how reg-
ulation in this system occurs [27]. While in their paper,
Papatsenko & Levine assumed that network structure is
known a priori, our approach allows one to choose from
competing network topologies reported in the literature
and to vary strength of interactions between gap genes.
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It is worth mentioning here that although we consider
models of increasing complexity, Bayes factors allows
model comparison without concerns of over-fitting,
that is, they allow one to implicitly control for model
dimensionality [28].

Methods

Expression data

We use published data by Papatsenko & Levine [26]. This
data was obtained from the FlyEx database [29]. The
data comprise of expression values on a line along the
Anterior-Posterior axis of the embryo and subsampled
to 100 spatial points separated by approximately 5um.
Maternal Bicoid (Bcd) and Hunchback (Hb) expression
data corresponding to cleavage cycle 14.1 were used as
input to the model. The output data is gap gene zygotic
expression at cleavage cycle 14.4 for Hunchback, Krup-
pel (Kr), Knirps (Kni) and Giant (Gt) (Fig. 1). Tailless (T1I)
expression data corresponding to cleavage cycle 14.4 was
also used as input.

Model solution
Time-varying systems can be modeled with ordinary dif-
ferential equations (ODEs) which have efficient solvers
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available (for example, [30]) . However, in pattern for-
mation gene expression varies both in time and space
and partial differential equations (PDEs) are the suitable
method for characterizing this process. Closed form solu-
tions for PDEs exist only in the most simplest of cases
and numerical solutions need to be employed. Packaged
solvers for PDEs do exist [31] and some like deal.Il [32]
have been used in systems biology applications [33-35].
However, due to the overhead of generalizability and com-
putational tractability in structuring models, we wrote our
own solver.

We first elaborate the PDE formalism, due to Papat-
senko & Levine, used for describing gap gene expression:

02u;(x, t)
ox2

’

%ui(x, t) = aP? (1 — PP) — Bui(x,t) + D

i = Hb, Kr, Kni, Gt,
/ !/ / au
u0,t)y=u(L,t) =0,u = —,
ox
O<x<LO<t<T.

Here, u;(x, t) represents the expression of gap gene, i, at
time ¢ and position x with Neumann boundary conditions,
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Fig. 1 Expression data. Gap gene expression values at cleavage cycle 14.4 along the anterior-posterior axis of developing embryo are used to fit the

model
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i.e., we assume that flux at the boundaries is zero. o rep-
resents the production rate, $ is the linear decay rate and
D is the diffusion constant. L denotes the length of the
embryo and T corresponds to cleavage cycle 14.4 which
marks the start of gastrulation. P4 and P? are respectively
combined activation and repression effects of regulators
for each gap gene. These regulatory effects are a function
of the gap gene expression and its binding affinity (K),
cooperativity rate (C,) and the number of binding sites
(N§). (Details in the Additional file 1 text.)

We reformulate the system in weak or variational form
[36] and then rely on the theory of linear semigroups of
operators [37]. We point the interested reader to the sup-
plementary material in Additional file 1 for a full deriva-
tion of the solution. The observed data is assumed to have
some noise €, which we take to be identically normally dis-
tributed, € ~ N (0, 02), (where I is the identity matrix). If
the observed data is Y and U is the solution to the system
of PDEs, we have:

Yi - Ui(xr T) + ¢,
i = Hb, Kr, Kni, Gt,

O0<x<lL.

Parameter estimation

Following the above formulation, we can define the likeli-
hood function, L(0, Y), which gives the conditional prob-
ability of the data, Y, given the parameter, 6. Here we
have the dropped the subscript i for gap genes for the
sake of convenience. Given the assumed error model, the
likelihood can be written down explicitly as

L©.Y) = p(Y|6) = ﬁ L exp (-1@ - M.)Z)
, jo1 V2mo? 202 )¢

We note that we apply the error model for specific
domains over the embryo length (e.l.) . Specifically, the
domains used for the gap genes are 30-70% e.l. for Hb, 40-
90% e.l. for Kni, 20-80% e.l. for Kr and 10-90% e.l. for Gt.
The posterior incorporates both how well the parameters
support the data and also our existing knowledge of them.
This can be expressed more mathematically using Bayes’
theorem [38]:

L®,Y)r(0)

61Y) =
p@IY) ()

where

e p(0]Y) is the posterior density of the parameters

e [(0;Y) is the likelihood of the data as elaborated
above

e 77(0) is the prior belief of the parameter

® p(Y) is the marginal likelihood
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At first glance, it would appear straightforward to use
Bayes’ theorem to compute the posterior density of the
parameters. However, the marginal likelihood term in the
denominator is often hard to evaluate numerically and
mostly intractable as it involves an integration of the
likelihood over the whole parameter space:

p(Y) = / L8, Y)m(8)do.
e

Instead, we rely on the Markov chain Monte Carlo [39]
method used for high-dimensional sampling. The idea
behind these methods is to draw samples from the station-
ary distribution of a Markov chain. When set up correctly,
this distribution produces samples from the posterior
distribution. The marginal likelihood itself, however, is
relevant for model selection and we will return to its
estimation in the “Model selection” section.

Metropolis-Hastings sampling

The Metropolis-Hastings algorithm [19] provides a pro-
cedure to draw samples from the target distribution
based on a proposal density. When the appropriate tar-
get density is defined, this amounts to generating samples
from the posterior distribution of the dynamic model of
interest. The MH algorithm achieves this by suggesting
moves based on a proposal distribution, g(6;16;), for the
Markov chain which proposes a new value for ;41 condi-
tional on the current value of 6;. These moves are accepted
based on the Hastings ratio:

. { P(9i+1|Y)q(9i|9i+1)}
ap = minil,

pOilY)q(0i+110:)
L(6it1, Y)7(6i41)9(6:10:41) }
L(6;, Y)m (60;)q(0i+116;) '

The terms are as defined previously and we note that the
marginal likelihood term has conveniently canceled out in
denominator. The proposal g(:|-) is usually taken to be a
Gaussian, however, we note that in our case, the number
of sites parameter, N, is discrete. Accordingly, we define
the proposal density as a mixed density. With probability,
p < 1/10, we perturb N; by either increasing or decreas-
ing it by 1 with equal probability, while keeping the rest
of the parameters unchanged. Else, we perturb each of the
other parameters based on a Gaussian centered at the cur-
rent value of the parameters, 6; and with variance 0.1/,
where I is the identity matrix. We use bounded uniform
prior on all the parameters.

= min {1,

Parallel tempered MCMC sampling

In principle, given a large number of samples, the
Metropolis-Hastings sampler should be able to cover the
whole parameter space. However, in high dimensions, the
number is samples required increases rapidly and there
is always the chance of the chain getting stuck in local
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optima. To get around these issues, it has been proposed
to use multiple interacting MCMC chains [23]. One such
approach is of parallel tempering where parallel MCMC
chains are run at different ‘temperatures. The range of
temperatures that are used is referred to as the tempera-
ture ladder. The likelihood for a chain at temperature ¢ is
now given by:

Li(0,Y) = pi(Y10) = p(Y|0)".

Since the likelihood function is smoother for higher
temperatures, chains at higher temperature can sample
the parameter space more freely. The chains are updated
using a Metropolis Hastings update step and chains at
neighbouring temperatures are exchanged using an accep-
tance ratio. For implementation purposes, we follow the
approach in [40] with a slight modification. Algorithmi-
cally:

1 Initial start positions are assigned to each chain,
®=(01...,0N)

2 Associate each chain with a temperature based on a
temperature ladder, (®,t) = (61,41, .. .0N,tN)

3 Repeat till convergence of all chains

(a) Apply local Metropolis-Hastings update step
to each chain

(b) Pick two neighboring chains at different
temperature. Assume states ; and 6; for N
pairs (i,7) with i sampled uniformly in
(1,...,N) andj = i £ 1 with probability
Pe(6;,0;) where
Pe(0:,0i11) = pe(6,6;-1) = 0.5 and
Pe(01,02) = pe(On,On-1) =1

(c) Exchange the state of the chains based on
acceptance ratio

4 Use chain with lowest temperature for estimating
posterior density

The exchange step is accepted with probability
min(l, a.) according to the Metropolis-Hastings rule:

_ pO'1Y)Q(0]®)
~ p(®IY)Q(O|0)

(L8}, Y)% % L(6;, Y)Y]
T 1O, V) L, V)]

e

Q010
Q(®'G)

where Q(:]-) denotes the probability of transition from a
set of chains to a set with a neighboring pair of chains
exchanged. We select direct neighbors in the temperature
ladder for the exchange step to increase the likelihood for
the exchange to be accepted.

While the chain at the lowest temperature can be used
for parameter inference, all the chains together can be
used to estimate the marginal likelihood [25] and in turn
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calculate Bayes factors for Bayesian model comparison for
model ranking. It is this aspect that we turn to next.

Model selection

In the context of Bayesian inference, Bayes factors can be
employed to do model selection. They allow us to com-
pute the posterior probabilities of two models, given the
prior probability of each model. Assuming again that the
data is ¥, and we want to compare between two models,
M and M3y, then the posterior odds are given by:

pMY) (P(Y|M1)) pMy)
pM|Y) p(Y|My) ) p(My)

The quantity in brackets is the ratio of the marginal like-
lihoods of the two models and is termed the Bayes factors.
When we have no prior preference of one model over the
other, we assume p(M;) = p(M;) and then the ratio of
likelihoods is exactly equal to the Bayes factor. In essence,
then, the problem of model selection boils down to the
problem of estimating the marginal likelihood.

Various methods to estimate the marginal likelihood
have been proposed [41, 42]. In the simplest construc-
tion, given samples from the prior 61, 65, ..., 6, one could
compute the Monte Carlo estimate

. 1 —
P = ;pmei).

However, in practice this is a poor estimator unless
working with very large sample sizes. Similarly, the impor-
tance sampling based the posterior harmonic mean esti-
mator has been shown [42, 43] to be a very poor estimator.

Instead, we could exploit the tempered distributions
that we have generated using the PT-MCMC sampler.
This approach has been referred to as path sampling
[24, 43]. If we assume that the marginal likelihood of chain
at temperature ¢ is represented as z;, then:

z=z(t) = / p(Y10)!(0)do.
®

By differentiating the logarithm of z,

t
ilogzt =/ log(p(Y0)) - Mdg
0 t

dt
= Ei[log(p(Y16))]

and then we can integrate both sides with respect to ¢ to
obtain:

1
log(p(Y)) = /0 E,llog(p(Y10))] dt

as described in [41]. Thus, if we choose a temperature lad-
der 0=ty <t <ty <..<titn_1 <ty =1),thenwe
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can use a numerical approximation to compute the above
integral. Namely,

N-1

log(p(Y)) = > 05(tiy1 — ti) {Ey,, [log(p(Y6))]
i=1
+E,,[log(p(Y16))] } .

The expectation with respect to the posterior at each
temperature on the ladder can be approximated using
the Monte Carlo estimate. For all the models we used
a temperature schedule with N = 10 according to an
exponential ladder ¢; = (%)S,i = 1,..,N as suggested
in [25].

Model over-fitting

The process of model selection described above helps
guard against choosing over-parameterized models by
penalizing them implicitly for higher dimensionality. This
ability of Bayes factors to prioritize simpler models over
complex ones has also been discussed elsewhere [28, 41].

However, as we consider relative goodness of fit
amongst models, there might still be an argument that
the best chosen model does over-fit the data. One way to
test model over-fitting is cross-validation [44]. In such an
approach, usually, we can envisage excluding some of the
data (validation set) during model fitting step and then
testing the accuracy of the model on this held-out data set.
An over-fit model would perform well on the fitted data
but poorly on the held-out dataset.

However, as we deal with a spatially correlated dataset,
cross-validation becomes more difficult as leaving out
an observation does not remove all the associated infor-
mation. In order to compute a cross-validation statistic,
we use an iterative procedure. We use the mean log-
likelihood as a measure of prediction accuracy.

1 We fit the model to the data yy, - - - , ¥, where m is
chosen such that 1, - - - , m corresponds to the first
60% of the data, drawn sequentially across the
embryo axis.

2 We use the fitted model to predict for the next 5% of
observations and compute the log-likelihood.

3 Repeat steps 1 & 2, adding 5% of the data set to
training set and predict the next 5%.

4 Finally, compute the mean log-likelihood from the
predictions made above.

As our data is stratified, we ensure that the training
set draws evenly from expression observation of the gap
genes, i.e. we pick the initial 60% of the observations from
each of the four gap genes to train the model. Similarly,
predictions are made on the next 5% of the observations
for each gap gene.
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The models, solver and MCMC sampler were
coded using the python programming language.
PyMC [45] was used for «certain diagnostic

visualizations. The code for reproducing the anal-
ysis is available on GitHub at the repository:
https://github.com/asifzubair/BayesianModelSelection.

Results

The Drosophila gap gene network has been the subject of
intense study from both experimentalists and computa-
tional modelers. Despite this, efforts to compare proposed
network hypothesis in a statistically rigorous manner have
been few and far between. Here, we propose to use the
Bayesian framework for doing parameter inference and
model selection. The Bayesian framework permits one to
do a fully probabilistic analysis of model system allowing
one to account for uncertainty in parameter estimates and
model fit. We employ an MCMC approach using the par-
allel tempering (PT-MCMC) sampler to do Bayesian anal-
ysis. This sampler not only allows for better convergence
but also helps one to compute the thermodynamic esti-
mator for marginal likelihood. Other sampling approaches
for accelerating convergence like adaptive MCMC [46]
and Hamiltonian Monte Carlo (HMC) [47] exist. How-
ever, these samplers require all the parameters to be con-
tinuous whereas the PT-MCMC sampler does not have
such a restriction. In addition, they do not have the benefit
of providing a natural way to estimate the marginal like-
lihood like the PT-MCMC sampler does. Using estimates
of the marginal likelihood, we use Bayes factor to compare
between models.

Papatsenko & Levine argued that if the gene expression
model is robust to the parameter values, then a single set
of robust parameters should provide good model fits. In
keeping with this, we set parameters related to maximal
synthesis («), decay (B), cooperativity rates (C,) and dif-
fusion (D) to be the same for all gap genes. In addition, we
set the number of binding sites (Ng) to be the same. This
forms the base model of 6 parameters (Model A6). There-
after, we introduce node specific parameters to account
for unequal mutual repression between Hb-Kni (K7) and
Gt-Kr (K>). This is Model B7. We further test the possibil-
ity of the node-specific parameter (K3) controlling Bicoid
activation of three gap genes - Knirps, Hunchback and
Giant. This is Model C8. In addition to this, certain studies
have indicated the possibility of Bicoid activating Kruppel
[48, 49], we also test for the evidence of this by adding an
extra edge to Models B7 and C8. These are models D7 and
D8. All model specifications are described in Table 1.

In their paper, Papatsenko & Levine [26] fit each of
the models (A6, B7 and C8) separately by maximizing
an objective function based on the correlation measured
between the model and the data. They use the final cor-
relation value to distinguish between the models. Their
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Table 1 Specifications for all 6 models evaluated
Models A6 B7 B7r C8 D7 D8

Global parameters:

Affinity(logKa) K K K K K K
Cooperativity Co Co Co Co Co Co
Binding Sites Ns N A N N N
Syn./Decay o o o o

Diffusion

Max. conc 50 50 50 50 50 50

Node-specific binding affinities:

Bed! K K K3 K3 K K3
Bcd” K K K K K K
Cad* K K K K K K
HpA K K K K K K
HbP K K K K K K
HbP Ky Ky Ky Ki Ky Ky
Gth K K K K K K
Kt K K K Ky K Ky
Kni® K K K K K K
Tif K K K K K K
Open Parameters: 6 7 7 8 7 8

Models D7 and D8 have an extra edge for the activation of Bicoid by Kruppel. Also
shown is the break up of global and node-specific parameters for different models.
HbP indicates parameter for the dual regulatory action of Hunchback on Kruppel

formulation and analysis showed that the gap gene net-
work can be modeled using a more modular approach,
involving two relatively independent network domains.
In addition, they show close agreement of parameter
estimates and experimentally observed values for most
parameters. However, their approach to compare the
models themselves is slightly problematic as it does not
apply appropriate penalties for increasing model dimen-
sionality. Bayes factors apply this penalty implicitly and so
adhere to the notion of Occam’s razor of favoring simple
hypothesis over complex ones. Moreover, Papatsenko &
Levine do not offer a measure of statistical significance to
justify model choice and rely on an ad-hoc notion of over-
fitting. We enhance their fundamentally sound approach
by allowing for statistically rigorous model selection and
also allow for comparing competing network hypothesis.

Efficient model solver

The approach of Papatsenko & Levine for solving the sys-
tem of partial differential equations was to use a forward
Euler integration loop in which diffusion is simulated by
a Gaussian filter. However, the implementation of the
solver was much too slow for a Bayesian analysis, where
one may have to run upwards of a million iterations. To
overcome this, we solved the system by the method of
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semi-groups. This gives rise to an iterative solution that
can easily be vectorized and is numerically efficient. Our
solver is an order of magnitude faster than the solver due
to Papatsenko & Levine (Additional file 1, Fig. 2).

Convergence of MCMC runs

Time to convergence for MCMC samplers can be sensitive
to initial start points. To overcome this, some approaches
try to initialize the sampler from the MLE estimate of
the likelihood function. This approach suffers from the
same pitfalls as optimization algorithms, in that the sam-
pler may not sample the whole likelihood space and the
evidence of convergence may be misleading.

To ensure that the sampler had indeed converged, we
initialized the chain from random start points drawn from
a uniform prior. We used the Gelman-Rubin statistic [50]
to monitor convergence of the chains. This diagnostic
uses multiple chains to check for lack of convergence, and
is based on the notion that if multiple chains have con-
verged, by definition they should appear very similar to
one another. The Gelman-Rubin statistic uses an analysis
of variance approach to assessing convergence by calcu-
lating both the between-chain variance and within-chain
variance to assess whether chains have indeed converged.
We used the gelman.plot() function from the R [51] pack-
age coda [52] to plot the Gelman-Rubin statistic. It cal-
culates the Gelman-Rubin shrink factor (R) repeatedly,
first calculating with 50 observations and then adding bins
of 10 observations iteratively. For convergence, we would
ideally want the shrink factor to be below 1.2.

Posteriors samples generated by fitting the data to sim-
ulated data showed evidence of confounding between a
set of parameters (Additional file 1, Fig. 3). So, we used
the convergence criteria on the likelihoods of the mod-
els. Figure 3 shows the Gelman-Rubin statistic for four
models. We see that the shrink factor drops sharply with
number of iterations of the chain for all models. This
implies that the chains have, indeed, converged.

Marginal likelihood and Bayes factors

The output from the PT-MCMC at different tempera-
tures was used for computing the marginal likelihood.
For each model, we computed the estimate of the log
of the marginal likelihood estimate from 10 parallel runs
using thermodynamic integration (see methods). 10 inde-
pendent runs of the sampler were used to compute the
estimate and are shown in Fig. 4. The estimates show low
variability. Based on the log of the marginal likelihood, it is
straightforward to compute the Bayes factors (see Table 2
for interpretation of Bayes factors). We find that the Bayes
factor for model C8 over model B7 is very strong. How-
ever, there isnt strong evidence supporting model D8
over model C8. This leads us to believe that there isn't
strong evidence from the data to support Bicoid activation
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Fig. 2 Gap gene network. Gap gene network showing regulatory interactions between maternal genes, Bicoid (Bcd) & Caudal (Cad), and gap genes
(Knirps (Kni), Hunchback (Hb), Kruppel (Kr), Giant (Gt)). Two types of binding affinity parameters are shown - global (K) and edge-specific (K7, K>, K3).

We also investigate evidence for Bicoid activation of Kruppel (shown as dashed arrow)
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Fig. 3 MCMC convergence diagnostics. Gelman plot showing the evolution of the gelmna-rubin statistic for four models (A6, B7, B7r, C8) as a
function of iterations. The diagnostic metric was evaluated for 10 independent chains with random start points for each model. Values less 1.2 imply
good mixing of the chains. Diagnostic plots for other models can be found in Additional file 1
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Fig. 4 Log marginal likelihood estimates. Thermodynamic estimate of the logarithm marginal likelihood for all models. Estimates were generated for
10 independent runs for each model and show low variance. Difference between the estimates for models reveals the log Bayes factor that can be
used for model comparison (see Table 2). We see that addition of a node specific-parameter for Bicoid improves the model fit in a statistically

of Kruppel. However, the data does support a different
distribution for the node specific parameter describing
the binding affinity of Bicoid. This is evidenced by the
fact that there isn’t strong evidence for model C8 over
model B7r.

Gene expression profiles

Model outcomes were generated by sampling from the
joint posterior of the model parameters. For each model,
100 samples were taken from the joint distribution and
the model outcomes generated by using the parameter set
(see Fig. 5). The basic model with 6 parameters (model
A6) also captures the main features of the expression
pattern, showing that the inference procedure is able to
sample from the correct posterior. As the likelihood is
computed only within certain domains (shown by ver-
tical dotted lines for each gap gene in Fig. 5), model
outcomes show higher variability outside these domains.
Most noticeable is the posterior shift of Hunchback
expression seen in models B7r and C8. This shows that
a different distribution of Bicoid binding affinity from the
global affinity parameter is sufficient to capture the char-
acteristic expression curve of Hunchback. Increasing the
number of parameters from 7 to 8 improves the model
fit (as judged from the marginal likelihood), it does so
not in a statistically significant manner. The model out-
comes for models D7 & D8, that describe models with an

Table 2 Criteria due to Kass & Rafferty [22] for interpretation of
Bayes factor as evidence support categories

2loge(B) B Evidence against Hy

0to2 Tto3 Not worth more than a bare mention
2106 31020 Substantial

61010 2010 150 Strong

> 10 > 150 Very strong

extra regulatory edge for Bicoid, can be found in Addi-
tional file 1.

Over-fitting analysis

We tested the best performing model (according to Bayes
factor criteria), model B7r, for over-fitting. We used a
modified cross-validation (CV) approach for testing over-
fitting (see methods). In each CV-fold, we fit the model
to the training set and then draw 100 samples from
the posterior parameter distribution. The posterior sam-
ples are used to predict values for the held out set. We
use the mean log-likelihood metric as prediction accu-
racy measure. As a Gaussian error model is used, the
mean log-likelihood is proportional to the residual error
in this case. The mean log-likelihood for the cross val-
idation set is 0.314 (£0.024). The mean log-likelihood
using samples from posterior parameter distribution gen-
erated using the complete data is 0.326 (£0.061). Using
a Student’s t-test with Welch modification, we found
the difference in means to not be statistically significant
(P > 0.05) indicating that the model doesn’t over-fit
the data.

Discussion

Recovering gene regulatory network information from
expression data is a key problem in systems biology. Par-
ticularly in the study of the segmentation pathway for early
Drosophila embryo, various modeling approaches have
been taken [12, 17, 26]. However, most of these modeling
approaches rely on the assessment of a single candidate
model. This sort of approach has been previously argued
against [53] as it doesn’t pay heed to competing hypothe-
ses and hence, other plausible explanations. In addition,
inference in these approaches rely on optimization tech-
niques which do not account for uncertainty in exper-
imental measurements. Optimization approaches try to
offer measures of parameter certainty through sensitivity
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Giant
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Fig. 5 Gene expression profiles. Gene expression profiles for Models A6, B7, B7r, C8. Black lines show observed values and blue lines are model
outcomes by sampling parameters from the joint posterior. For each model, 100 samples were drawn from the joint posterior of model parameters.
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analysis but, barring certain studies [54], the issue of
comparing models has been largely unadressed.

We do note that there have been some attempts [55] at
doing model selection in the Drosophila embryo. How-
ever, the application of a structured framework in which
models can be compared is still elusive. Doing the anal-
ysis in a Bayesian framework provides a more standard
procedure to address both the issues of performing infer-
ence regarding different models and to assess the certainty
of parameter estimates. An important issue when work-
ing with dynamical models is the issue of identifiability
[49, 56-58] - the ability to uniquely estimate parameters
of the model given the data. In the Bayesian context, a
priori identifiability issues can be detected by examin-
ing the covariance structure of the full parameter pos-
terior distribution. Parameters that are confounded will
be tightly correlated. Identifiability issues can be sur-
mounted by providing a more informative prior that more
tightly constrains confounded parameters. In our case,
however, we have chosen to work with uniform priors to
indicate that our knowledge of the system is still evolv-
ing. Indeterminacy of model parameters are incorporated
into the marginal likelihood, allowing one to still per-
form model selection. However, parameter relationships
can still uncover important mechanisms. In our study, we

find that the parameters for binding affinity and num-
ber of sites are negatively correlated (Additional file 1:
Figure S3). Such a relationship is expected as it indicates
that a transcription factor can modulate gene expression
by either binding strongly to a few sites or through weak
binding to multiple sites. Similar to our study, Chertkova
et al. [59], show that loss of transcription factor bind-
ing sites in in silico models results in increase in binding
affinity of transcription factors, supporting negative cor-
relation between these parameters in order to maintain
gene expression.

In the Bayesian framework, Bayes factors provide a
means of doing model selection and have been employed
to compare between ODE based models [25, 42, 60, 61].
We show here that similar approaches can be used for
doing model selection in the context of PDE models for
spatial patterning. An advantage of the Bayesian model
selection paradigm using Bayes factors is that it doesn’t
require models to be nested, i.e models need not follow
a set hierarchy where all models may be derived from an
extended parameterized model. This particularly advan-
tageous when we attempt to test hypotheses involving
different network topologies. Samples from the poste-
rior of parameter distribution were generated using the
parallel tempering (PT-MCMC) sampler. This sampling
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approach can be easily combined with the numerically
stable thermodynamic integration method to estimate
marginal likelihood for each of the competing models.
These estimates in turn can be used to compute Bayes fac-
tors. Our analysis shows that besides the global binding
affinity parameter, a different node-specific parameter is
required for describing the regulatory effect of Bicoid on
its target genes. This may point to the fact that the molec-
ular mechanism of activation by Bicoid is different from
other maternal/gap genes. The node-specific Bicoid bind-
ing affinity parameter helps account for a posterior shift
of Hunchback expression. A candidate hypothesis for the
activation of Kruppel by Bicoid was also tested for. Our
analysis offers little support for the activation of Kruppel
by Bicoid.

We point out that as the computation of posterior
probabilities in Bayesian analysis involves integration
over high-dimensional parameter spaces, sampling from
higher dimensions becomes increasingly difficult. This
is a particular limitation for the large parameter mod-
els that we see in systems biology. While there has
been some progress in Bayesian parameter estimation in
high-dimensions [62], this problem is far from solved.
However, there might be some justification in criticism
that these high-dimension models also tend to be over-
parameterized and thus too flexible. One approach would
be do a hierarchical Bayesian analysis [63] to constrain
parameter sets in order to prevent the problem of over-
fitting and estimation in higher dimensions.

Conclusion

This study aims to elaborate on a Bayesian framework for
conducting model selection in context of the Drosophila
early developmental segmentation pathway. In particu-
lar, we focus on identifying regulatory interactions for the
gap gene network. Our study seeks to provide a statistical
framework in which predicted experimental hypothesis
can be tested. In addition, the model selection procedure
also ensures that a minimal model for gap gene expression
can be formulated. In order to conduct such an analysis,
we provide an efficient solver for the Papatsenko-Levine
formulation. In conclusion, we find that a seven parame-
ter model with a node-specific binding affinity to describe
regulatory action of Bicoid on the gap genes explains the
data adequately.

Additional file

Additional file 1: Supplementary material describing Papatsenko-Levine
formalism with description of regulatory framework, full derivation of the
solver for the general form of the model, runtime comparison between
solvers, model fit to simulated data, convergence properties and output for
models D7 & D8. (PDF 728 kb)
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