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Background: The knowledge-based statistical potential has been widely used in protein structure modeling
and model quality assessment. They are commonly evaluated based on their abilities of native recognition
as well as decoy discrimination. However, these two aspects are found to be mutually exclusive in many

Results: We developed an atomic ANgle- and DIStance-dependent (ANDIS) statistical potential for protein
structure quality assessment with distance cutoff being a tunable parameter. When distance cutoff is <9.0 A,
“effective atomic interaction” is employed to enhance the ability of native recognition. For a distance cutoff
of 210A, the distance-dependent atom-pair potential with random-walk reference state is combined to
strengthen the ability of decoy discrimination. Benchmark tests on 632 structural decoy sets from diverse sources
demonstrate that ANDIS outperforms other state-of-the-art potentials in both native recognition and decoy

Conclusions: Distance cutoff is a crucial parameter for distance-dependent statistical potentials. A lower
distance cutoff is better for native recognition, while a higher one is favorable for decoy discrimination. The
ANDIS potential is freely available as a standalone application at http://gbp.hzau.edu.cn/ANDIS/.
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Background

The primary mission in protein structure prediction is
to develop accurate energy functions for conformational
search [1-5], model refinement [6—9], and model quality
assessment [10-12]. However, because of the big size,
the flexibility and the presence of solvent molecules,
proteins are still extremely difficult to model with
physics-based potential [13, 14]. especially when
quantum mechanical calculation is involved [15]. The
knowledge-based potential [16—19], which is extracted
from the experimental structures deposited in Protein
Data Bank, has been playing an increasingly important
role in protein structure prediction since its emergence
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in 1990s [20-22]. Varieties of structural features were
used to derive knowledge-based potentials, such as resi-
due solvent accessibility [23, 24], residue or atom con-
tact [25, 26], atom-pair distance distribution [27-29],
side-chain orientation [16, 30, 31] and so on. The Boltz-
mann law and probability theory are commonly
employed to convert the observed frequencies of specific
structural features into statistical potentials [17, 20].

To evaluate a potential function, basically the follow-
ing two aspects need to be considered: (a) can the po-
tential recognize native or near-native structure from
non-native structures? (b) can the energy scores given
by the potential well reflect the structural qualities of
different prediction models? Both aspects can be
assessed by applying the potential to various protein
structure decoy sets [32-35]. In fact, the majority of
statistical potentials were derived by optimizing both
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performances in native recognition and decoy discrimin-
ation [30, 36—38]. However, native recognition empha-
sizes the differences of overall structure quality between
native and decoy structures (e.g., by maximizing the
all-atom energy difference between the native structure
and other non-native structures). While decoy dis-
crimination generally focuses on the backbone differ-
ences among decoy structures (e.g., by enhancing the
correlation of potential score with GDT_TS,
TM-score etc.). They are actually in different levels
(atomic and residual levels, respectively), thus the
coupling of them would require a trade-off in poten-
tial optimization. Our previous work clearly indicates
that the potential’s abilities of native recognition and
decoy discrimination cannot be optimized simultan-
eously with the same parameter sets [39]. For protein
structure modeling, the ability of decoy discrimination
is more crucial. Commonly the energy function tar-
geted to the modeling method is used. But for re-
searchers who want to choose a better structure for
biological analysis, the overall structure quality with
native structure as the gold standard should be
emphasized.

In this work, we developed an atomic angle- and
distance-dependent (ANDIS) statistical potential for
protein structure quality assessment. A total of 167
residue-specific, heavy atom types are considered. As
done in GOAP potential [37], we define a local co-
ordinate system for every heavy atom in protein
structure based on the positions of the atom and two
of its bonded neighboring atoms. The pair-wise
interaction between atoms with distance < 15.0 A and
residue separation =7 are considered. 5 angles (4
polar angles and 1 dihedral angle) are calculated
according to the relative orientation of local coordin-
ate systems between the two interacted atoms. Since
the angles are strongly associated with side-chain
packing and hydrogen-bonding, the ANDIS potential
naturally integrates the atomic distance-dependent
and orientation-dependent interactions. The distance
cutoff is designed to be adjustable from 7 A to 15.0 A.
A lower distance cutoff (<9.5A) is recommended for
native recognition, and the energy of each atom-pair
with distance below 9.5A is weighted based on the
degree of mutual exposure. On the contrary, a higher
distance cutoff (>10A) is recommended for decoy
discrimination, and a distance-dependent atom-pair
potential with random-walk reference state [30] is
combined with the angle energies to enhance the abil-
ity of decoy discrimination.

We benchmarked ANDIS with a comprehensive list of
publicly available statistical potentials (Dfire [36], RW
[30], GOAP [37], DOOP [40], etc.), via 632 protein
structural decoy sets collected from diverse sources. The
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results indicate that ANDIS significantly outperforms
other reported statistical potentials in terms of native
structure recognition. The effects of different protein
datasets and distance cutoffs on ANDIS’s performance
are also comprehensively investigated. A detailed discus-
sion is given below.

Methods

Experimental protein structures for calculating the
potentials

A non-redundant structural dataset of 3519 protein
chains were used for potential derivation. It was culled
by PISCES [41] from Protein Data Bank with pairwise
sequence identity <20%, resolution <2.0A and
R-factor < 0.25 (only the structures determined by X-ray
crystallography were considered). The original list from
PISCES contains about 7000 protein chains. We ex-
cluded the proteins with incomplete, missing or non-
standard residues and the proteins with length < 30 or >
1000 residues. The dataset is publicly available at http://
gbp.hzau.edu.cn/ANDIS/.

Definition of distance-dependent angles

Various aspects of structural features (e.g., solvent
accessibility, electrostatic interaction, contact, dis-
tance, torsional angle) can be used to derive statis-
tical potential, with distance-dependent pair-wise
interaction being the most commonly adopted. In
ANDIS potential the atom-pairs with residue separ-
ation (in protein sequence)>7 and distance < 15.0 A
are considered. There are a total of 167 residue-spe-
cific, heavy (non-hydrogen) atom types in the 20
common amino acids. The distance between atom
pair is divided into 29 bins (first bin is 0-2.2 A, bin
wide is 0.4 A from 2.2A to 7.0A and 0.5A from 7.0
A to 15.0A). ANDIS is designed to capture the
structural characteristics embedded in the relative
orientation of interacting atoms as well as in the dis-
tance distribution of atom-pairs.

As shown in Fig. 1, a local coordinate system is
established for each atom based on itself and 2 neigh-
boring bonded atoms (the next-neighbor, bonded
atom is used if there is only one bonded heavy atom).
To specify the relative orientation of the two coordin-
ate systems, 5 distance-dependent angles are defined,
including 4 polar angles (8,, ¢@,, 0, @, for the orien-
tation of r,, or r,, in the local coordinate system)
and 1 dihedral angle (y between plane r,, x V, (a)
and plane V, (b) x rp,). A more detailed description of
these angles is given by Zhou and Skolnick for their
GOAP potential. [37]

The values of 6,, 8,, ¢,, ¢, and x are equally spitted
into 12 bins. Thus the original size of the statistical
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Fig. 1 The flowchart of our studies. Step 1. PDB dataset preparation; Step 2. Potential derivation; Step 3. Benchmark test
.

matrix is 5 x 167 x 167 x 29 x 12. In statistics, we ignored
the angle distributions (e.g., the second distance bin 2.2
A—2.6 A of atom-pair CYS N — PHE CE2 for angle ¢,)
whose occurrences were below 20 to ensure reasonable

statistics.

Definition of effective atomic interactions
In order to capture the pair-wise interactions that are
more likely to be physically relevant, we consider only

atom a and b are shielded by atom x;. Here we con-
sider the interaction of atom a and b to be fully ef-
fective (assign weight=1.0 in potential calculation)
only when all angles a; are equal to, or smaller than
60°. For the cases with a;>60°, we reduce the weight
by weight = I1,(180.0 — ;)/180.0 if residue separations
between x; and a, b are =2, and at least one of them
are >7. This procedure can help eliminate the redun-
dant and ineffective interactions in potential deriv-
ation and application.

the “effective atomic interactions” in our potential
[42]. As shown in Fig. 1, the physical exposure be-

tween atom a and b is evaluated by calculating the
angle a; (Lax;b) for every atom x; with distance <7.0
A to both atom a and b. A large angle a; means that

Calculation of ANDIS potential
The ANDIS potential is extracted from an experimental
structural dataset of 3519 non-redundant protein chains
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based on the inverse Boltzmann equation [20]. We as-
sume that the 5 angles (8,, 65, @,, @, and y) are inde-
pendent of each other at the given distance so as to
avoid insufficient statistics. Thus the angle potential can
be written as:

EA9(0,4, 0, 0, Pps X |7ap) = —ksT In
( b ¢ ¢bX| ‘b) ? EF(6u70b7¢av¢b7X |ra,b

D% (0a 0, Pu P, X |7a)
)

. PO [angle(s) |ras(d)]
~ _kBTZi In {pREF [ﬂ}’lgle,'(s) ‘ra,b(dﬂ }

(1)

where kg and T are Boltzmann constant and Kelvin
temperature, respectively. r, , is the distance between
atom type a and b. angle; is the angle 6,, 0,, ¢, @,
or x. p*™langles) | 7o H(@)] and p*langlefs) |1,
»(d)] are the observed and reference probabilities of
angle; falling into angle bin s at the given distance
bin d. The initial count values for each angle bin are
set to 0.1. Here we take the average observed value
over 12 angle bins as the reference state, which
means  p*F [angle,(s) |rop(d)] = Y12 pO8S [angle,(s) |
rap(d)]/12. The observed probabilities are calculated
based on the entire structural dataset (3519 non-
redundant X-ray structures). Eventually we can obtain
an angle-based score matrix with the size of 5 x 167 x
167 x 29 x 12.

Since the best distance cutoff (r.,,) is found to be
highly depended on the evaluation criteria and the
application environments, we make it an adjustable
parameter from 7A to 15.0A for user. Generally, a
lower distance cutoff is better for native recognition,
while a higher one is favorable for decoy
discrimination. The “effective atomic interaction” is
employed to enhance the ability of native recognition

when rmt£9.01& . For a distance cutoff of >10 A, the
distance-dependent atom-pair potential with random-
walk reference state [30] (it yields an additional score
matrix of 167 x 167 x 29) is combined with the angle
potential to strengthen the ability of decoy discrimin-
ation. Therefore, the ANDIS energy score for a given
protein sequence S, with conformation C, is calcu-
lated by
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where N is the total number of heavy atoms in the
protein chain S, )" is the distance between atom
pair m and n (corresponding to atom type a and b,
respectively) observed in conformation C,. rc,, is the
distance cutoff for r;’, which can be adjusted from
70A to 15.0A by user (Default value: 15.0A, and a
lower value, eg. 7.0A, is recommended if using
ANDIS for native recognition). w” ” is the weight for
the energy score of atom pair m and n (W"™" = 1.0 if
Teut = 9.5A ), which is determined by the calculation
of “effective atomic interactions” (see Definition of
effective atomic interactions). E*Y(r”}) is the
distance-dependent atom-pair potential with an ideal
random-walk (RW) chain of a rigid step length as the
reference state. We calculate RW potential based on
the following equation:

NOBS (ru,b)
i? <J> S exp(=312,/2nl?) [l
Sy exp(=3r2,,/2nl%) [n3/2

ERW(V,,J,) = —kgT In

OBS,
Na_,h p(rcut)

(3)

Teut

where NOBS(rﬂ, p) is the total observed frequencies of
atom type pairs (a4, b) within a distance bin r to r + Ar in
the experimental protein dataset. NS_]ZS"’ (rewe) is the ob-
served frequencies of atom type pairs (a4, b) within the
distance bin of ., in protein p. L, is the sequence
length of protein p. [ is Kohn length. Ny, is the total
number of proteins in the experimental dataset. Only
atom pairs with residue separation >7 are considered.
More information about RW potential can be found in
the original work by Zhang and Zhang [30].

Decoy datasets for benchmark test

We collected hundreds of decoy sets (each set includes a
native structure as well as a bunch of structural decoys)
from diverse sources for benchmarking the ANDIS po-
tential (see Table 1). The CASP5-8 decoy sets contain a
total of 2759 structures for 143 proteins, which were
collected from CASP5-CASP8 experiments by Rykunov
and Fiser [43]. The CASP10-13 decoy sets were directly

Four <9.5A
(2)

(o.5><EAG(6;”, "o X \rj:;)”) +ERW(r;’jg“) ) if  10A<ru.<15A
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Table 1 Performance comparison in native recognition

Decoy sets CASP5-8 CASP10-13 I-TASSER 3DRobot Rosetta No. total®
No. of targets® 143 (2759) 175 (13,/474) 56 (24,707) 200 (60,200) 58 (5858) 632 (106,998)
Dfire® 64 (0.61) 56 (0.72) 43 (2.80) 1(0.83) 22 (1.55) 186 (0.99)
RW 65 (1.01) 36 (0.86) 53 (442) 0 (-0.30) 20 (1.48) 174 (0.90)
GOAP 106 (1.67) 89 (1.62) 45 (4.98) 94 (1.85) 45 (3.38) 379 (2.16)
DOOP 135 (1.96) 121 (1.99) 52 (6.18) 197 (3.53) 50 (3.91) 555 (3.02)
[TDA 71 (1.15) 117 (1.67) 52 (4.98) 196 (3.83) 53 (3.52) 489 (2.70)
VoroMQA 132 (2.00) 11 (1.77) 48 (5.11) 114 (1.89) 43 (3.09) 448 (2.28)
SBROD 88 (1.62) 119 (232) 33 (3.25) 49 (1.76) 42 (3.02) 331 (2.13)
AngularQA 59 (1.26) 24.(1.11) 29 (1.82) 9 (0.99) 2(0.12) 123 (1.08)
ANDIS® 138 (2.16) 129 (2.32) 47 (6.45) 200 (4.99) 50 (4.27) 564 (3.67)

*The total number of structures (including native structures) are given in parentheses

PThe number of proteins whose native structure is given the lowest energy score by the potential are listed outside the parentheses. The average Z-scores of
native structures are listed in parentheses. Z-score is defined as (<Egecoy> — Enative)/0, Where Ep.qive is the energy score of native structure, <Egeco,> and 6 are
respectively the average and the standard deviation of energy scores for all decoys in the set. But Z-score for VoroMQA energy score is calculated by (Eative — <
Edecoy>)/8, 50 that Z-scores of native structures for all potentials are “the higher the better”

“Calculation is based on a distance cutoff of 7.0 A
d4Z-scores are calculated by averaging over all 632 decoy sets

downloaded from http://predictioncenter.org/download_
area/. We selected and trimmed these decoy sets based
on the following procedure: (i) the prediction sets for
targets without experimental structures are removed; (ii)
the prediction sets whose target experimental structures
are sequentially non-consecutive are removed; (iii) all
non-first prediction models (the second to fifth models
of predictors) are removed; (iv) the prediction models
whose sequences are non-consecutive or shorter than
the corresponding experimental structure are removed;
(v) all prediction models are trimmed to keep them
identical in sequence to the corresponding experimental
structure. As a result, the final decoy sets include 175
target proteins (a total of 13,474 structures). The
CASP10-13 decoy sets are publicly available at http://
gbp.hzau.edu.cn/ANDIS/.

Moreover, we also used other three groups of decoy sets
generated by some specific modeling methods. The
I-TASSER decoy sets comprise of 56 non-redundant pro-
teins (a total of 24,707 structures) whose structure decoys
were generated by I-TASSER Monte Carlo simulations
[44] and refined by GROMACS4.0 MD simulation [45].
The 3DRobot decoy sets were generated by a specialized
decoy generating method we previously developed [35],
which include 200 non-redundant proteins (a total of
60,200 structures). The Rosetta decoy sets include a total
of 5858 structures for 58 proteins, which were generated
by Rosetta ab initio structure prediction [46].

Other potentials for benchmark comparison

We benchmarked ANDIS with other 8 state-of-the-art po-
tentials. Two of them (Dfire [36] and RW [30]) are purely
distance-dependent atom-pair statistical potentials with
different analytical assumptions of reference state. GOAP

[37] depends on the relative orientation of the planes asso-
ciated with each heavy atom in interacting pairs, which
combines Dfire with an angle-dependent potential. ITDA
[47] integrates the distance-dependent atom-pair potential
with a new component for estimating the backbone con-
formational entropies. VoroMQA [38] combines the idea
of statistical potentials with the use of interatomic contact
areas instead of distances. Contact areas, derived using
Voronoi tessellation of protein structure, are capable of
capturing both explicit interactions between protein atoms
and implicit interactions of protein atoms with solvent.
The other 3 potentials (DOOP [40], SBROD [48] and
AngularQA [49]) employ machine learning methods to
different extent. DOOP is a neural network-based poten-
tial with distance distributions of different atom pairs as
input features. It also includes a torsion potential term
which describes the local conformational preference.
SBROD is trained based on Ridge Regression with four
different structural features: residue-residue orientations,
contacts between backbone atoms, hydrogen bonding,
and solvent-solute interactions. AngularQA is derived
based on Long Short-Term Memory (LSTM) network
with the angles between residues being the core features.
Like ANDIS, all the 8 potentials are single-model quality
assessment methods.

Results

Effects of distance cutoff on ANDIS’s performance
Distance cutoff is one of the most essential parameter
for distance-dependent potentials. A series of distance
cutoffs (from 5.8 A to 16.0 A) were tested to derive dif-
ferent versions of ANDIS potential. Figure 2 shows their
average performance over all 632 decoy sets. Potential
based on distance cutoff of around 7.0 A achieves the
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Fig. 2 Effects of distance cutoff on ANDIS's performance. The results are averaged over all 632 structural decoy sets. “angle only” refers to the
pure angle potential without involvement of “effective atomic interaction” and distance-dependent atom-pair potential. Since lower energy score
(higher TM-score) is desired, the value of PCC is negative, the lower the better

highest average Z-score (of native structure). Afterwards,
the average Z-score decreases linearly with the increase
of distance cutoff. However, the average PCC (between
ANDIS energy and TM-score) varies with distance cutoff
in the opposite trend. These results indicate that the po-
tential’s abilities of native recognition and decoy dis-
crimination cannot be optimized simultaneously with
the same distance cutoff. Generally, a lower distance
cutoff is better for native recognition, while a higher
one is favorable for decoy discrimination. But the op-
timal distance cutoff for decoy sets from different
sources may vary. As shown in Additional file 1: Fig-
ure S1, the best cutoff of native recognition for
I-TASSER decoy sets is 9.0 A, and the best cutoff of
decoy discrimination for 3DRobot decoy sets is 10.0
A. Therefore, ANDIS provides distance cutoff as an
adjustable parameter from 7.0A to 15.0A with
bin-width of 0.5A. The default value is set to 15.0 A
in favor of decoy discrimination, and 7.0 A is recom-
mended for native recognition.

Since the “effective atomic interaction” is beneficial
for native recognition but unhelpful for decoy dis-
crimination, we include it only when a lower dis-
tance cutoff (< 9.0 A) is adopted. As shown in Fig. 2,
the average Z-score is significantly improved com-
pared with that of angle potential only. The results
for cases with higher distance cutoff (> 10.0 A) also
demonstrate a remarkable promotion in decoy
discrimination achieved by incorporation of the

distance-dependent atom-pair potential with random-walk
reference state.

Moreover, we also checked the distance cutoffs used
by the distance-dependent potentials listed in Table 1
(Dfire, RW, GOAP and DOOP), and found that most of
them are around 15 A, except that of DOOP (6.5A).
This could provide a possible explanation for DOOP’s
outstanding performance in native recognition.

Performance comparison in native recognition

We applied ANDIS as well as other 8 potentials on the
632 decoy sets from CASP experiments [50], [-TASSER
[30], 3DRobot [35] and Rosetta [46]. Table 1 summarizes
the performances of different potentials in native recog-
nition (recognize the native structure among a set of
structural decoys). ANDIS (distance cutoff of 70A is
used) recognizes 564 native structures (success rate is
about 90%) and achieves an average Z-score of 3.67 over
all decoy sets, which is remarkably better than that of
the other eight potentials. For the CASP5-8 [43],
CASP10-13 and 3DRobot decoy sets, ANDIS has the
best performances. For I-TASSER and Rosetta decoy
sets, ANDIS fails to achieve the best success rate, but
still has the best Z-score.

The atomic distance-dependent pair-wise potentials,
Dfire and RW, perform much worse than other potentials.
Although their capabilities for native recognition can be re-
markably improved by adjusting the distance cutoff and
residue interval [39], they failed to outperform DOOP and
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ANDIS (data not shown). GOAP significantly outperforms
Dfire and RW, but still has large gaps compared with other
4 potentials. The neural network-based potential DOOP
(with distance cutoff of 6.5 A) is the only one with compar-
able performance to ANDIS. Moreover, ITDA and Vor-
oMQA, the two recently developed statistical potentials,
both underperform DOOP in native recognition. However,
ITDA achieves the best success rate (53 out of 58) on Ro-
setta decoy sets. The other two machine learning-based
methods, SBROD and AngularQA, perform much worse
than DOOP in native recognition, which is possibly because
they are mainly designed for decoy ranking.

Performance comparison in decoy discrimination

The more practical use of statistical potential is to dis-
criminate between good and bad structural decoys.
Table 2 summarizes the performances of different poten-
tials in decoy discrimination. We evaluate the ability of
decoy discrimination based on the average Pearson’s cor-
relation coefficient (PCC) between energy score and
TM-score, as well as the 20% enrichment which mea-
sures the relative occurrence of the most accurate (by
TM-score) 20% decoys among the 20% best scoring (by
potential) decoys. The outstanding performances of
SBROD on CASP decoy sets help it achieves the best
average performances over all decoy sets. However, its
performances on the rest three groups of decoy sets are
far worse than those of other methods (except Angu-
larQA). In fact, SBROD are trained directly based on
CASP5-CASP10 datasets, which probably brings it an
inherent bias to CASP decoy sets. ANDIS achieves both
the best average PCC (- 0.681) and the best average 20%
enrichment (2.83) over all 632 decoy sets (except
SBROD). The performances of VoroMQA are relatively
close to that of ANDIS. GOAP outperforms all other

Table 2 Performance comparison in decoy discrimination
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potentials on 3DRobot decoy sets. In fact ANDIS is able
to surpass GOAP on 3DRobot decoy sets if a distance
cutoff between 10.0A to 13.0A is adopted (e.g, the
average PCC and 20% enrichment on 3DRobot decoy
sets are 0.910 and 4.14 when distance cutoff is set to
10.0 A). DOOP and ITDA, which are outstanding in na-
tive recognition, perform noticeably worse than other
potentials in decoy discrimination (except AngularQA).
The bad performances of AngularQA are probably be-
cause it is mainly designed to serve as an energy compo-
nent, not a standalone QA method.

Calculation by GDT_TS (instead of TM-score) came
up with very similar results (data not shown).

Discussion

Effects of protein dataset on ANDIS’s performance

By the beginning of 2018, the total number of structures
deposited in the Protein Data Bank [51] has almost
reached 140,000. The size and scope of protein dataset
are no longer a problem for potential derivation. To
demonstrate the correlation between dataset size and
ANDIS’s performance, we derived ANDIS based on dif-
ferent number of protein structures from the dataset
(3519 X-ray structures). As shown in Fig. 3, the average
Z-score of native increases with the size of protein data-
set, faster when the dataset is relatively small (e.g., <
1200), stabilized gradually when the dataset size exceeds
2000. However, the average PCC is very insensitive to
the size of dataset. It is noteworthy that the potential
based on only 400 structures can already achieve an
average PCC very close to the optimal. This implies that
the rest 3000 structures actually have very little contri-
bution to promote potential’s ability of decoy discrimin-
ation. The same procedure was also conducted on other

Decoy sets CASP5-8 CASP10-13 I-TASSER 3DRobot Rosetta Average®
Dfire® —-0.548 (2.16) —-0441 (2.01) —0480 (1.62) —-0.860 (3.77) —-0.366 (1.97) —0.594 (2.56)
RW —0.550 (2.16) -0462 (2.01) —0476 (1.59) —0.863 (3.80) —0.361 (1.95) -0.601 (2.57)
GOAP —-0.607 (2.66) —-0.550 (2.13) —-0473 (1.61) —0.900 (4.04) —0.406 (1.99) —0.654 (2.79)
DOOP —0442 (1.95) —-0415 (1.90) —-0333 (141) —-0.874 (4.00) —-0.285 (1.67) —0.547 (2.51)
[TDA —-0.392 (2.03) —0452 (2.03) —0431 (1.54) —0.841 (3.70) —0.302 (1.68) —0.545 (2.48)
VoroMQA® 0.665 (2.66) 0.628 (2.26) 0450 (1.44) 0.893 (3.91) 0.366 (1.86) 0.680 (2.76)
SBROD® 0.793 (3.06) 0.831 (2.26) 0397 (1.49) 0.857 (3.34) 0270 (1.62) 0.741 (2.66)
AngularQA® 0441 (0.122) 0426 (0.304) 0323 (0.579) 0.543 (0.224) 0.042 (0.961) 0422 (0.32)
ANDIS? —0.663 (2.80) —-0.607 (2.18) —-0.503 (1.59) —0.891 (3.95) —-0401 (2.05) — 0681 (2.83)

the native structures in the decoy sets are ignored when calculating PCC and “20% enrichment”

PThe average Pearson’s correlation coefficient between energy and TM-score (PCC) is listed outside the parentheses. The average value of 20% enrichment is
listed in parentheses. “20% enrichment” means the relative occurrence of the most accurate (by TM-score) 20% models among the 20% best scoring (by

potential) models compared to that for the entire decoy set. The possible value of 20% enrichment ranges from 0 to 5, the higher the better

“Since the energy scores of VoroMQA, SBROD and AngularQA are the higher the better, the PCC between them and TM-score is positive
dCalculation is based on a distance cutoff of 15.0 A

by averaging over all 632 decoy sets
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Fig. 3 Overall effects of dataset size on ANDIS's performance. ANDIS is re-extracted based on different number of structures from the original

datasets listed in Additional file 1: Figure S2, similar
trends were observed. In general, a dataset with around
3000 structures is adequate for ANDIS to obtain the op-
timal or near-optimal performance in native recognition.

Moreover, on what basis should a protein dataset be
determined, and how does the choice of dataset affect
potential’s performances? Here we prepared a series of
structure datasets according to the pre-compiled PDB
lists for various parameter sets (resolution, sequence
identity, etc.) from PISCES [41]. We derived the ANDIS
potential based on different datasets and summarized
the test results in Additional file 1: Figure S2. It is easy
to see that the performance variation brought by dataset
with different parameter sets is very limited. There are
almost no changes on average PCC for all 5 groups of
decoy sets. The average Z-score for 3DRobot decoy sets
increases slightly with the decrease of dataset size, but
reverse trends can be seen for I-TASSER and Rosetta
decoy sets. In fact, results based on datasets with size >
3000 are relatively stable.

What kind of native structures are hard to be recognized?
Although 90% of native structures are successfully rec-
ognized by ANDIS, what are the other unrecognized
10%? We checked all the 58 unrecognized native struc-
tures, and found that their average length is significantly
lower than that of the recognized. We also calculated
the MolProbity score [52] of native structure. It is a
well-known metric for estimating the physical

reasonableness of protein structure. Figure 4 shows the
length and MolProbity score of all 175 native structures
in CASP10-13 decoy sets. We can see that all 9 native
structures with length < 65 residues and 75% (24 out of
32) of native structures with MolProbity score > 2.0 are
not recognized by ANDIS. Quite the contrary, more
than 90% of native structures with length > 65 and Mol-
Probity score<2.0 are successfully recognized by
ANDIS. Since higher MolProbity score implies worse
structural quality (or lower resolution), these observa-
tions indicate that the hard targets for native recognition
have a certain degree of commonality. In another sense,
for the target protein of small size (or target protein
whose experimental structure has relatively low reso-
lution), current prediction methods are capable of
generating protein models comparable to the experi-
mental structure. Furthermore, all native structures in
[-TASSER and Rosetta decoy sets are small proteins with
average lengths of 80 residues and 83 residues, respect-
ively. There is no evident difference in length between
the recognized and the unrecognized native structures
from them. But the average MolProbity scores of the
unrecognized native structures from I-TASSER and Ro-
setta decoy sets are 2.386 and 2.506 respectively, much
larger than those of the recognized native structures
from them (1.223 and 1.771, respectively). Similar results
are observed in CASP5-8 decoy sets. In fact all the 5
unrecognized native structures from CASP5-8 decoy
sets are ranked second by ANDIS, only inferior to one
prediction model.
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Conclusions

Our study demonstrates that distance cutoff plays a
crucial role in distance-dependent statistical potential.
Generally, a lower distance cutoff is better for native rec-
ognition, while a higher one is favorable for decoy
discrimination. We developed an atomic angle- and
distance-dependent potential (ANDIS) with distance
cutoff being an adjustable parameter. ANDIS’s ability
of native recognition is remarkably promoted by
introducing the “effective atomic interactions”. Most
of the native structures that fail to be recognized are
small proteins or with poor MolProbity score. A
distance-dependent atom-pair potential with random-
walk reference state is combined to ANDIS when dis-
tance cutoff is >10A, which successfully enhances
ANDIS’s ability of decoy discrimination. The results of
benchmark tests indicate that ANDIS outperforms other
state-of-the-art potentials in both native recognition and
decoy discrimination.

Moreover, we investigated the effects of protein
dataset on potential’s performance. Datasets culled by
different parameter sets don’t make a real difference
on ANDIS’s performance, but the size of dataset
should reach a certain level. A dataset with about
3000 structures is adequate for ANDIS to achieve the
optimal performance in native recognition. While the
size reduces to hundreds of structures for optimizing
the ability of decoy discrimination. Why is there such

a difference? What is the best size of a representative
dataset? How is the limitation of a potential in infor-
mation extraction? These interesting questions remain
to be further explored.

Additional file

Additional file 1: Figure S1. Effects of distance cutoff on ANDIS's
performance for different decoy sets. Figure S2. Effects of protein
dataset on ANDIS's performance for different decoy sets. (DOCX 222 kb)
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