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Abstract

Background: Testing model adequacy is important before a DNA substitution model is chosen for phylogenetic
inference. Using a mis-specified model can negatively impact phylogenetic inference, for example, the maximum
likelihood method can be inconsistent when the DNA sequences are generated under a tree topology which is in the
Felsentein Zone and analyzed with a mis-specified or inadequate model. However, model adequacy testing in
phylogenetics is underdeveloped.

Results: Here we develop a simple, general, powerful and robust model test based on Pearson’s goodness-of-fit test
and binning of site patterns. We demonstrate through simulation that this test is robust in its high power to reject the
inadequate models for a large range of different ways of binning site patterns while the Type | error is controlled well.
In the real data analysis we discovered many cases where models chosen by another method can be rejected by this
new test, in particular, our proposed test rejects the most complex DNA model (GTR+I+T") while the Goldman-Cox
test fails to reject the commonly used simple models.

Conclusions: Model adequacy testing and bootstrap should be used together to assess reliability of conclusions
after model selection and model fitting have already been applied to choose the model and fit it. The new
goodness-of-fit test proposed in this paper is a simple and powerful model adequacy testing method serving such a
regular model checking purpose. We caution against deriving strong conclusions from analyses based on inadequate
models. At a minimum, those results derived from inadequate models can now be readly flagged using the new test,

and reported as such.
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Background

The performance of phylogenetic methods relies on how
well the model assumptions are satisfied. In reality, mod-
els are all mis-specified since the unknown underlying
processes that generate the data are inevitably very com-
plicated. What we could hope is that inference is still valid
if the model mis-specification is not severe. For estima-
tion of tree topologies, mis-specified models could lead
to inconsistent estimates or inaccurate estimates of its
bootstrap support [4, 12, 14, 39]. The inconsistent esti-
mation of tree topologies typically happens when the
model is oversimplified and the underlying true tree has
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the so-called “long branch attraction” problem where the
unknown true tree contains long branches separated by
a short internal branch [1, 13, 20, 21, 33, 34]. Estima-
tion of branch lengths could also be heavily influenced
by the selected substitution models, which in turn affects
any downstream analyses that rely on the branch length
estimates, such as divergence time estimates [32].

In order to be complete, a statistical analysis should
not only provide estimates for the unknown parameters,
but should also offer an assessment of the reliability of
these estimates. There are two aspects of this assessment.
Firstly, there is uncertainty due to limited data size i.e.
variability in our estimates. This is assessed by a range of
statistical tools. For biological applications the bootstrap
is often used for this purpose. The second aspect of relia-
bility assessment is model adequacy. If the model does not
fit the data, then its results will be unreliable and may pos-
sibly lead to false biological conclusions. The techniques
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for assessing this are model adequacy tests, and have been
greatly underdeveloped in phylogeny. Of course, certain
model mis-specifications may lead to very small bias in
certain estimates, but without knowing the true model, we
do not know whether the mis-specification will lead to a
bias in the estimates of interest. Some research into poste-
rior predictive simulations [3, 7] has speculated that tests
could be developed to be particularly sensitive to model
mis-specifications that cause misestimation of topology.
However, there is as yet insufficient evidence that such a
technique performs better than general model adequacy
testing. These two aspects of reliability assessment are
both needed as they provide different insights into how
the estimates may be unreliable. The bootstrap assesses
whether there is enough data to support the conclusions
reached. The model adequacy test assesses whether the
model could plausibly have generated the data. In the case
of weak bootstrap support, longer sequences are needed.
(At least in theory, if longer sequences are not available,
it simply means we do not have sufficient data to be sure
of the true tree). In the case of an inadequate model, bet-
ter models are needed. Analyzing a large data set with a
wrong model could result in strong bootstrap support to
biased conclusions.

In addition to the improved understanding of the reli-
ability of our estimates, model adequacy testing can also
provide valuable insights into the underlying biological
processes. For example, if a model without rate variation
among sites is adequate, for a reasonably large dataset,
it suggests that the among-site variation is likely to be
small for this sequence. Examples of work on inferring
aspects of the biological processes from model adequacy
include [9, 10, 19].

Model adequacy tests are an area that has been greatly
underdeveloped in phylogeny with a relatively small
number of related publications in the literature (e.g.
[2, 3, 8,17, 30, 38]) and it is not at all a common practice
for researchers to validate their models by checking the
model adequacy. There are several reasons why adequacy
testing is underdeveloped for molecular phylogenetics.
Firstly, the substitution models for molecular data are very
different from the typical models in the statistical liter-
ature, so off-the-shelf methods cannot be immediately
applied in the way that other methods (e.g. bootstrapping)
can be applied to phylogenetics. Second, there appears
to be widespread misunderstanding of the purpose of
model adequacy testing. Many biologists incorrectly think
of model adequacy testing as an alternative to model selec-
tion. This confusion may come partly from the tendency
in the literature to categorise model assessment into (1)
relative model fit and (2) absolute goodness of fit. While
these both have the ability to reject some models, rela-
tive model fit inherently suggests a better model, and thus
naturally leads to model selection methods. It is however
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limited by the choice of alternative models, and the con-
straint that it should choose exactly one model. Without a
suitable choice of alternative model, model selection is left
choosing the least bad model from the candidates, with
no warning that the model should not be used. Param-
eter estimates under the selected model could be highly
biased, leading to the wrong biological conclusions. Model
adequacy testing, on the other hand, provides an objec-
tive measure of whether the selected model is suitable for
analyzing the data, even though the model is an idealized
version of the true process. Thus, model adequacy test-
ing provides an additional level of support for conclusions
that cannot be obtained from the mere process of model
selection.

Powerful adequacy tests for DNA substitution mod-
els are almost nonexistant in the phylogenetic literature
[16, 22]. The most well known frequentist model ade-
quacy test is the Goldman-Cox (GC) test [17] which uses
the likelihood ratio test statistic between the multinomial
distribution and the model in question as a test statis-
tic. An alternative method is Bayesian posterior predictive
simulations (PPSs) [2]. Unfortunately, using both simu-
lated and real-data, both of these tests were demonstrated
by [30], as lacking power to reject models simpler than
the optimal models selected by any standard model selec-
tion criterion (hLRT, AICc, BIC and DT) [27, 28]. The
results in [30] also suggest that the GC test is generally
slightly more powerful than the PPS test, but Waddell
et al. [38] showed that the GC test generally lacks power.
Interestingly, the two possible exceptions to the problem
of low power were obtained by Waddell et al. [38] through
marginalization of the site patterns. The first marginal test
assessed the reversibility assumption through symmetry
of the pairwise frequency matrices of each pair of taxa.
The second marginal test employed the idea of binning
of site patterns to ensure the appropriateness of the Chi-
squared test. However, the power of these two marginal
tests was demonstrated only in a single example.

The purpose of this study is to address the problem
of power when testing the adequacy of DNA substitu-
tion models. We propose a simple, powerful and robust
model adequacy test based on Pearson’s goodness-of-fit
test (X2). Our method is also based on binning of site
patterns, but our method avoids aspects of the Waddell
et al. [31] method that might explain why it has
undergone no further development. Specifically, Waddell
et al. [31] (i) performed binning based on the parsi-
mony scores of the site patterns relative to the max-
imum likelihood (ML) tree (under the null model in
the test) and (ii) employed seemingly arbitrary methods
to ensure the well-known rule-of-thumb of the X? test
(that the expected number of samples in each bin is at
least 5) was satisfied. Our method employs a K-means
clustering method for binning that leads to a generally
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powerful test for DNA substitution model adequacy. The
test is general, rather than focused on any single aspect
of model mis-specification. We use both simulation and
real data analysis to evaluate the new method, and we
discuss the joint use of bootstrapping and model ade-
quacy tests as a general means to improve phylogenetic
inference.

Methods

A review of the GC test

The Goldman-Cox test (GC test) [17] for testing the ade-
quacy of a substitution model is based on the likelihood
ratio test (LRT) statistic between the multinomial dis-
tribution and the model in question. In principle, the
likelihood ratio statistic has an approximate x2 distri-
bution with degrees of freedom equal to the number of
patterns minus the number of estimated parameters in
the model. However, two reasons prevent the use of a x>
distribution. The first is the x? approximation requires
that each attainable site pattern should appear in the sam-
ple a few times. This requirement is usually not satisfied
for the real sequence data, since the number of possi-
ble patterns is very large (4" with n being the number
of taxa for DNA data) and a large proportion of the site
patterns are constant for the alignments used in phylo-
genetic analysis. Thus many patterns are not observed in
the data and many observed informative patterns have
very low frequencies. The second reason that compli-
cates the degree-of-freedom issue is that it is hard to
determine what degree-of-freedom should be counted
for the phylogenetic tree estimated in the null hypothe-
sis. To assess the null hypothesis, the GC test employs
a parametric bootstrap to simulate a set of sequences
based on the maximum likelihood tree with the max-
imum likelihood estimates (MLE) for all parameters in
the null model from the original data. The test statistic
is calculated then for each simulated data set and they
form the null distribution. Note that for this method the
maximum likelihood tree and all the parameters under
the substitution model of the null hypothesis need to
be estimated for each simulated data set, which makes
this test computationally expensive, especially for large
numbers of taxa. It could also be less accurate when the
search for the maximum likelihood tree topology does not
return the global maximum of the likelihood. Unfortu-
nately, despite the amount of compuation involved, the
test was shown to be lack of power in rejecting the tested
models [30, 38].

The same two reasons that preclude the use of a x?
distribution for the LRT statistics also preclude the use
of the Pearsons goodness-of-fit test (X?) for such prob-
lems. Binning of the site patterns can typically remedy the
problem of low site-pattern counts for using a Pearsons
goodness-of-fit test.
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Pearsons goodness-of-fit test through binning of site
patterns
As a goodness-of-fit test, the Pearson’s x? test compares
the observed frequency distribution and the expected
frequency distribution under the null hypothesis for cat-
egorical data. The null hypothesis for testing a DNA
substitution model is:

Hy: The substitution model M is the true model.

Tree topology is a nuisance parameter here. The test
statistic is:

K

X2 _ Z (0; — E;)?

where O; and E; are the observed frequency and the
expected frequency of the ith category and K is the num-
ber of categories. The test statistic is compared against the
x? distribution with K — 1 degrees of freedom.

In principle, the test is applicable for any procedure that
bins the sites such that the standard rule-of-thumb for this
test is satisfied. However the power of the test differs for
the different binning procedures. If model M is wrong,
there will be some elements in the estimated DNA substi-
tution matrix that are biased, which in turn will cause the
estimated probabilities of some site patterns to be too high
and some other site pattern probabilities to be too low.
Our procedure bins the site patterns such that most bins
are comprised mostly of sites with estimated probabilities
biased up or mostly of sites with estimated probabilities
biased down.

The rule-of-thumb of Pearson’s x2 test requires that
no more than 20% of the bins have expected frequencies
below 5. In fact, it is not hard to meet these requirements if
we bin the site patterns into a reasonable number of bins.
Generally speaking, this test is applicable for any arbitrar-
ily chosen rules for binning the site patterns. The question
is how to bin the site patterns such that the power of the
test can be optimized.

Given that tree topology is a nuisance parameter, a
statistic that is most directly related to the site-pattern
probabilities is the observed frequencies of the nucleotide
characters, 7 = (74,7c, G, ), at a site. This will
provide a basic binning step directly, i.e. the sites with
the same frequency summary statistics are first binned
together. For example for the 4-taxon case, sites (A, C,
C, A), (C, A, C,A), (A, C, A, C) etc. will have the same
summary statistics, and will be binned together. For the
parsimoniously uninformative sites, this agrees with the
basic binning used by [38]. We will illustrate this equal fre-
quency binning method based on 4-taxon trees. For cases
with a large number of taxa, we further bin sites with simi-
lar frequency vectors based on a clustering method. In this
paper, we use the simple K-means clustering method.
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Equal frequency binning for a 4-taxon tree
For a 4-taxon tree, there are 256 different site patterns
possible. These site patterns can be summarized by the
following five different types according to the proportions
of nucleotide characters (see Table 1). For example, sites
XXYY and XYYX (where X and Y are any two distinct
nucleotides) are the same type, because the proportions
of X and Y are both %, and sites XXXY, XXYX are the
same type because the proportions of X and Y are % and i
respectively. Each type of site pattern contains a different
number of bins depending on the nucleotide characters
occupying X, Y, Z, and W.

There are 35 bins in total. With this binning, the
goodness-of-fit test procedure is:

1 Calculate O; as the observed count of the ith bin.

2 Compute the ML tree and MLE of parameters under
the null model.

3 Calculate the expected probabilities of site patterns
based on the ML tree and MLE of model parameters.

4 Calculate expected probabilities, P;, for each bin and
calculate the expected frequency E; = nP;, where n is
the sequence length.

5 The test statistic:

35

i=1 nP;
is compared to a x2 distribution with df = 34.

We employ simulation to illustrate the effects of equal
frequency binning and the rationale of this test procedure
in the “Results” section.

The general frequency based binning model test

When m is the number of taxa, there are 4" different site
patterns, and (m; 3) different frequency vectors. Binning
based on exact equal frequency vectors is not practical for
large m values. Also when the sequence length is small,
even for 4-taxon case, the rule-of-thumb of Pearson’s x>
test may not be satisfied when using the exact equal fre-
quency binning procedure. The idea is then extended so

that sites with similar frequency vectors will be binned

Table 1 Different types of site patterns and their corresponing
numbers of bins for a 4-taxon tree

Type A: XXXX: 4 bins
Type B: XXYY, XYYX, XYXY; 6 bins
Type C: XXXY, XYXX, XXYX,

YXXX; 12 bins
Type D: XXYZ, XYZX, YZXX,

XYXZ, ZXYX, ZXXY; 12 bins
Type E: XYZW. 1 bin
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together. The K-means clustering method is used for this
purpose.

In data mining, K-means clustering is a simple approach
for clustering the observed (vector valued) data into differ-
ent clusters according to their similarity, often measured
by the Euclidian distance. Since site patterns are sum-
marized by numerical values, it is easy to cluster these
frequency vectors using any standard clustering method.

In this case, computing the expected frequencies exactly
would involve summing over all possible site patterns.
This is clearly not feasible for larger numbers of taxa. We
therefore estimate the expected frequencies empirically.
By simulating a very large number of sites, and assign-
ing each site to the nearest bin, we can quickly obtain a
good estimate for the probability of each bin under the
null model. We will discuss what a “very large number”
should be in the following subsection and conclude that
for most practical purposes, we should simulate between
100,000 and 1,000,000 sites.

The Goodness-of-fit test Procedure in general
1 Summarize each site pattern into a frequency vector

fi = (faifcinfGirfri),i = 1,2, -+ ,mand create an
n X 4 matrix:

Jfa1 fa1 fe1 fm
_ Jfa2 fe2 fa2 fr2

fAn an fGn an
where each row contains the frequencies of observed
nucleotides for the corresponding site.

2 Use the K-means clustering approach for binning the
rows in matrix F into K clusters.

3 Forj=1,2,---,K, denote the center of the jth bin by
C;. Calculate the observed frequency for the jth bin,
O}, as the total number of sites assigned to the jth bin.

4 Compute the ML tree and the MLE for all
parameters under the Null model.

5 Use a parametric bootstrap to simulate an extremely
long (M sites) DNA sequence data X* based on the
ML tree and the MLE of model parameters.

6 From sequence data X*, calculate the M x 4
frequency matrix F*, where each row contains the
frequencies of nucleotide characters of each site:

T Je Jau S
.| Ja2 Soo Jar I
F=1 - . .
Jant Jom Jom Frm
7 Cluster the rows in F* to the original K clusters found
in step 2 by comparing the Euclidian distance of each
row to the K centers (C1, Cy, - - - , Cg) calculated in
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step 2 and assign the row to the cluster with the
smallest Euclidian distance. Denote the number of
rows assigned to the jth bin by S;. Then, the expected
size of the jth bin, Ej, can be calculated as:

I’IS/'
E=-1
M
where n is the sequence length in the observed data
set.
8 The test statistic is:
K 2
(O —E)
2=y 27
>0
j=1

Under Hp, X2 follows the X2 distribution with
df=K -1

How many sites do we need to simulate to estimate the
probability?

Because we do not calculate the true probabilities exactly,
our simulation will introduce some error in our calculated
chi-squared statistic. We are able to bound this error for
large sample sizes.

Theorem 1 If the data include n sites, we divide the site
patterns into K bins which satisfy the rule of thumb that
the expected number of sites in each bin is at least 5, and
we simulate M points, then the mean squared error in our
estimated chi-squared statistic due to this simulation is at
most

16Kn
25M

The proof of this theorem is in Appendix B. Recall that
our p-value comes from a chi-square distribution with
K — 1 degrees of freedom. If the error in our statistic is E,
then the error in our p-value is approximately Ef , 2 x?),
that is, the error in our chi-squared statistic multiplied by
the density of the chi-squared distribution at the observed
statistic value. Since we are interested in getting accu-
rate p-values near the critical value, we can calculate the
error in the p-values under the assumption that X? is near
the critical value. For reasonably large K, we have that
the chi-squared distribution is approximately normal with
variance 2(K —1), which means that the density at the crit-

q)—l(a)Z
. . . e 2 _ .
ical value is approximately TR For o = 0.05, this
is approximately %. We can then choose M to con-

trol the mean squared error near the critical value. For
example to ensure that the root mean squared error in the
p-value is at most 0.005 for p-values near 0.05, we would
solve
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0.02922  16Kn )
- x = 0.005
K—-1 " 25M
Kn
M =22
K—1

For our examples with # at most a few thousand, this
means that M = 100, 000 should give sufficiently accurate
p-values near the critical value.

Choosing the number of bins

Another question not fully addressed is how to choose
the number of bins K. For the classical K-means method,
there are a number of standard approaches for choosing
K. However, the purposes behind those methods are very
different from our purposes, so those methods may not
be applicable to our test. The reason we use a binning
procedure in the first place is that using all possible site
patterns leads to violation of the rule-of-thumb for apply-
ing Pearson’s Chi-squared test (and also the infeasably
large number of site patterns for large numbers of taxa
causes computational issues). If this problem did not arise,
then taking all possible site patterns would be the natural
thing to do. This therefore suggests that taking K as large
as possible while retaining these rule-of-thumb would be
the best thing to do. The trouble with this is that the
standard rule-of-thumb does not correspond to precise
boundaries, so the largest value of K that does not vio-
late the rule-of-thumb varies according to the data and the
model being tested. Further, as K gets larger, the accuracy
of the Chi-squared approximation decreases. It therefore
makes sense to consider the p-values for a range of suit-
ably large K. Our simulation studies and real data analyses
show that in most cases, sufficiently large values of K give
similar conclusions, so the exact choice of K does not
matter too much.

Degrees of freedom

The asymptotic Chi-squared distribution of Pearson’s
Chi-squared statistic is based on a number of approxima-
tions, which may not be totally appropriate in our case.
A lot of work has been done on the appropriate asymp-
totics in these cases [25]. For simplicity, we have used the
standard Pearson statistic, and used K — 1 degrees of free-
dom. This is conservative, so should lead to a smaller rate
of Type I errors. Given the power we achieved with this
method (see Results), it seems that this will be sufficient
for most cases. However, there are potentially several pos-
sibilities to increase the power for this test which will be
discussed below.

The use of K — 1 degrees of freedom ignores that
the parameter values are estimated from the data. If the
parameter values were estimated from just the frequency
of each bin, then we would have a Chi-squared distribu-
tion with K — d — 1 degrees of freedom, where d is the
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number of parameters estimated. However, the param-
eter values are estimated using the site patterns, rather
than just the bins, which for many models leads to differ-
ent parameter estimates. The theory behind this case was
studied by Chernoff and Lehmann [5], and the asymptotic
distribution of the Chi-square statistic is the distribution
of X(21<—d—1) + Z?:l 1iZ:2, where the Zs are independent
standard normal variables and As are the eigenvalues of
the matrix (I — B/~1BT). The matrix J is the information
matrix of the parameter estimates, and B is the Kxd matrix
with i, kth entry ﬁ %ﬁ, where p; is the probability of the
ith bin and 6 is the kth parameter in the model. If the
parameters were estimated according to the bins rather
than the site patterns, we would have A; = 0 for all i, and
the asymptotic distribution would be Chi-squared with
K —d —1 degrees of freedom. The values of the A; depend
on the true parameter values, so we do not get an asymp-
totic distribution which works in general. It also involves
computing the relevant matrices.

Another way to remedy this problem and get a more
accurate distribution of the test statistic, due to Rao and
Robson [29], is to use a different quadratic form of the
statistic, X> = VTCV, where V is a column vector of
length K with its jth element defined as O’J;’ ,and C = I+

7
B (] — BTB)_1 BT is a positive definite matrix in place of
the identity matrix in the standard Pearson statistic. This
leads to a X(21<71) statistic. This has shown good power in
simulations, and may be a good way to improve the power
of our test in borderline cases.

The other issue that influences the degrees of freedom is
the estimation of a maximum likelihood (ML) tree topol-
ogy. This can be thought of as a discrete parameter space
(so the combination of tree topology and other param-
eters is a mixed parameter space). These have been the
topic of some research, beginning with Hammersley [18].
Choirat and Seri [6] give an account of the research done
on this topic. From an asymptotic point of view, if the null
hypothesis is correct, then by consistency, we know that
with enough data, we are virtually certain to choose the
correct tree, so the issue will not affect our degrees of free-
dom. However, in practice, consistency requires far more
data to ensure the correct tree than the asymptotics for
continuous parameters. Thus for our Chi-squared statis-
tic, we should not just ignore the effect of tree selection.
For most cases the probabilities of wrong trees converge
to zero exponentially, but calculating the constant terms
to apply these asymptotics is very difficult. Most of the lit-
erature focuses on very general upper and lower bounds,
which are difficult to calculate, and of little use in our case.
Given the high power we have achieved by using a conser-
vative K — 1 degrees of freedom test, it is hard to justify
the use of a much more complicated test with increased
computational complexity for the gainning of slight power
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in this case. We therefore avoid this problem here, by
not removing any degrees of freedom for the tree search
problem.

Results
We will examine the effectiveness of the proposed test
procedure through simulations and real data analyses.

Simulation for equal frequency binning on a 4-taxon tree
The most obvious reason that site patterns in the same bin
would be biased in the same direction is if the model mis-
specifies the frequencies of the four nucleotides. Other
biasses in estimating substitution rates should have less
effect. We therefore consider the model SYM [42], which
has the same exchangeability matrix as GTR, but is con-
strained by the assumption that the nucleotide frequen-
cies are all 0.25. Our binning procedure should have
good power to reject this SYM model, but might be
less powerful when the data are generated under this
SYM model. We also use a SYM+D model, which is this
SYM model, but where the rates of evolution for each
site follow a discretised gamma distribution (for illus-
trative purposes we simply generate 50% of the sites
with one rate and the other 50% of the sites with a
different rate).

200 data sets were simulated with sequence length 500
under each of the GTR, SYM and SYM+D models. The
parameters for the GTR model were set to equal to the
estimates from the vn-Globin Pseudogenes data [41] :
nr = 0.308,7¢ = 0.185,m4 = 0.308,7g = 0.199; r; =
0.987,rp = 0.11,r3 = 0.218,r4 = 0.243,r5 = 0.395,r6 =
1. The exchangeabilities for SYM were the same as that of
GTR but equal frequencies 77 = n¢ = 4 = ng = 0.25
are assumed. The ratio of the branch lengths for generat-
ing each half of a single sequence for the SYM+D was 1:10.
INDELiblel.03 was used for simulation. The tree used
(shown in Fig 1) is an easy tree to estimate, so ML always
found the correct tree. The simulation-analysis scenar-
ios in this section are SYM-SYM, GTR-SYM, SYM-JC69,
GTR-JC69, and SYM+D-SYM. (The first model in each
pair is the model used to simulate the data, while the sec-
ond model was used to analyse the data, and tested for
adequacy).

Size is the probability that a test will indicate an effect
when there is no such effect in the data. Power is the prob-
ability that a test will indicate an effect when there truly
is such an effect in the data. Table 2 lists the results of
the goodness-of-fit test with significance level @ = 5% for
each scenario. In the SYM-SYM case, the goodness-of-fit
test has a 5.5% rejection rate, so the size of the test is sat-
isfactory. For the other cases with mis-specification of the
models (GTR-SYM, SYM-JC69, GTR-JC69), the rejection
rates are all approximately 100%. Hence, the power is also
satisfactory. For the case SYM+D-SYM, the rejection rate
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a
Branch Lengths = 0.1

Fig. 1 The 4-taxon tree used for simulation

is 31%, so the power of the test under this case is not as
high as the other cases.

The likelihood ratio test (LRT) can only be used for
comparisons of two nested models; The LRT against the
true model is known to be the most powerful test. As a
benchmark, we compare the power of our test to the LRT.
The null models, SYM and JC69, are both nested within
the GTR model, thus the GTR model is used as the alter-
native model for most cases in the LRT test, except in the
case where the true model is SYM+D, where we use the
true model for the alternative. The size and power of the
LRT are also included in Table 2. The results show that the
size and power of our test is comparable to that of the LRT
in all cases. Even in the case of SYM+D-SYM, the power
of our test is as good as can be expected.

In this simulation study, the scenarios contain different
degrees of model mis-specification. The size and power of
the goodness-of-fit test are satisfactory for all cases in the
simulation studies since they are similar to the LRT. Thus,
this test seems to be a good tool for testing the adequacy
of the model in the 4-taxon case.

Table 2 The rejection rates out of 200 data sets for the
goodness-of-fit test (Shortened as GoF in the table) based on
equal frequency binning and the LRT for a 4-taxon tree, sequence
length=500, & = 5%

Rejection rate comparisons

True model Ho GoF test LRT Hg in LRT
SYM SYM 5.5% 4.5% GTR

GTR SYM 98% 100% GTR

SYM JC69 100% 100% GTR

GTR JC69 100% 100% GTR
SYM+D SYM 31% 30.5% SYM+D
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Size and Power of the test based on simulation for larger
trees

A 10-taxon tree topology is used for generating DNA
sequences. Figure 2 shows the tree topology with speci-
fied branch lengths. The design of the tree was made to
give a relatively harder estimation problem. For example
when we simulate 1000 data sets under the GTR model
with sequence length 500, the estimated ML tree topolo-
gies only recover the true tree topology a small number of
times under any model specifications (Table 3).

We employ models GTR, F81, and GTR+I" to simulate
data. Based on each generating model, using INDELi-
ble1.03 we simulate 200 data sets for sequence lengths 500
and 200 respectively. The following model pairs are used
to find the size and power of the test: (1) GTR-GTR (No
model mis-specification — this will provide the size of the
test), (2) GTR-JC69 (3) GTR-F81, (4) F81-JC69, and (5)
GTR+I-JC+T.

In order to observe the effects of K, the number of bins,
on the size and power of the tests, we analyze the sim-
ulated data for a range of different K values. For each
K value, we calculate the percentage of times the tested
model was rejected (at the 5% significance level) among
200 simulated data sets. The results are shown in Fig. 3.

From the results, we see that the size of the test is
controlled very well, which is not surprising since the
degree-of-freedom was chosen to make the test more con-
servative (see methods). The power of the test is related to
the sequence length of the data and the model pairs. Gen-
erally when the sequence length is larger, the power of the
test is higher. The power is lower for sequence length 200
for model pair F81-JC69. The choice of K is not critical for
the performance of this test. For most of the model pairs,
the power is high and stable (100%) for a wide range of K
values when the sequence length is 500. When K is too
small, the sites having upward or downward biases in their
estimated probabilities will be naturally binned together,
thus the test will lose power. A reasonable choice is to

$=0.01
$1=0.07
$2=0.08
L1=0.3
L2=0.4
L3=0.5
L4=0.6
L5=0.9

10
Fig. 2 the 10-taxon tree topology used for simulation
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Table 3 The no. of ML tree topologies for 1000 data sets
simulated under GTR model with sequence length 500, classified
according to their Robinson-Foulds distances to the true tree

topology

RF 0 2 4 6 8 10 12 14
JC 3 8 61 200 387 322 18 1
F81 1 17 83 238 362 277 20 2
HKY 58 135 230 279 189 97 12 0
GTR 86 195 257 230 150 68 13 1

make K relatively larger but not so large that there are
many bins with fewer than 5 expected sites.

In order to illustrate the effect of the binning procedure
on power, we compare the above results to a random bin-
ning procedure (see the Appendix A for the procedure of
random binning). The size and power of the test under the
random binning procedure is shown in Fig. 4. In compar-
ison to Fig. 3, the results from random binning are much
less stable, and the power of the test is much lower.

Table 3 also indirectly shows that by rejecting the inad-
equate model, we tend to get better tree topology esti-
mation. Next we will show the difference in tree topology
estimation by using an adequate or an inadequate model
in a more direct simulation.

Size and Power: seq.length=500
L oo |
g o GTR-GTR
x — GTR-F81
c 7 — F81-JC
9 — GIR-IC
= — GTR+Gamma-JC+Gamma
Q0 o
o
TR
14
e |
o T T T T T T
0 20 40 60 80 100
Number of bins
Size and Power: seq.length=200
0w
w o |
14
5 GTR-GTR M~
S < — GTR-F81
0 5 — F81-IC
0 — GIR-IC
0 — GTR+Gamma-JC+Gamma
14
|
O 7 T T T T T T
0 10 20 30 40 50 60
Number of bins
Fig. 3 Rejection rates for different model pairs for seq. length 500
(upper) and 200 (lower)
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Fig. 4 Rejection rates among 200 data sets for different model pairs
under a random binning procedure, seq. length 500 (upper) and seq.
length 200 (lower)

Effects of the model adequacy test on tree topology
estimation
In this section, we use our model adequacy test to shed
some further light on the effect of model mis-specification
on estimation of the tree topology. We simulate data sets
under a 4-taxon tree (Fig. 5a) which is a typical long
branch attraction (LBA) problem. We simulate 2000 data
sets for each sequence length 900 and 1800 nucleotides.
Becuase we expect paramaters to vary among different
real datasets we simulate the data sets with different
parameters. For a simple illustration of this, we use two
different sets of parameter values. In reality, we would
expect parameter values to vary continuously, but this is
more difficult to simulate and does not make the point of
this simulation any clearer. In order to ensure that both
the adequate and inadequate models are mis-specified, we
simulate under a codon model, but analyse under F81+T".
We simulate using the codon frequencies estimated using
different nucleotide frequencies in each codon position
from the dataset “D2” of [40] which consists of 17 beta-
globin sequences.

We use a model with equal exchangeabilities between
nucleotides, but with double and triple changes of codons
permitted. The rate of double changes is set to 0.06
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Fig. 5 Trees used for assessing effect of adequacy on phylogeny estimation. a LBA tree. b “Anti-Felsenstein” tree

times the rate of single changes, while the rate of triple
changes is set to 0.03 times the rate of single changes. This
model has previously been used in [11] for studying issues
with codon methods. We use COLD [23] to simulate the
datasets.

Although the codon model used for simulation is struc-
turally different from the fully site-independent F81+I"
model on the DNA level, our simulation, in the absence
of selection pressure should generate a site pattern dis-
tribution fairly close to the distribution predicted by the
F81+I" model. The second 1,000 datasets were simulated
using the same parameters, except that in addition, we
set the non-synomimous/synomimous ratio (w) to 0.05.
The effect of selection is to induce stronger dependence
among the three positions of the codon, thereby generat-
ing a site pattern distribution very different from the pat-
tern predicted by F81+I". Note that because we simulate
under a codon model, the branch lengths are the expected
number of codon substitutions, which would be about
three times the expected number of DNA substitutions.

We use F81+I" to analyze all 2000 data sets. We compute
bootstrap support for each tree topology under the F81+T"
model, separating the cases where F81+T is rejected and
where F81+I" is not rejected. (We use K = 30 in our
test to perform the model adequacy test.) The results are
summarised in Fig. 6.

Of the 2000 data sets, F81+I" is rejected in 772 cases
for sequence length 900, and in 1285 cases for sequence
length 1800. We see that not only does the inadequate
model incorrectly choose the LBA tree more often; it also
often gives strong bootstrap support to the incorrect tree,
meaning that we are falsely confident of this tree. By con-
trast, the adequate model not only prefers the true tree:
even in cases where it selects the wrong tree, it gives lower
bootstrap support to the LBA tree, showing us the level of
doubt present in this estimate.

For completeness, we also compare a tree in the so-
called “Anti-Felsenstein zone’, namely the case where the
long branches are in a clade together (Fig. 5b). This is

a case where many mis-specified methods are biased
towards the truth. Figure 7 shows the results for this
case. In this case, F81+I" is rejected in 623 simula-
tions with sequence length 900 and in 1168 simulations
with sequence length 1800. As expected the true tree is
favoured in both adequate and inadequate cases. In the
adequate cases, the bootstrap support shows the level
of uncertainty about the tree, giving increasing support
to the tree as the sequence length increases. The inad-
equate models give falsely confident support to the true
tree because of the bias.

Empirical data analysis

In this section, we use our goodness-of-fit test to assess
the suitability of commonly used DNA models on a
number of empirical data sets. The 23 empirical data sets
used here are from the 25 empirical data in [30]. (We
were unable to locate two data sets, 8 and 13, because
Treebase was renumbered since [30] was published).
Ripplinger and Sullivan [30] and Goldman [17] found that
the GC test failed to reject the model JC 41+ I' for many
empirical data, where the “I” represents the proportion
of invariant sites, and the “I'” represents the among site
rate variation. Here, we apply our proposed test on the
same types of models as in the simulation analyses, but
with invariant sites I and I' rate variation added in the
models. The null hypotheses for each of the data sets are:
Hé JC 4+ 1+ T is the true model;

Hg F81 + I+ I is the true model;

Hg HKY +1+T is the true model;

Hg GTR + I + T is the true model;

We have examined a range of K, starting at 2 until
the rule-of-thumb for the Chi-square test are no longer
satisfied. We have based our analysis on the largest
K such that the rule-of-thumb is satisfied. In most
cases, the conclusions are not sensitive to the choice
of K. In cases where the conclusions are unclear, or
appear contradictory (e.g. one model is not rejected,
but a more complicated model is rejected), other
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values of K can provide a reference to help in our
interpretation.

Under each hypothesis, the expected frequencies are
estimated by simulating a DNA sequence with 100,000
sites based on a parametric bootstrap procedure.

The p-values for the goodness-of-fit tests are shown in
Table 4. The p-values for the GC test for each data set

from the supplementary material of [30] are recorded on
the right side of Table 4 for comparison.

The results of the new test suggest that in most cases
JC+I+4T is not adequate. In many cases, even GTR+14-T
is not adequate.

There is an interesting phenomenon in data sets 14, 15,
20, 24 and 25, where GTR + I + T can be rejected, but
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Fig. 7 Comparison of boostrap support for the true tree in the “Anti-Felsenstein zone” under adequate models (red) and inadequate models (blue).
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Table 4 p-values for various models and various data sets (from Ripplinger and Sullivan, 2010)

Pearson’s x’test GC test

Data Treebase No. Seq. Hypothesis Hypothesis

Set number taxa length K Hol Ho2 Ho3 Ho4 Hol Ho2 Ho3 Ho4
i 51340 7 1004 19 | 165e=5 | 15e—4 | l2e—4 1363 ol oo
2 5827 2 803 0 0 62e—12  35e—7 80e—7 - - 016 028
3 5776 39 359 8 003 0.16 023 0.09 034 028 042 028
4 51160 15 751 7 6de—11 042 028 0.17 BN oo 030 035
5 5378 17 33 35 34e-4 0.80 031 0.89 024 047 067 061
6 5983 18 318 10 0055 021 022 0.18 032 024 031 037
7 5872 2 an 25 94e—12  32e—6 00023 94e—10 049 053 058 046
9 51386 12 4412 5 0 0 34e—6 0 i o
10 51180 19 842 4 0 096 099 093 011 013 027
k 51323 35 333 5 Ile—5 006 089 0.11 0.18 0.14 025 027
12 5380 19 500 30 47e—14  S55e—4  53e-3 0006 036 025 031 030
14 51025 13 4086 6 0 16e—13 036 0 B BN oo o
15 51226 35 333 5 27e—5 021 035 Ille—4 042 032 025 038
16 5693 28 649 53 0 10e—11  27e—11 39 -9 084 090 088 085
17 ST154 75 398 3 00027 099 099 099 0.13 0.15 029 036
18 5787 0 817 6 5l1e—6 091 086 034 ool e o+ oo
19 51152 2 795 14 54e—6 | Sde—4 | 10e—4 | 32e—10 070 064 069 057
20 51042 0 523 14 17e=7 88—6 036 1.9e—3 022 026 035 038
21 51327 18 409 10 009 054 0576 008 0.18 037 027 029
2 5721 FERT-)) 20 |0 34e—6  1le=16 0 0.16 0.18 038 050
23 51209 28 684 10 25e—11 5212 0036 15e—12 034 024 033 039
2% 51214 20 638 16 15e=5 057 089 29 -7 024 021 038 034
25 51249 49 418 46 lde—4 0093 0.14 34e—3 008 0.16 044 055

For each data set, the largest value of K was chosen, so that the rule-of-thumb for Pearson’s Chi-square test was not violated for all four tests. Models which could be rejected
by our method are highlighted in yellow. Green shade is used to indicate uncertainty caused by conflicting results for different K-values and other models. [Treebase
numbers differ from those listed in Ripplinger and Sullivan (2010) because Treebase renumbered its data sets since that paper was published. The listed sequence length is

the no. of sites used in analysis after all gaps are removed.]

simpler models cannot. We can gain more insight into
these cases by examining the results for different values of
K. For data set 14, for a range of K values (K = 6-16), we
can reject GTR + I + I all at p = 0. We can only reject
HKY 4+ I+ I’ when K = 12,13,15 and 17. The largest
K value for which the rule-of-thumb for Pearson’s Chi-
square test was not violated for testing HKY + I + T is
K = 17 and the corresponding p value is 0.0039. Given the
strong evidence to reject GTR + [ 4+ I" and slightly weak
indication of rejection of HKY + I + I', we conclude that
all models are inadequate for this data set.

For data set 15, taking K = 8, we can reject both
F81 4+ 1+ T and HKY + 14T (p = 0.009 and p = 0.03
respectively). Taking K = 7, we can reject F81 + 1+ I
(p = 0.025) but not HKY + I+ I" (p = 0.11). The largest
K value for which the rule-of-thumb is satisfied for both
F81 + I+ I and HKY + I 4+ I models is 8. This suggests
that these models should be rejected. This data set has 35

taxa and the sequence length after removing gaps is 333.
With the relatively small K values for which the goodness-
of-fit test can be performed, the power of the test tends to
be lower. This conclusion should be checked when more
data become available.

For data set 20, taking K = 11, we can reject HKY +
[+ T (p = 0.042), but HKY + [ + T cannot be rejected at
any other K values. GTR + I + I'" can be rejected for all K
values between 6 and 14, all with very small p-values. This
suggests that these models should all be rejected. From the
result of this data, it seems the power of the test is slightly
lower for HKY + I + I model than for the GTR + 1+ T
model.

For data set 24, we cannot reject F81+I1+TI" or HKY +1+
" for almost all different K values, except when K = 17,
we canreject F81+14-T"atp = 7.6e—5. GTR+14T can
be rejected for all K values ranging from 11 to 16. It is not
clear in this case if all these four models are inadequate or
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the rejection of GTR + 1+ T at these K values is only due
to random errors.

For data set 25, for K values ranging from 6 to 30, both
F81 +1+T and HKY + I+ I" models are all rejected at the
5% level. Although the p-values for K between 31 to 46 for
models F81+I+4TI" and HKY+I+T" are more variable, both
models can be rejected in most of the cases. GTR + 1+ T
can be rejected for all K values with quite small p-values.
This suggests that all these four models should be rejected.

Among 23 data sets, there are 6 data sets with sequence
length between 300 and 400 (data set 3,5,6,11,15,17) and
no. of taxa ranging between 17 and 75. The largest K val-
ues for which the rule-of-thumb can be satisfied when
sequence length is small tends to be low, and the number
of different site patterns for such a high number of taxa is
very large. This combination means it is almost impossi-
ble to bin the site patterns so that biases are in the same
direction within each bin, thus the test power is naturally
low. One of the conflicting result cases (data set 15) is
among this group. The tests for the other five cases (data
sets 3,5,6,11,17) all either fail to reject any model, or reject
only JC+I4T . In these cases, because the data sets are rel-
atively small, there may not be sufficient data to perform
inference or model selection, so the fact that the mod-
els are adequate does not mean that the conclusions from
them are good, but rather that there may not be enough
data to draw reliable conclusions at all (even with a better
model). Standard inference techniques (e.g. bootstrapping
and topology tests) will indicate in this case that there is
a great deal of uncertainty about the conclusion. However
an adequate model indicates that one should not expect to
reach better conclusions by choosing a more complicated
model, even if it is closer to the true model.

In general, the adequacy test does not replace usual
inference, but rather complements it — testing both pos-
sible sources of inaccuracy, i.e. bias and variance. Using
an inadequate model typically causes large bias in the
conclusion. Thus if a bootstrap gives confident support
to a particular conclusion, but the model is inadequate,
the conclusion is still unreliable. In this case the model
adequacy test will give some indication of the additional
uncertainty caused by using an incorrect model. When
using an adequate model to perform the analysis, the
inaccuracy of the conclusion can be inferred using the
variance.

Assessment of binning site with biases in the same
direction

As mentioned earlier, any binning method will produce
some capacity to test model adequacy, but it could have
low power. The objective in devising the binning proce-
dure is to bin together site patterns whose probability
estimates will mostly be biased in the same direction —
i.e. site patterns for which the probabilities will all be
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overestimated should be binned together, as should site
patterns for which the probabilities will all be under-
estimated. The expected probabilities for each bin are
calculated as the sum of the probabilities of all site pat-
terns in the same bin under the null model. If all or most
of the site patterns in a bin are biased in the same direc-
tion under the wrong null model, the difference between
the observed frequencies and expected frequencies for the
bin will naturally be large.

To test how effective our binning procedure has been
at achieving this objective, we perform another simula-
tion. For a general adequacy test, we hope to achieve this
objective for a wide range of different simulation models.
Therefore in addition to the parameters for the rate matrix
we have used in the above simulation, we also get the esti-
mated GTR model parameters from the 23 real data sets
analyzed in the above “Empirical data analysis” section.
For each set of GTR model parameters, we simulate 1000
data sets under the GTR model, each with sequence length
1000, using the 4-taxon tree from Fig. 1. We then ana-
lyze the simulated data sets under F81, and calculate the
probability of each site pattern under the estimated F81
parameters. The bias in the estimated probability for each
site pattern is calculated as the difference between the
mean of the estimated site pattern probabilities under
F81 over 1000 data sets and the site pattern probability
under the generating model (GTR) and the true model
parameters.

We look at the bias in the estimated probabilities for
all the site patterns, and we compare these biases for the
site patterns in each bin. For Type A bins (See Table 1),
because each bin only contains one site pattern, it is not
necessary to look if the site patterns are biased in the same
direction in each bin. We present the results for Type B
and Type C bins in the upper panel and Type D and Type
E bins in the lower panel of Fig. 8. Within each bin of
Fig. 8, there are 24 connected lines, each of which repre-
sents the bias in the site pattern probabilities for all the
site patterns within this bin for one set of GTR model
parameters. Blue lines mean that all biases are in the same
direction, red lines mean some site patterns biased up and
some site patterns biased down. Almost all bins for Type
B and Type C contain purely blue lines for all 24 sets of
model parameters. For Type D and Type E bins, there are
some bins with mixed biases for a few sets of models. Note
that it is not reasonable to expect to bin sites in such a way
that all site patterns are always biassed in the same direc-
tion in all bins for any true model settings. The bins we
have chosen are performing fairly well overall. In many of
the cases of mixed bins, the biasses are smaller than the
other bins, and in many cases, the bias is particularly small
on either the positive or negative side. This means that
the overall bias for the bin can still be fairly large, which
gives the Chi-square test good power. This explains why
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lower panel. Blue lines label the biases in the same direction for all site patterns in a bin, red lines label the biases are not in the same direction

we perform better than a random binning. In summary,
we see that our binning procedure has done a good job of
binning together site patterns which show a similar direc-
tion of bias. We therefore expect our binning procedure to
perform well for testing the model adequacy.

It is worth noting that the model mis-specification in
this simulation is the use of F81 instead of GTR, so there
is no model mis-specification for the nucleotide frequen-
cies. Nevertheless, our binning, based on counting the fre-
quency of each nucleotide in the site pattern, still groups
the site patterns well. The explanation for this is that the
mis-specification in this case causes the rate of various
point mutations to be misestimated. The frequency of
each nucleotide often provides a good indication of which
nucleotide mutations have taken place. For example, if a
site pattern involves only the nucleotides A and C, then

we know that the probability of this site pattern is related
to the rate of exchangeability between A and C, so if, for
example, the mis-specification causes this to be underes-
timated, the probability of the site pattern will also often
be underestimated.

Discussion

Our goodness-of-fit test has shown very good power and
size, both for the small tree simulation where exact fre-
quency binning of site patterns was used; and for the
larger tree simulation where K-means clustering was
used. Our method also showed good power in the real
data examples. The power remains high for a large range
of values of K. We have shown that our binning procedure
helps to improve the power of the test compared to bin-
ning the sites at random, because sites with similar biases
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are binned together. There is still potential to find better
binning schemes that might be able to provide even better
power, however the simplicity of the procedure may be
compromised which may influence the applicability of the
testing procedure. The design of the binning procedure is
to make the test particularly sensitive to mis-specification
for the nucleotide frequencies. Nevertheless, the simula-
tion results show that even when nucleotide frequencies
are correctly specified, the test still has good power to
reject models with incorrectly specified exchangeability
matrices.

It is well known that incorrect models can lead to wrong
phylogenetic inferences (e.g. [35, 37]). Furthermore, mod-
els that are “closer to the truth” will usually produce better
inferences. We demonstrated how model adequacy testing
can help in this situation by providing better assessments
of the reliability of the estimated tree. When an adequate
model is used, phylogeny estimation tends to select the
best tree topology according to the data, with inference
methods such as bootstrap support giving a fair assess-
ment of the uncertainty in the inferred tree topology.
In cases where the model fails the adequacy test, the
estimated phylogeny may be biased towards a particular
topology, and the bootstrap support can strongly support
this tree whether or not it is the correct tree. In gen-
eral, the adequacy test does not replace usual inference,
but rather complements it — we need to test for both
possible sources of inaccuracy, using the adequacy test to
check for bias and the usual inferrence methods (e.g. boot-
strap support) to check the variance. Thus if a bootstrap
gives confident support to a particular conclusion, but the
model is inadequate, the conclusion is still unreliable. In
this case the model adequacy test will give some indication
of the additional uncertainty caused by using an incorrect
model. When using an adequate model to perform the
analysis, the inaccuracy of the conclusion can be inferred
using standard inferrence.

Some recent research on Posterior Predictive Simula-
tions (e.g. [3]) has speculated that by selecting a statistic
for PPS that is closely related to the quality of tree esti-
mation, it might be possible to devise a test which is
particularly sensitive to cases that are likely to cause mis-
estimation of the tree. While this would be desirable, since
for many analyses the inferred tree is the main interest,
there is little evidence that a powerful generalised test for
the quality of tree estimation can be developed. Because
tests that can specifically identify mis-specifications that
cause phylogenetic error remain elusive, general tests of
model adequacy remain an important area of research in

phylogeny.

Conclusion
We have developed a procedure to bin site patterns in
order to apply Pearson’s goodness-of-fit test for DNA
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substitution models in phylogenetic analysis. The null
hypothesis is that the substitution process follows a given
model. The binning procedure is based on the frequen-
cies of each nucleotide in a site, and the use of K-means
to cluster similar site patterns. Based on our simulation
studies and real data analysis, this test has shown good
power to reject wrong models across a wide range of sce-
narios. Further work could still be done to gain a more
complete understanding of the scenarios where we expect
this method to work best.

We have explained why our binning procedure is supe-
rior to binning the site patterns at random, and provided
some insight into what makes a good binning procedure.
Further study on this topic could lead to improved meth-
ods for developing goodness-of-fit tests for phylogenetic
models.

We discuss the topic of degrees of freedom. We have
taken a conservative view that it is appropriate to use
K — 1 degrees of freedom to be certain of controlling
Type I errors. However, obtaining a better distribution of
the test statistic by parametric bootstrapping, or using the
approach from [29] to get an improved test statistic might
lead to better results. Neither of these approaches deals
with the effect of estimating the tree topology. This is a
difficult statistical problem, and requires substantial work
in statistical theory.

More generally, the effect of tree estimation on the
results warrants further investigation in future studies of
model adequacy. If a model is severely mis-specified, it
might estimate a very poor tree, and this could adversely
influence the results.

From the real data analysis, we see that in many of the
data sets, even GTR+ 14T is not adequate. This indicates
that the inference results of any nucleotide-based analysis
on these data sets should not be considered entirely reli-
able. Nucleotide-based analyses on the data sets where we
could not reject most nucleotide models are expected to
lead to reliable inference results.

Appendix A: The random binning procedure
The procedure for random binning to produce K bins is
as follows:

e For each taxon, assign a random value 0 to K — 1 to
each nucleotide (3, C, G, T)

e For each site, add up the numbers assigned to the
nucleotides for that site

e Take the remainder upon division by K.

For example, for K = 7, each of the following four
taxa was assigned a rule generated by random draws
from O to 6. Then for site one, the sum of the scores is
2 4+ 34 3+ 0 = 8 thus this site is assigned to bin 1.
Similarly, site 2 will be assigned to bin 1 too, and sites
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3 and 4 will be assigned to bins 2 and 6 respectively.

Taxon A C G T Sequence
Taxonl 2 4 3 3 ACTG...
Taxon2 3 4 6 0 AATC...
Taxon3 1 6 3 1 GCTC...
Taxon4 5 2 0 5 GCaAG...

Appendix B: Proof of Theorem 1

Theorem If the data include n sites, we divide the site
patterns into K bins which satisfy the rule of thumb that
the expected number of sites in each bin is at least 5, and
we simulate M points, then the mean squared error in our
estimated chi-squared statistic due to this simulation is at
most

16Kn
25M

Proof Suppose the correct probability for the ith bin
is p;. Let Q; be the estimated proportion of sites in the
bin. The number of simulated sites in the bin follows
a binomial distribution with parameters M and p;, so
Q; has mean p; and variance 2 l(ﬁwp . The part of the
Chi- square statistic from the ith bin should therefore be
(O; npt (O; nQ,

npi nQ;
chi-square statistic from the ith bin is therefore

(Oi—np)® _ (O}=rpiQi)(pi—Q) . o )
i = i . We w1l(lllet Q; = pi + E,
pi(l—pi)

where E; has mean 0 and variance

. The error in our
(0i—nQ)?
nQ;

, but our estimate is

. For large M,
we can discount terms in E;%, so the error in our chi-

(0?—n?pH)E;
np;®

square statistic is . The mean squared error is

therefore

2 2
(© =02\ e _ (@ =)\ i 0
np;? ! np;? M

If we assume the errors for each class are independent
(which is clearly not totally true since the errors sum to 0,
but for a reasonable number of classes, should be accept-
able) then the total MSE of our estimated chi-squared
statistic is

2
pi(1—py)
M

i (02 —pi)
i=1
Since under the null hypothesis, O; follows a bino-

mial distribution with parameters # and p;, we have that
E (Oi2 — nzpiz) = np;(1 — p;) and

E((02 = p?)’) = npi(1=p) 301 = 2pi(1 = p) + 1)
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The expected total MSE is therefore

i (”Pi(l — p1) B(n — 2pi(1 — pj) + 1)) pi(1 - pi)
2.,.4

i=1 npi M
Z 3(n —2)pi(1 — pp)3 + (1 — pi)?
Bl Mnp;?

K K 2
1 [3(n—2) 1 AT (1 —pi)
M Tz<f‘3+31”i‘m *zZT

im1 \Pi i=1

Assuming the rules of thumb for the chi-square test are
satisfied, we must have np; > 5, so that Zf 1 - < K” and

lep <

to using simulation is therefore bounded by

M(“”;”(?—ms—f) 5(% )

2
2}15 . The MSE in our chi-square statlstlc due

1 -2 75(n-2) 25K
=— Kn — 10K + —
5M ( Kn i + n )
1 K 450 75 150
=——|16Kn — 265K +475— + 225 — — — — + —
25M n n K Kn
16Kn
<
= 25M

where the last inequality assumes K > 2 and n > 2. O
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