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Abstract

Background: Host factors of influenza virus replication are often found in key topological positions within protein-
protein interaction networks. This work explores how protein states can be manipulated through controllability
analysis: the determination of the minimum manipulation needed to drive the cell system to any desired state.
Here, we complete a two-part controllability analysis of two protein networks: a host network representing the
healthy cell state and an influenza A virus-host network representing the infected cell state. In this context, controllability
analyses aim to identify key regulating host factors of the infected cell’s progression. This knowledge can be utilized in
further biological analysis to understand disease dynamics and isolate proteins for study as drug target candidates.

Results: Both topological and controllability analyses provide evidence of wide-reaching network effects stemming from
the addition of viral-host protein interactions. Virus interacting and driver host proteins are significant both topologically
and in controllability, therefore playing important roles in cell behavior during infection. Functional analysis finds overlap
of results with previous siRNA studies of host factors involved in influenza replication, NF-kB pathway and infection
relevance, and roles as interferon regulating genes. 24 proteins are identified as holding regulatory roles specific to the
infected cell by measures of topology, controllability, and functional role. These proteins are recommended for further
study as potential antiviral drug targets.

Conclusions: Seasonal outbreaks of influenza A virus are a major cause of illness and death around the world each year
with a constant threat of pandemic infection. This research aims to increase the efficiency of antiviral drug
target discovery using existing protein-protein interaction data and network analysis methods. These results
are beneficial to future studies of influenza virus, both experimental and computational, and provide evidence
that the combination of topology and controllability analyses may be valuable for future efforts in drug target
discovery.

Keywords: Network analysis, Controllability, Systems biology, Virus-host interactions, Influenza virus

Background
The development of computational methods to identify
key host factors that allow viruses to interrupt and control
healthy cell functions will greatly aid in the prediction of
novel anti-viral drug targets [1]. Traditional systems biol-
ogy approaches to understanding cell dynamics during in-
fection include the creation of detailed kinetic models for

intercellular signaling pathways. While these models are
advantageous in understanding the disease state in a
quantitative way, they require experimentally-derived or
estimated parameters and training data [2–4], without
which complications can arise and an accurate model can
quickly become unattainable. Further, modeling studies
are often limited to specific pathways which fails to con-
sider the total cellular environment as an interdependent
system.
Alternatively, network analysis methods applied to

protein-protein interaction (PPI) data have been used to
model cell-wide systemic changes associated with dis-
ease, changes in cell function, or cell fate [5]. This
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strategy provides a holistic understanding of system be-
havior by viewing proteins as interdependent states, re-
gardless of specific interaction mechanisms, and allows
for the exploration of cell level relationships. The field of
network theory is well established. Several basic network
metrics like degree (the number of interactions a protein
is involved in) and betweenness (the importance of a
protein to information flow through a network, or, how
much of a bottleneck a protein is to system behavior) [6]
are commonly used to describe the significance of net-
work components in a wide range of applications [7–9].
These analyses have repeatedly revealed the import-
ance of specific proteins within biological processes
that cannot be found from traditional modeling ap-
proaches [10–14]. Disease networks have identified
genes involved with cancer [15–18], demonstrated
that the genes responsible for similar diseases are
likely to interact with each other [19, 20], and pre-
dicted novel drug targets [21, 22].
There is precedent for network studies of many com-

mon viruses including hepatitis C [23, 24], severe acute
respiratory syndrome (SARS) [19, 25], Human immuno-
deficiency virus (HIV) [25–29], and influenza virus [19,
30–33]. Past work studying the effects of influenza virus
in PPI networks has focused on identifying host factors
involved in virus replication and improving the predic-
tion of drug targets but ends with an analysis of basic
topological measurements. While this provides a general
overview of the state of the network, it is a static snap-
shot of the cell and, therefore, fails to capture the dy-
namic nature of the cell. Therefore, the next logical step
in analyzing biological networks lies in understanding
how these dynamic systems can be manipulated and
exploited to manage biological properties.
In classic control theory, controllability is the idea that

a deterministic system can be driven to any final state in
finite time given an external input [34]. This is com-
monly applied to linear, time invariant dynamic systems,

dx tð Þ
dt

¼ Ax tð Þ þ Bu tð Þ

where A is an NxN matrix of state coefficients that de-
scribes how N molecule states, x(t), interact within the
system and B is a matrix of input weights describing
how external influences, u(t), impact the system. In gen-
eral, a system is controllable if the controllability matrix,

C ¼ B;AB;A2B;…;AN−1B
� �

is full rank, N. This means that the system can be ma-
nipulated to reach any desired combination of states
within all of state space following the defined input, B.
In total, a controllability analysis identifies the key

components of a system that must be manipulated to
drive desired system outcomes [35].
An example PPI network in Fig. 1a is transformed into

its state space matrix representation. With the inclusion
of two independent inputs (u1 and u2), the controllability
matrix is full rank. Therefore, the system is fully control-
lable and it is possible to drive the protein concentra-
tions to any desired state. Applying the idea of
controllability to a cell at the onset of viral infection, a
virus aims to control cellular functions (the system of
proteins), promote virus replication tasks, and reach a
final infected cell state. While it would be advantageous
to interpret the infection from this control perspective,
mathematical limits due to large system dimensions pre-
vent the direct application of traditional controllability
methods to PPI networks.
Advances in network theory have created alternative

methods of network controllability evaluation which sur-
vey each node’s (protein’s) importance in the ability of
an external set of inputs to fully control the network.
Controllability classification is founded in “driver node”
calculations: identifying the network components which
must be manipulated for the system to be fully con-
trolled (analogous to determining the non-zero elements
of the B matrix in classic controllability). Without ma-
nipulation, driver nodes will remain unaffected by
changes to the rest of the system, rendering the total
system uncontrollable. Driver nodes are identified using
the Hopcroft-Karp algorithm [36] which can be applied
to any directed graph in bipartite form. This method cal-
culates the maximum matching of the graph, or, the lar-
gest set of network paths where no node is shared by
two edges. Because each node can only influence one of
its interactors, the identification of these paths dictates
the way in which control can propagate through the net-
work. The nodes that are not included in these paths or
at the start of these paths are not receiving control from
a neighboring node and, therefore, require “driving”. A
set of driver nodes (size ND) that is capable of control-
ling the total network is called a minimum input set
(MIS). The MIS is not unique and the number of pos-
sible MISs scales exponentially with the size of the net-
work [37]. After a primary MIS is calculated, two
methods of controllability node classification can be
used.
In robust controllability (by Liu et al. [38], pictured in

Fig. 1b), the MIS is re-calculated (size ND′) after removing
each node from the network. The node is then classified
by its effect on the manipulation required to control the
network, where an increase in the size of the MIS makes
it more difficult to control the network and a decrease in
the size of the MIS makes it easier to control the network.
The removal of: an indispensable node increases the num-
ber of driver nodes (ND′ > ND), a dispensable node
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decreases the number of driver nodes (ND′ < ND), and a
neutral node has no effect on the number of driver nodes
(ND′ = ND). This method has previously been applied to
many network types such as gene regulatory networks,
food webs, citation networks, and PPI networks to better
understand what drives the dynamics of each system [29,
38]. While it is useful to observe the structural changes to
the network after the removal of singular nodes, this
method only considers one possible MIS. A second global
controllability method by Jia et al. [39] (Pictured in Fig.
1c) classifies a node by its role across all possible MISs. A
critical node is included in all possible MISs, an intermit-
tent node is included in some possible MISs, and a redun-
dant node is not included in any possible MISs. This
method places each node in the broader context of all
possible control configurations.
In total, this study aims to determine key host factors

with regulatory roles specific to the influenza virus-

infected cell state for the prediction of novel antiviral
targets. We have completed a two-part controllability
analysis of a host PPI network (HIN) and a hybrid net-
work of human host PPI data combined with influenza
A virus-host protein interaction data (VIN). The con-
trollability characteristics of influenza virus interacting
host proteins and driver proteins are compared to the
characteristics of the total network. A set of 24 host fac-
tors that hold value topologically, in controllability, and
functionally are identified as candidates for further study
in drug development based on their specialized behavior
during influenza infection.

Results
Topology of the host interaction network and virus
integrated network
The directed PPI network from Vinayagam et al. [40]
was restricted to confident interactions (see Methods for

a

b

c

Fig. 1 a An example protein-protein interaction network with three proteins and two protein translation process inputs. The state space representation of the
same network demonstrates that the change in state of a protein’s concentration is a function of its current state and an input process. A classic controllability
analysis demonstrates that this system is fully controllable and could, therefore, be driven to any possible state change in every protein. b Example application
of robust controllability, which determines the robustness of the network after the removal of a protein. c Example application of global controllability which
assesses the importance of a protein to all methods of network control
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network construction details), creating a network con-
taining 6281 proteins and 31,079 interactions. This net-
work is referred to as the “Host Interaction Network”
(HIN). Influenza A virus-host interactions from Wata-
nabe et al. [41] were narrowed to 2592 directed interac-
tions between 11 influenza A virus (IAV) proteins (HA,
M1, M2, NA, NP, NS1, NS2, PA, PB1, PB2, and PB1-F2
proteins) and 752 “IAV interacting proteins” preexisting
in the HIN. After integration into the HIN, the network
contains 6292 proteins and 33,671 interactions. This net-
work is referred to as the “Virus Integrated Network”
(VIN).
Degree and betweenness calculations were completed

for the HIN and VIN. As expected, the only proteins
with altered degree after the addition of virus interac-
tions to the network are the 752 IAV interacting pro-
teins (Marked in blue in Fig. 2a). This shift is significant
for the group of IAV interacting proteins as compared to
all proteins in both the VIN (log scaled median of IAV
interacting proteins: 1.04; log scaled median of all pro-
teins: 0.70; student t-test of log scaled data p < 2.20 ×
10− 16) and the HIN (log scaled median of IAV interact-
ing proteins: 0.85; log scaled median of all proteins: 0.70;
Student t-test of log scaled data p: 5.97 × 10− 12). The de-
gree distributions of both networks are scale free (Add-
itional file 1: Figure S1).
Because betweenness is sensitive to the information

flow through all proteins instead of only neighboring
proteins, 2735 proteins exhibit an increase in between-
ness after the addition of IAV interactions. Of these pro-
teins, 207 proteins’ log betweenness exhibits an increase
of 2 or more in the VIN compared to the HIN (Fig. 2b).
This suggests that the addition of IAV interactions has
an effect on network topology that reaches over 3.5
times the number of host proteins that are directly

interacting with IAV proteins. The betweenness shift in
the group of IAV interacting host proteins is significant
as compared to all proteins in both the VIN (Log scaled
median of IAV interacting proteins: 3.23; Log scaled me-
dian of all proteins: 2.82; Student t-test of log scaled data
p < 2.20 × 10− 16) and the HIN (Log scaled median of
IAV interacting proteins 3.22; Log scaled median of all
proteins: 2.82; Student t-test of log scaled data p: 2.13 ×
10− 15). This is a result of being the limited protein set
responsible for information flow from the viral proteins
to the rest of the network.

Driver proteins
Driver proteins (nodes) are the foundation of both types
of controllability calculations, representing the protein set
which must be manipulated for the system to be fully con-
trolled. The proteins are identified through maximum
matching algorithms [36]. The HIN and VIN both require
ND = 2463 driver proteins to achieve controllability, sug-
gesting that the magnitude of network control is un-
changed by the influence of the IAV interactions.
However, the identity of driver proteins shifts slightly as
the 11 viral proteins replace 11 host proteins within the
primary MIS as drivers in the VIN. Table 1 lists the iden-
tities of the 11 host proteins along with the shortest dis-
tance to an IAV protein in the network, degree, and
betweenness. Of these 11 proteins, only five are directly
interacting with IAV proteins. One of the remaining pro-
teins is two steps (two interactions and one connecting
protein) from any IAV protein, and the remaining five
proteins are three steps from any IAV protein. The num-
ber of paths between viral proteins and these proteins are
reflective of the number of paths between viral proteins
and all host proteins (Fisher test p: 0.99). This supports
the idea that viral interactions have lasting effects on the

a b

Fig. 2 a Degree of the VIN vs degree of the HIN where the IAV interacting proteins are marked in blue. The degree distributions of the networks
are scale free. b Difference in betweenness between the VIN and HIN for proteins which exhibit a difference greater than one
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system’s control structure, affecting proteins that are mul-
tiple paths away.
Lastly, analysis finds that 8.9% of all driver proteins

are also IAV interacting proteins, meaning the intersec-
tion of the two protein groups of interest comprise only
3.5% of the total network. There is a significant increase
in the betweenness of driver proteins depending on their
status as IAV interacting or IAV non-interacting proteins
(Fisher test p < 2.2 × 10− 16) where there is no significant
difference in degree of the same groups (Fisher test p:
0.7161). This is further evidence that the addition of
virus interactions to the network magnifies information
flow through the proteins most involved in controlling
network behavior.

Robust controllability
Robust controllability was calculated (see Methods) for
all proteins of the HIN and VIN (as shown in Table 2
with and without parentheses, respectively). The
addition of IAV interactions to the network has no effect
on the distribution of classifications of host proteins,
and consequently, the IAV Interacting proteins. Upon
entry to the VIN, the 11 IAV proteins are classified as
neutral, meaning that removing these proteins does not
alter the number of driver proteins required to control
the VIN (ND = ND’). This reveals that the removal of

singular proteins from the system is not enough to dis-
turb the existing control structure under robust
controllability.
While none of the proteins change robust classifica-

tion between networks, the aforementioned replacement
of 11 host driver proteins with viral proteins after the
addition of virus interactions creates a small change in
robust type distribution for driver proteins. Of the dis-
placed host proteins (deemed “robust proteins”, found in
Table 1), seven are neutral and four are dispensable in
the HIN, meaning that their removal from the network
does not change the number of driver proteins and re-
duces the number of driver proteins needed, respect-
ively. All IAV proteins are classified as dispensable in the
VIN. Of the five robust proteins that are both driver and
IAV interacting proteins, four are neutral and one is
dispensable. The most notable change in degree and be-
tweenness between the HIN and VIN is PRMT5, with an
increase of 9 and 2250, respectively. Overall, robust con-
trollability results suggest that the HIN is stable against
potential changes in the control structure that could be
caused by the addition of IAV interactions.
We developed an analysis to test if IAV is selectively

targeting host proteins based on controllability charac-
teristics. 10,000 random sets of 752 proteins (the num-
ber of IAV interacting proteins) were pulled from the
host proteins of the VIN. Their robust type distributions
were plotted against the classification results of IAV
interacting proteins, driver proteins, and all proteins in
the VIN (Fig. 3a-c). The randomly sampled sets closely
resemble all proteins of the network, not the true inter-
acting protein set, suggesting that robust controllability
behavior of interacting proteins is not a coincidence of
network construction (one-sided p = 0.51, 0.49, and 0.50
for indispensable, neutral, and dispensable, respectively).

Table 1 Identities of the proteins that are drivers in the HIN but not the VIN with the shortest number of paths to an Influenza A
viral protein. Degree and betweenness of the proteins of the VIN is provided (with the values from the HIN in parenthesis). Only
45% of these proteins are directly interacting with the viral proteins, demonstrating the cascade effect caused by the inclusion of
viral interactions

Entrez ID Gene Name Shortest Distance to IAV Protein Degree Betweenness

10658 CUGBP, Elav-Like Family Member 1 (CELF1) 1 4 (4) 81 (81)

1969 EPH Receptor A2 (EPHA2) 1 14 (13) 93 (0)

6733 SRSF Protein Kinase 2 (SRPK2) 1 6 (2) 6023 (6023)

10318 TNFAIP3 Interacting Protein 1 (TNIP1) 1 7 (7) 115 (115)

2997 Glycogen Synthase 1 (GYS1) 3 4 (4) 384 (384)

10949 Heterogeneous Nuclear Ribonucleoprotein A0 (HNRNPA0) 2 9 (2) 5 (0)

64112 Modulator of Apoptosis 1 (MOAP1) 1 8 (8) 6942 (6931)

10419 Protein Arginine Methyltransferase 5 (PRMT5) 3 26 (17) 6996 (4743)

10262 Splicing Factor 3b Subunit 4 (SF3B4) 3 13 (7) 82 (44)

23321 Tripartite Motif Containing 2 (TRIM2) 3 2 (2) 15 (15)

81603 Tripartite Motif Containing 8 (TRIM8) 3 3 (3) 0 (0)

Table 2 Robust controllability types of all proteins, driver
proteins, and virus interacting proteins in the VIN (HIN in
parenthesis)

All Proteins Driver Proteins IAV Interacting Proteins

Indispensable 1169 (1169) 0 (0) 186 (186)

Neutral 2669 (2658) 803 (799) 312 (312)

Dispensable 2454 (2454) 1660 (1664) 254 (254)
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IAV interacting proteins tend to be indispensable com-
pared to the percentage of all proteins that are indis-
pensable (Fig. 3a). This suggests that viruses prefer to
interact with proteins that are vital to cellular control.
Driver proteins are very likely to be dispensable proteins
compared to the percent of all proteins that are dispens-
able (Fig. 3c). Further, the mean and median log degree
and betweenness of the randomly sampled protein sets
is significantly lower than the same measurements of the
true IAV interacting set (p < 2.2 × 10− 16, 2.2 × 10− 16,
Fig. 4), signifying that virus interacting proteins are in
positions of network significance. Overall, the robust
controllability results of IAV interacting proteins suggest
that the virus may be selectively targeting host proteins
based on controllability characteristics.

Global controllability
Global controllability was calculated (see Methods) for
all proteins of the HIN and VIN (as shown in Table 3
with and without parentheses, respectively). Unlike in
robust controllability, there is a small disturbance to glo-
bal type distributions of host proteins after the addition
of virus interactions. 24 host proteins shift from being
classified as critical (a member of all MISs) to intermit-
tent (a member of some MISs) proteins. Identities of
these proteins (deemed “global proteins”) can be found
in Table 4 along with the shortest distance to an IAV
protein in the network and protein degree and

betweenness. The two most notable changes in degree
and betweenness between the HIN and VIN are EPH re-
ceptor A2 (EPHA2) with an increase of 1 and 93, re-
spectively, and transferrin receptor (TFRC), with an
increase of 3 and 164, respectively. All 24 global proteins
are driver and IAV interacting proteins which, as men-
tioned, only comprises 3.5% of the total network. There
are only two proteins (EPHA2 and HNRNPA0) that are
also members of the robust protein set. 45% of IAV
interacting proteins are never drivers, suggesting that
they are always manipulated by neighboring host pro-
teins within any possible control configuration. IAV
interacting proteins are not enriched for driver proteins
(Fisher test p: 0.14).
Again, a randomized protein set was created to test if

IAV may be selectively interacting with host proteins
based on their controllability characteristics. 10,000 ran-
dom sets of 752 proteins (the number of IAV interacting
proteins) were sampled from the host proteins of the
VIN. Their global type distributions were plotted against
the classification results of IAV interacting proteins,
driver proteins, and all proteins in the VIN (Fig. 3d-f ).
As with the robust classification, the random sets closely
resemble the total network (one-sided p = 0.50, 0.51, and
0.50 for critical, intermittent, and redundant, respect-
ively). While there are no redundant driver proteins by
definition, driver proteins are more likely to be intermit-
tent proteins than critical proteins (Fig. 3d-e), where

Fig. 3 a-c Density plots of distribution of robust controllability type for 10,000 random pulls of 752 proteins (number of virus interacting proteins
in network). d-f Density plots of distribution of global controllability type for 10,000 random pulls of 752 proteins (number of virus interacting
proteins in network). Values for IAV interacting proteins (blue), driver proteins (green), and all proteins (gold) are pictured for all figures
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more than 75% of all driver proteins are missing from at
least one possible MIS. This means the majority of pos-
sible driver proteins are able to be controlled by a neigh-
boring protein in at least one MIS. IAV interacting
proteins tend to be redundant compared to the total
number of proteins that are redundant (Fig. 3f ). This
suggests that viruses prefer to interact with proteins that
are part of existing control structures to receive input
from neighboring proteins.
Overall, global calculations identify a set of proteins

for consideration that are more important within the
VIN than the HIN. This is demonstrated through a com-
parison of degree and betweenness for the identified ro-
bust and global driver sets in Fig. 5. Proteins identified
in the robust analysis show little deviation in both de-
gree (Fig. 5a) and betweenness (Fig. 5b) measures after
the addition of virus-host interactions to the network. In
contrast, proteins identified in the global analysis show
much larger deviations in degree (Fig. 5a) and between-
ness (Fig. 5b) with all proteins having a betweenness of 0
in the HIN with an up to two log unit increase in the
VIN (Table 4). Because the identified proteins were not

responsible for information flow until the addition of
virus-host interactions to the network, this suggests that
the global protein set may identify key regulators of host
immune response to infection.

Validation of controllability significant host factors
All proteins were checked against 6 siRNA screens for
host factors involved in influenza replication (Brass et al.
[42], Hao et al. [43], Karlas et al. [44], König et al. [45],
Shapira et al. [46], and Watanabe et al. [41]), grouped by
both robust and global controllability classifications. Less
than 5% of all classifications of both types are validated
by any of the 6 screens (Fig. 6), suggesting that no con-
trollability classification is more enriched for host factors
than another. This is likely due to the low agreement ob-
served across siRNA studies [47]. However, the driver
proteins that change robust and global classification
have higher hit rates in siRNA screens, with 2 of 11
changing MIS proteins (SF3B4, SRPK2, 18% validation)
and 5 of 24 global-identified proteins (OSMR, PPA1,
PSMA5, POLE4, GDI2, 21% validation), though neither
are statistically significant results (Fisher p-values of
0.685 and 0.252, respectively).
An analysis of both protein sets of interest was per-

formed using Ingenuity Pathway Analysis (IPA) [48].
The network created for the robust protein set identified
cellular compromise, cell death, and cell cycle functions.
The network created for the global protein set identified
protein synthesis functions, all centered around NF-kB.
The global network notably recognizes six proteins

Table 3 Global types of all proteins, driver proteins, and virus
interacting proteins in the VIN (HIN in parenthesis)

All Proteins Driver Proteins IAV Interacting Proteins

Critical 512 (525) 512 (525) 0 (24)

Intermittent 3342 (3318) 1951 (1938) 411 (387)

Redundant 2438 (2438) 0 (0) 341 (341)

Fig. 4 Density plots of a) mean (blue) and median (green) log degree of random IAV interacting protein sets and b) mean (blue) and median
(green) log betweenness of random IAV interacting protein. Values for the true IAV interaction set shown as vertical lines, evidence that host
proteins that directly interact with viral proteins are in positions of network significance
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Table 4 Identities of global Proteins (proteins that shift global classification between the HIN and VIN). All identified proteins are
directly interacting with viral proteins. Degree and betweenness of the proteins of the VIN is provided (with the values from the HIN
in parenthesis)

Entrez
ID

Gene Name Shortest Distance to
IAV Protein

Degree Betweenness

56655 DNA Polymerase Epsilon 4, Accessory Subunit (POLE4) 1 2 (1) 1 (0)

30846 EH Domain Containing 2 (EHD2) 1 3 (1) 1 (0)

1969 EPH Receptor A2 (EPHA2) 1 14 (13) 93 (0)

2665 GDP Dissociation Inhibitor 2 (GDI2) 1 3 (1) 2 (0)

51552 RAB14, Member RAS Oncogene Family (RAB14) 1 2 (1) 1 (0)

2091 Fibrillarin (FBL) 1 9 (4) 19 (0)

10949 Heterogeneous Nuclear Ribonucleoprotein A0 (HNRNPA0) 1 9 (2) 5 (0)

3032 Hydroxyacyl-Coa Dehydrogenase/3-Ketoacyl-Coa Thiolase/Enoyl-Coa
Hydratase (Trifunctional Protein), Beta Subunit (HADHB)

1 9 (5) 26 (0)

3419 Isocitrate Dehydrogenase 3 (NAD(+)) Alpha (IDH3A) 1 3 (1) 2 (0)

4191 Malate Dehydrogenase 2 (MDH2) 1 3 (1) 1 (0)

64949 Mitochondrial Ribosomal Protein S26 (MRPS26) 1 2 (1) 0 (0)

9180 Oncostatin M Receptor (OSMR) 1 6 (5) 18 (0)

5052 Peroxiredoxin 1 (PRDX1) 1 11 (4) 44 (0)

5213 Phosphofructokinase, Muscle (PFKM) 1 6 (5) 17 (0)

26227 Phosphoglycerate Dehydrogenase (PHGDH) 1 4 (2) 9 (0)

5817 Poliovirus Receptor (PVR) 1 7 (6) 42 (0)

5686 Proteasome Subunit Alpha 5 (PSMA5) 1 6 (5) 11 (0)

5464 Pyrophosphatase (Inorganic) 1 (PPA1) 1 6 (5) 5 (0)

113174 Serum Amyloid A Like 1 (SAAL1) 1 2 (1) 1 (0)

6745 Signal Sequence Receptor Subunit 1 (SSR1) 1 4 (2) 12 (0)

7037 Transferrin Receptor (TFRC) 1 11 (8) 164 (0)

8834 Transmembrane Protein 11 (TMEM11) 1 4 (3) 20 (0)

30000 Transportin 2 (TNPO2) 1 2 (1) 1 (0)

7407 Valyl-Trna Synthetase (VARS) 1 3 (1) 0 (0)

Fig. 5 a) Degree and b) betweenness of robust (blue) and global (green) protein sets between the HIN and VIN. While proteins identified in the
robust controllability analysis do not show significant deviation in degree or betweenness, proteins identified in the global controllability analysis
show a shift in both measures after the addition of viral interactions
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(EPHA2, FBL, PFKM, PSMA5, SSR1, and TFRC) for
their involvement in the infection of cells (p: 9.58 × 10−
4). Four proteins in the robust network (CELF1, SF384,
SRPK2, and HNRNPA0, the last of which appears in both
protein sets) were identified for their involvement in
mRNA processing (p-value: 3.33 × 10− 6).
Lastly, Interferome v2.01 [49] was used to determine if

the 11 robust proteins and 24 global proteins are inter-
feron regulated genes (IRGs). All 11 robust proteins are
identified as IRGs and exhibit a 2-fold change in expres-
sion when treated with interferon in at least one experi-
mental dataset. 20 of 24 global proteins are identified as
IRGs and exhibit a 2-fold change in expression in at
least one experimental dataset. 6 global proteins are
identified in more than 10 studies. In particular,
HNRNPA0 and PPA1 are significantly down regulated in
20 and 63 datasets, respectively. These results point to-
ward the involvement of the predicted protein subsets in
immune response events.

Discussion
A network representation of the cellular environment
demonstrates that the effects of infection (represented
by the addition of virus-host interactions) cascade
through the system, demonstrated by the alteration of
basic topology measures. The betweenness shift between
the two networks, particularly in IAV interacting pro-
teins, supplies evidence that the topological effect of
viral infection is wide reaching (Tables 1 and 4). Further,
a comparison of driver protein betweenness for those
that are also IAV interacting proteins in comparison to
those that are not shows a significant difference. Driver
proteins that are IAV interacting are not receiving con-
trol influence from viral proteins (dictated by the

maximum matching requirement that each protein only
control a single protein) and require additional external
influence to achieve network control. However, the in-
creased betweenness of proteins that are both driver and
IAV interacting proteins suggests that this group is still
of great importance to information flow through the net-
work. This is one example where differences in network
topology measures can emphasize the importance of se-
lect proteins that are overlooked by controllability
principles.
Controllability analyses confirm that IAV interacting

proteins are in positions of significance for both types of
classification. The increased population of indispensable
IAV interacting proteins (robust controllability: ND′ >
ND, Fig. 3a) compared to what would be expected by
random chance suggests that it would be more difficult
for an outside influence (such as viral infection) to con-
trol the network after removing the IAV interacting pro-
teins opposed to a randomly selected protein. This is
logical as IAV interacting proteins act as the connection
between viral proteins and the host network where con-
trol is initiated. The increased population of redundant
IAV interacting proteins (global controllability: never a
driver protein, Fig. 3f ) when compared to the random
expectation indicates that more IAV interacting proteins
are always being manipulated internally than would be
expected by chance. This means that they are fully in-
corporated into the control structure of the VIN. From
these two results, one can conclude that IAV interacting
proteins contribute to both the “gate” (the ease of enter-
ing the system) and the “heart” (the proteins responsible
for propagating control through the system) of the net-
work control structure during infection. These findings
support the idea that viruses are likely to interact with

a b

Fig. 6 Percent of each a) robust classification type and b) global classification type confirmed in 6 siRNA screens (Brass, Karlas, Shapira, Hao,
Konig, Watanabe). None of the 6 possible classifications are more than 5% validated in the screenings, suggesting that experimental findings do
not favor certain protein controllability types
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proteins which offer an advantage to total network
control.
Similarly, both sets of controllability results demon-

strate that driver proteins play interesting roles in the
network control structure. The large population of dis-
pensable driver proteins (robust controllability: ND′ <
ND, Table 2) signifies that the majority of driver proteins
are making it more difficult to control the network by
requiring more external inputs to control system behav-
ior. In their absence, the number of driver proteins
would decrease and it would theoretically be easier for a
viral attack to compromise the network control struc-
ture. As such, a possible strategy for drug development
could be to protect these proteins from repression ef-
fects during infection. Over 75% of driver proteins are
classified as intermittent (global controllability: some-
times a driver protein, Table 3), meaning there is at least
one MIS where these driver proteins are not drivers, and
receive control influence through internal propagation.
This lends itself to the idea of viral escape routes: under
pressure, virus proteins could utilize alternative path-
ways to maintain system control and reach the goal of
hijacking cellular function.
The method of controllability implementation used

identifies protein sets of interest through changes to
classification between the HIN and VIN. Unfortunately,
robust classification methods do not detect a change be-
tween the two networks in this study. As it is a measure
of the robustness of the network to structural changes in
the absence of each protein, this suggests that the HIN
upholds its typical control structure during IAV infec-
tion. This could be a consequence of the interaction data
used or it may be that the strategy applied here cannot
distinguish between the behavior of healthy and diseased
states. Knowing the extent of changes to cell behavior
within immune response pathways [50–52], apoptosis
signaling [53, 54], and transcriptional processes [55–57]
during infection, the IAV infected cell can be interpreted
as a different system. The failure to see this distinction
may be a shortcoming of the robust controllability calcu-
lation, especially knowing that the 11 robust proteins are
not unique due to the method’s use of a single MIS.
Overall, the robust analysis should be applied to add-
itional virus-host networks in the fashion described
within this study to further evaluate the method.
The 24 proteins identified by the global controllability

analysis show promise as indicators of regulatory roles
specific to the infected state. All global proteins are IAV
interacting and driver proteins, a high distinction which
demonstrates a significant importance to network infor-
mation flow marked by significantly higher betweenness
in the VIN than even driver proteins that are not IAV
interacting. Additionally, all global proteins have no im-
portance to network flow in the HIN (betweenness = 0)

(Table 4), suggesting their role in network structure
“turns on” after the onset of infection. It is noteworthy
that PRDX1 has been implicated in respiratory syncytial
virus (RSV) [58], a lower respiratory tract infection that
is often associated with influenza virus [59]. Though the
number of global proteins identified in existing siRNA
screening data is not statistically significant, it should be
noted that siRNA screens cover only the partial genome.
As such, this type of analysis could be used to direct fu-
ture experimental studies to save time, money, and ef-
fort. IPA analysis reveals that some of the identified
proteins hold roles in mRNA processing, an integral part
of the influenza virus’ ability to spread through process-
ing its own RNA using host machinery [60]. The global
protein network is centered around NF-kB, which is im-
plicated in host immunity with evidence that the virus
directly inhibits NF-kB activity [61, 62]. The interferon
regulating roles of proteins in a high number of both
identified sets (all 11 changing MIS proteins and 20 of
24 global-identified proteins) speak to their responsibil-
ity in controlling infection. PPA1 appears as downregu-
lated in 63 studies and HNRNPA0 appears as
downregulated in 20 studies when treated with inter-
feron compared to a control, solidifying their involve-
ment in the host immune response. In total, this
evidence suggests that controllability analyses hold
power as predictors for important regulators of the host
response to influenza infection and, therefore, hold
power for drug target prediction.
Existing influenza virus studies using PPI networks re-

quire additional data such as differentially expressed
gene information [63] or protein context [30] to con-
struct host response networks. Alternative methods such
as DeltaNet [64, 65] and ProTINA [66] utilize gene tran-
scription profiles to infer protein drug targets, but rely
on the accurate deduction of gene regulatory networks.
More recent PPI studies have used network growing
functions such as GeneMANIA, STRING, and IPA [67]
to predict IAV host factors and studied infected cell sys-
tems through the integration of screening data with net-
work methods [33, 68]. Approaches incorporating time
course data into network analysis have also been ex-
plored [69]. While these methods (which include basic
network metrics such as degree and betweenness of PPI
networks) have been successful at identifying disease
host factors and in drug target development in the exist-
ing body of work, this dual controllability study offers a
novel, in-depth analysis of the role of individual proteins
in the context of total system function and how possible
changes to the system can be interpreted.
Lastly, though this study has used experimental data

from Influenza A studies, this analysis can be used to
improve the prediction of drug targets for any pathogen-
host interaction given available protein interaction data
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because of the generality of the method. The limits of
these methods lie in limited availability of large-scale,
dependable databases of protein-protein interactions.
Foundational maximum matching algorithms for the cal-
culation of driver proteins must be performed with di-
rected networks. While larger directed networks than
the network from Vinayagam et al. [40] are available
[70], the network used here contains only experimentally
derived data opposed to computationally predicted inter-
actions, assuring biological confidence in the results
within this study. A robust controllability analysis of the
computationally predicted network presented in Uhart
et al. [70] finds that 29% of proteins are categorized as
indispensable where approximately 20% of proteins in
the Vinayagam network are classified as the same,
though there is 89% overlap in directed edges between
the two networks. This suggests that methods for pre-
dicting protein interactions may over represent these key
proteins within the analysis, even in combination with
experimental results. However, larger networks will
move towards a more complete analysis of infected cell
behavior and possibly reveal further proteins of interest.
Therefore, the future of this field depends on continued
establishment of large, confident, directed PPI networks.

Conclusions
In total, this two-part network controllability analysis for
a host protein-protein interaction network (HIN) and an
integrated influenza virus-host protein-protein inter-
action network (VIN) aims to enhance the prediction of
antiviral drug targets for influenza A virus. While robust
controllability methods have previously been applied to
study PPI networks [29], past analysis focuses only on
the classification of virus interacting proteins and does
not evaluate before and after the addition of virus-host
interactions to the network. A global controllability ana-
lysis has never been applied to PPI networks. The
unique construction of the VIN includes experimentally-
derived virus-host interaction data [41] which represents
opportunities for the virus to manipulate host intracellu-
lar machinery using protein-protein interactions. Here,
analysis of the transition between the healthy and in-
fected network states and further investigation of virus
interacting and driver proteins has identified 24 proteins
as regulatory markers of the infected state. This protein
set is noted for its characteristics in topology, control-
lability, and functional roles within the infected cell: re-
sults that are summarized in Table 5. Our workflow
observes both the effect of structural changes to the net-
work in the case of potential protein knock outs, as well
as each protein’s role in all MISs, representing all pos-
sible ways of controlling the system. In combination,
network approach and results provide deeper under-
standing of how changes to cell behavior at the onset of

infection are able to occur through the work of a small
set of viral proteins. Through understanding the system
in this way, we present the possibility to “outsmart” viral
attack by dismantling the control structure which allows
the viral infection to take hold.

Methods
Protein-protein interaction network
The host protein-protein interaction network (from
Vinayagam et al. [40]) is the combination of interactions
identified in two or more repetitions of Y2H screens
within the study and known, experimentally identified
interactions from literature where interactions had been
given direction using a naïve Bayesian predictor. After
retrieving the network, a confidence level cutoff of 0.7
was used based on the correlation between confidence
scores and biological relevance reported in Yu et al. [71].
This network is the HIN. Influenza A virus-host interac-
tions detected by Co-IP RNAi assay in Watanabe et al.
[41] were narrowed to interactions which contained host
proteins already found within the HIN to avoid skewing
degree and betweenness network metrics. All virus-host
interactions are directed viral to host protein. These in-
teractions were directly integrated into the host network,
creating the VIN. All analysis was completed in R 3.4.3
using the igraph package.

Robust controllability classification
Calculations for robust classification were adopted
from Liu et al. [38]. For a network of n nodes, a set
of driver nodes for the bipartite representation of the
network, ND, is found using a maximum matching
algorithm such as Hopcroft-Karp [36]. Each node of
the network is iteratively removed (N′ =N − 1) and
maximum matching, ND’, is reevaluated. Nodes are
classified as indispensable (ND′ > ND), neutral (ND′ =
ND), or dispensable (ND′ < ND).

Global controllability classification
Calculations for global classification were adopted from
Jia et al. [39]. For a network of n nodes, a set of driver

Table 5 Summary of results for proteins identified in the global
controllability analysis

Quality Frequency in Global
Protein Set

Driver protein 100%

IAV interacting protein 100%

Identified in robust protein set 8%

Validated in at least one siRNA screen 21%

Cell infection – functional enrichment 25%

mRNA processing – functional enrichment 17%

Interferon regulating gene 83%
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nodes for the bipartite representation of the network,
ND, is found using a maximum matching algorithm such
as Hopcroft-Karp [36]. For all ND, control adjacent
nodes were identified iteratively and an input graph was
created as dictated in Zhang et al. [72]. The input graph
was used to classify nodes as critical (in all minimum in-
put sets), neutral (in some minimum input sets), or re-
dundant (in no minimum input sets).

Additional file

Additional file 1: Figure S1. Degree distribution of network with IAV
interactions (blue solid) and without IAV interactions (dotted black) show
that both networks demonstrate scale free topology (PDF 17 kb)
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