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Abstract

Background: Ontology has attracted substantial attention from both academia and industry. Handling uncertainty
reasoning is important in researching ontology. For example, when a patient is suffering from cirrhosis, the
appearance of abdominal vein varices is four times more likely than the presence of bitter taste. Such medical
knowledge is crucial for decision-making in various medical applications but is missing from existing medical
ontologies. In this paper, we aim to discover medical knowledge probabilities from electronic medical record (EMR)
texts to enrich ontologies. First, we build an ontology by identifying meaningful entity mentions from EMRs. Then,
we propose a symptom-dependency-aware naïve Bayes classifier (SDNB) that is based on the assumption that there
is a level of dependency among symptoms. To ensure the accuracy of the diagnostic classification, we incorporate
the probability of a disease into the ontology via innovative approaches.

Results: We conduct a series of experiments to evaluate whether the proposed method can discover meaningful
and accurate probabilities for medical knowledge. Based on over 30,000 deidentified medical records, we explore
336 abdominal diseases and 81 related symptoms. Among these 336 gastrointestinal diseases, the probabilities of
31 diseases are obtained via our method. These 31 probabilities of diseases and 189 conditional probabilities
between diseases and the symptoms are added into the generated ontology.

Conclusion: In this paper, we propose a medical knowledge probability discovery method that is based on the
analysis and extraction of EMR text data for enriching a medical ontology with probability information. The
experimental results demonstrate that the proposed method can effectively identify accurate medical knowledge
probability information from EMR data. In addition, the proposed method can efficiently and accurately calculate
the probability of a patient suffering from a specified disease, thereby demonstrating the advantage of combining
an ontology and a symptom-dependency-aware naïve Bayes classifier.
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Background
An ontology is a set of concepts in a domain space,
along with their properties and the relationships
between them [1]. The past couple of decades have
witnessed many successful real-world applications of
ontologies in the medical and health domain, such as in
medical diagnosis [2], disease classification [3], clinical
inference learning [4], and medical knowledge represen-
tation and storage [5].

Despite their effectiveness of previous studies, existing
ontologies for the medical domain are missing an
important component: the knowledge-triplet probability.
Due to the uncertainty and complexity of knowledge in
the medical domain, the probability of a knowledge
triplet depends on its head entity and tail entity. For
example, the probability of knowledge triplet (poor
appetite, symptom-disease, cirrhosis) is 0.20; hence,
when suffering from cirrhosis, 20% of patients have poor
appetite. Such probabilities in medical knowledge are
crucial for decision-making in various medical applica-
tions. Therefore, it is important to supplement medical
ontologies with probability information.
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An electronic medical record (EMR) is a structured
collection of patient health information and medical
knowledge that contains valuable information about prob-
abilities. Thus, it can be a high-quality resource for the
discovery of medical knowledge probabilities. After inves-
tigating the uncertainty regarding the actual situation of
the patient, it is necessary to separate the symptoms and
diseases that are possible from those that are impossible
to determine which measures might be effective [6].
To overcome the challenges that are discussed above,

we propose a novel knowledge acquisition method for
medical probability discovery. Patients’ medical records
are used to construct an ontology and train a symptom-
dependency-aware naïve Bayes classifier (SDNB classi-
fier) to evaluate the probability of a disease before we
observe any symptoms and the posterior probability
considering the correlations among symptoms.
To evaluate the performance of the proposed method,

we conduct experiments to evaluate the combined per-
formance of the generated ontology and the symptom-
dependency-aware naïve Bayes classifier on the medical
diagnostic classification task. The experimental results
demonstrate that our method can effectively discover
medical knowledge probabilities and accurately classify
diseases and pathologies.
In addition, we evaluate the performance of the pro-

posed method under various scenarios in disease reason-
ing tasks by visualizing how ontological analysis is
combined with a symptom-dependency-aware weighted
naïve Bayes classifier to conduct the probability estima-
tion and how probability enhances the interactions
between the user and the computer in gastroenterology
disease reasoning.
Our main contributions are threefold: 1) We enrich

medical knowledge graphs with probability information
by discovering the knowledge-triplet probability
information from EMR data, which renders the corre-
sponding medical ontology more accurate and more
applicable to medical tasks. 2) We present a method for
improving the naïve Bayes classifier based on the rele-
vance of various attributes to disease diagnosis. 3) We
demonstrate that the proposed method can reliably dis-
cover knowledge-triplet probabilities for medical ontol-
ogies. We also demonstrate the viability of training naïve
Bayes classifiers to support medical decision-making.

Related work
Knowledge discovery from EMRs
EMR data on the phenotypes and treatments of patients
are an underused data source that has much higher re-
search potential than is currently realized. With their
high-quality medical data, EMRs open new possibilities
for data-driven knowledge discovery towards medical
decision support. The mining of EMRs may establish

new patient-stratification principles and reveal unknown
disease correlations [7].
There are various medical knowledge discovery appli-

cations that are based on EMRs, including the discovery
over-structured data (e.g., demographics, diagnoses,
medications, and laboratory measurements) [8] and
unstructured clinical text (e.g., radiology reports [9] and
discharge summaries [10]). The research can be divided
into entity discovery [11], phenotype extraction [12],
disease topic discovery [13], temporal pattern mining
[14], and medical event detection [15]. Several NLP
techniques have been developed for clinical texts, e.g.,
coreference resolution [16], word sense disambiguation
[17] and temporal relations [18]. Many studies have
attempted to create annotated corpora [19] to facilitate
the development and testing of these algorithms, which
has also been the emphasis of the biomedical and clin-
ical informatics community.

Probability discovery
In the literature, ontologies have been extensively stud-
ied with naïve Bayes classifiers via various approaches,
such as document classification [20], ontology mapping
[21, 22], and sentiment analysis [23]. However, the com-
bined application of an ontology and a naïve Bayes clas-
sifier in medical uncertainty reasoning remains relatively
new territory that is underexplored.
A naïve Bayes classifier is a probabilistic classifier that

is based on Bayes’ theorem that imposes strong (naive)
independence assumptions between the features [24].
For example, the disease diagnosis module for the
Global Infectious Disease and Epidemiology Network
(GIDEON) [25] was developed using a naïve Bayes clas-
sifier that evaluates disease probabilities based on the
patient’s background, incubation period, symptoms and
signs, and laboratory test results. Naïve Bayes classifiers
have also been applied in many clinical decision support
tasks, e.g., curing mammographic mass lesions [26], op-
timizing brain tumor treatment [27], and predicting the
likelihood of a diabetic patient getting heart disease [28].
However, such fruitful results are subject to the

assumption that attributes (symptoms) are independent
from each other conditioned on the class variable
(disease) [29]. This assumption of attribute independ-
ence need not necessarily hold true in disease diagnostic
reasoning because a symptom can be strongly correlated
with many diseases or symptoms [30]. For example, the
symptom “diarrhea” may cause serum-electrolyte-
disturbance–associated symptoms, e.g., hypokalemia and
hyponatremia, while “hypokalemia” can cause decreased
intestinal peristalsis, thereby leading to loss of appetite,
nausea, and constipation. Therefore, the assumption of
attribute independence of naïve Bayes classifiers may
severely reduce its diagnostic accuracy.
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Ontology enrichment
Many studies have constructed ontologies, including
Freebase, DBpedia, and Disease Ontology (DO) [31].
These ontologies often suffer from incompleteness and
sparseness since most of them have been built either
collaboratively or semiautomatically. Thus, it is neces-
sary to supplement these ontologies with extra informa-
tion. An ontology can be enriched via two approaches:
The first is to enrich the distributed knowledge repre-
sentation by incorporating extra knowledge into know-
ledge embeddings [32]. The other is to reconstruct the
ontology with new elements, such as probability infor-
mation [33], temporal information [34], and space con-
straints [35]. In this study, we exploit the probability
information in the ontology, which has received little
attention so far.

Symptom-disease network reasoning
In the medical field, many studies explore the elucida-
tion of the relationship between the molecular origins of
diseases and their resulting symptoms. For example,
Hidalgo et al. [36] introduce a new phenotypic database
that summarizing correlations that were obtained from
the disease histories of more than 30 million patients in
a phenotypic disease network. Zhou et al. [37] use large-
scale medical bibliographic records and the related med-
ical subject heading (MeSH) metadata from PubMed to
generate a symptom-based network of human diseases,
where the link weight between two diseases quantifies
the similarity of their corresponding symptoms. The
main difference between our work and these existing
works is that we incorporate AdaBoost optimization
with a medical-specific OR value evaluation that can
identify the variables of health features and attributes to
evaluate the co-occurrence frequency among symptoms
in the EMRs. In addition, the final output of our task is
an ontology rather than a symptom-based network. The
annotations in the generated ontology, such as the dis-
ease introduction, disease/syndrome synonym, category,
pathology, department, part of body, and lesion, can
provide disease-related details to the user and facilitate
clinical decision-making.

Results
Ontology component analysis
First, we evaluate the quality of the generated ontology,
which is the final output of our task. Based on over 30,
000 deidentified medical records, we explore 336 gastro-
intestinal diseases and 81 related symptoms. Among
these 336 gastrointestinal diseases, the probabilities of
31 diseases are obtained via our method. These 31 prob-
abilities of diseases and 189 conditional probabilities
between diseases and symptoms are added to the gener-
ated ontology. We cannot obtain the probabilities of

other diseases since they are difficult to subjectively
quantify or their statistical results are unconvincing due
to insufficient medical records (e.g., there are only 2
medical records that correspond to gastrointestinal stro-
mal tumors).
A subset of the diseases and their syndromes, along with

their conditional probabilities, are summarized in Table 1.
Figure 1 is a subgraph of the generated ontology. For

the disease “gastric ulcer”, the solid lines represent the
taxonomy of the class relationships, while the dotted
lines indicate the relationships between diseases and
their relevant symptoms. The numbers on the dotted
lines represent the occurrence probabilities of the symp-
toms and the corresponding diseases. We observe the
following:

1) Disease-symptom mentions are identified via the
proposed method. For example, the triplet (acid
reflex, symptom-disease, gastric ulcer) indicates
that acid reflex is a symptom of a gastric ulcer,
which is useful for analyzing possible clinical
signs and predicting possible subsequent
probabilities of diseases.

2) The discovery of disease-relevant relationships,
including disease-lesion, disease-pathology, disease-
susceptible population, disease-part of body, and
disease-cure rate, is also helpful for gaining insight
into the proposed method.

3) The included probabilities can contribute to
gastroenterology diagnosis for medical applications.
The probabilities of knowledge triplets (nausea,
symptom-disease, gastric ulcer) and (tummy ache,
symptom-disease, gastric ulcer) are 0.20 and 0.25,
respectively; hence, if suffering from a gastric ulcer,
the occurrence probability of nausea is nearly the
same as that of tummy ache.

Diagnostic classification
To evaluate the performance of the knowledge-triplet
probability of the proposed method, we conduct experi-
ments on the diagnostic classification task, namely, the
classification of a disease or pathology.
As a test set, 1660 medical records were randomly

selected and analyzed to identify the presence or absence
of cirrhosis. In our pre-experiment, we adopted the 6-
fold cross-validation method. The results of each cross-
validation experiment were highly similar because the
medical record text that we used was homogeneous and
of high quality. Therefore, we randomly selected 1660
records as the test set in the current study.
In the medical record, the most important disease

from which the patient suffers is listed first and the
complications are listed subsequently. This study only
focused on the first disease that is listed in the medical
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record. Based on the doctors’ diagnosed cases, we calcu-
late and compare the classification accuracy of the gen-
erated ontology (SDNB ontology) in four scenarios: (a)
without the naïve Bayes classifier (SDNB ontology); (b)
with the original naïve Bayes classifier (SDNB ontology
+ NB); and (c) with an improved naïve Bayes classifier
that is based on the co-occurrence frequency, which was
presented in [38] (SDNB ontology + improved NB); and
(d) with a symptom-dependency-aware weighted naïve

Bayes classifier that is realized via odds ratio (OR) value
[39] evaluation and AdaBoost optimization (SDNB
ontology+ SDNB classifier).
For the first scenario, we use the original ontology

without the newly added probabilities and apply the path
ranking algorithm (PRA) [40] to model the ontology re-
lationships and train the classifier for each relationship.
In the ontology, a relationship path can be formed by
connected ontology triplets. For example, (disease, alias,
disease) and (disease, corresponding symptoms, symp-
toms) can be connected as a path. Considering the
ontology as a directed graph, PRA adopts the relation-
ship path as a feature and represents all the relationship
paths in the ontology as feature vectors. Afterwards, the
classifiers are trained to identify the relationships
between the entity pairs.
For the third scenario, we designed an improved Naïve

Bayes classifier that is based on syndrome correlations.
The correlation between symptoms Sij1 and Sij2 can be
calculated via Equation (1), where P((Sij1,Sij2)| Df )
denotes the class conditional probability of (Sij1,Sij2) and

Table 1 Examples of the diseases and their syndromes and
conditional probabilities

Disease Syndrome and Conditional Probability

Acute
pyelonephritis

(fever, 0.2), (shaking, 0.1), (frequent urination, 0.1),
(urinary incontinence, 0.1), (odynuria, 0.1),
(stomachache, 0.1), (urine turbidity and urinary
smell, 0.1), (nausea, 0.05), (vomiting, 0.05),
(headache, 0.05), and (sore all over, 0.05)

Acute interstitial
nephritis

(oliguria, 0.6), (fever, 0.1), (rash, 0.1), and
(joint pain, 0.1)

Chronic interstitial
nephritis

(night time urination, 0.1), (foam in urine, 0.5),
(blaze, 0.2), and (white nails, 0.2)

Fig. 1 Ontology class: Gastric ulcer
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P(Sij1| Df ) and P(Sij2| Df ) denote the class conditional
probabilities of Sij1 and Sij2, respectively. If P((Sij1,Sij2)|
Df ) > P(Sij1| Df ) ∙ P(Sij2| Df ) , Sij1 and Sij2 are considered
positively correlated; otherwise, they are negatively
correlated. If CorrðSij1;Sij2ÞjD f

¼ 1 , symptoms Sij1 and Sij2
are independent. The Bayesian formula, which takes the
correlation weight of the symptom vector for the poster-
ior probability calculation into account, is presented as
Equation (2):

Corr Sij1;Sij2ð Þ D fj ¼ P Sij1;Sij2
� �jDf
� �

P Sij1jDf
� �

∙P Sij2jDf
� � ð1Þ

P Df Sijð Þ ¼ CorrSi D fj ∙P Dfð Þ∙

Yn
j¼1

P SijjDf
� �

P Sið Þ ð2Þ

For the experiment, a receiver operating characteristic
curve (ROC) is utilized to evaluate the accuracy of the
ontology-driven diagnosis classification in which formal
measures are used to evaluate the rate of success in
distinguishing the correct disease and identifying an ap-
propriate therapeutic regimen. An ROC curve is related
to the number of true positives (TP), the number of false
positives (FP), the number of true negatives (TN), and
the number of false negatives (FN). An ROC space is de-
fined by the false positive rate (1 − specificity = FP ∕ (TN +
FP)) and the true positive rate (sensitivity = TP ∕ (TP +
FN)) as the x- and y-axes, respectively. Each prediction
result produces a (1-specificity, sensitivity) pair and rep-
resents a point in the ROC space. Then, we plot the
ROC point for each possible threshold value result (the
threshold specifies the minimum a posteriori probability
for assigning a sample to the positive class), thereby
forming a curve. In this study, we use the area under the
curve (AUC), whose value is typically between 0 and 1, to
measure and compare the classification performances of
classifiers. An AUC value of 0.5 corresponds to random
predictions. A satisfactory classifier should have an AUC
value that substantially exceeds 0.5. The higher the AUC
value is, the better is the classification performance.
The ROC curves that are presented in Fig. 2 represent

the simulation results. Using various threshold values,
we aim at determining whether the experimental result
can yield an accurate diagnosis based on various ontol-
ogies, where 0 denotes no and 1 denotes yes. The calcu-
lation of a classifier with the test data returns a
probability pair, namely, [P1, P2], that specifies a prob-
ability of 0 or 1. The obtained results, such as 0: [3.63E-
09, 1.00E+ 00] and 1: [0.962542578, 0.037457422], can
be connected by a line and presented as ROC curves.
As shown in Fig. 2, the ROC curve that corresponds

to the operation combination of the SDNB ontology and
the SDNB classifier shows the highest performance at

most tested noise levels, which demonstrates the
effectiveness of incorporating OR value evaluation and
AdaBoost optimization into the base model. The ontol-
ogy that was developed with probabilities and enriched
by more complete knowledge can accurately represent
the relationships between diseases and symptoms and
can provide superior data support for decision-making
during diagnosis.
Comparing the blue curve with the red curve, the

accuracy of the diagnosis has been significantly im-
proved. This is expected since the OR value is particu-
larly suitable for comparing the relative odds of the
occurrence of disease outcomes given exposure to the
health feature variable and attribute.
All ROC curves that are discussed above are obtained

from the experimental results, which are listed in Table 2.
The p-values are calculated using the GraphPad Prism 7
software based on the principle of the Z test by compar-
ing the AUC values with 0.5. The null hypothesis,
namely, H0, is AUC = 0.5 and the alternative hypothesis,
namely, H1, is AUC > 0.5.

Diagnostic reasoning cases
Three positive sample cases that use a small part of the
EMR dataset and their prediction results that are based
on our generated ontology are listed in Table 3. The cor-
rectly identified diseases were the top scored diseases by
each model. Our symptom-dependency-aware naïve
Bayes classifier substantially and consistently outper-
forms the baselines, thereby demonstrating the remark-
able applicability and effectiveness of our method.

Fig. 2 ROC chart and AUC for classifier evaluations
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[Case 1: Jaundice] The classification results for the
four scenarios are all correct. The probability of the dis-
ease that is predicted by the symptom-dependency-
aware naïve Bayes classifier is higher; hence, by taking
into account the correlations among symptoms, the
more symptoms the patient has, the more accurate the
prediction is.
[Case 2: Pancreatic Cancer] The classification results

for the four scenarios are correct. If there is no signifi-
cant correlation among the selected symptoms, the
probabilities of disease that are predicted by the baseline
classifiers and the symptom-dependency-aware naïve
Bayes classifier are similar.
[Case 3: Liver disease] The improved naïve Bayes

classifier correctly classifies the disease, while the other
two methods (SDNB ontology and SDNB ontology +NB)
do not accurately identify the disease. For example, the
predicted score for liver disease that was provided by the
SDNB ontology is 0.42; hence, the total score for other
possible diseases is 0.58. Scores that are not well differ-
entiated cannot provide useful support for clinical
decision-making. It is also observed that the improved
naïve Bayes classifiers outperform the original classifiers
if there are few symptoms but strong correlations among
these symptoms.
A typical research case that involved answering clinical

queries about gastroenterological disease was developed
to evaluate the diagnostic reasoning and probability
computations based on the ontology (see Fig. 3). The UI
interface is an HTML page that is based on the boot-
strap framework.

As shown in the upper-left part of Fig. 3, after receiv-
ing an initial query from a user, our proposed model
(SDNB ontology + SDNB classifier) outputs the standard
symptom expressions. First, we match the input query in
the SDNB ontology via ontology components “class
name” and “alias” (represented by the relation “hasExact-
Synonym” in OWL) via n-gram text matching. Then, the
detected symptoms and their synonyms are returned for
the users as a reference. Finally, our model (SDNB
ontology + SDNB classifier) identifies the standard
symptom expressions for conducting diagnostic reason-
ing. Based on the involved standard symptoms, our
model provides a list of relevant symptoms from which
the user can select according to the entity relevance
within the ontology (see the lower-left part of Fig. 3).
With all selected symptoms, our model calculates the
probability of illness using the proposed naïve Bayes
classifier. The diagnostic results are presented in the
upper-right part with a description of the possible dis-
ease. In addition, the symptoms’ conditional probabilities
are presented as details in the bottom-right part and
serve as references for the patient.

Discussion
This manuscript combined research on knowledge dis-
covery and probability discovery from EMRs with ontol-
ogy completion in the medical field. This study explored
a symptom-dependency-aware naïve Bayes classifier,
which involves the automatic determination of probabil-
ities between diseases and syndromes to facilitate ontol-
ogy applications in probabilistic diagnosis inference.

Table 2 Experimental results in four scenarios: (a) without the naïve Bayes classifier; (b) with the original naïve Bayes classifier; (c)
with an improved naïve Bayes classifier that is based on the co-occurrence frequency; and (d) with the symptom-dependency-aware
weighted naïve Bayes classifier

SDNB ontology SDNB ontology + NB SDNB ontology + improved NB SDNB ontology + SDNB classifier

Area under the ROC curve 0.7574 0.8392 0.8753 0.8876

Std. of the error 0.03865 0.03063 0.01628 0.01264

95% confidence interval 0.6817 to 0.8331 0.7792 to 0.8993 0.8434 to 0.9073 0.8437 to 0.9281

P value < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 3 Diagnostic reasoning results in four scenarios: (a) without any naïve Bayes classifier; (b) with the original naïve Bayes
classifier; (c) with the improved naïve Bayes classifier that is based on the co-occurrence frequency; and (d) with the symptom-
dependency-aware weighted naïve Bayes classifier

Disease Case Symptom set SDNB
ontology

SDNB
ontology
+ NB

SDNB
ontology +
improved NB

SDNB
ontology +
SDNB classifier

Jaundice Case 1 {Nausea, Vomiting, Yellow sclera, Weary, Pale stools,
Dark urine, Itchiness, Fatigue, Abdominal pain,
Weight loss, Vomiting, Fever, Pale stools, Dark urine}

0.67 0.71 0.83 0.862

Pancreatic
Cancer

Case 2 {Yellow sclera, Jaundice, Abdominal pain, Back pain,
Bloating, Nausea, Vomiting}

0.54 0.61 0.64 0.646

Liver
disease

Case 3 {Dizziness, Body skin yellow dyeing, Abdominal pain
and swelling, Itchy skin}

0.42 0.48 0.55 0.567
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Technically, we present a reproducible approach for
learning probability information that involves diseases
and symptoms from an EMR. The proposed operation
depends on various methods that are based on EMRs, as
described in this manuscript. In contrast to our previous
approach that evaluated the attribute correlation based
on the attribute co-occurrence frequency, we explore
the acquisition of disease-symptom factors from EMR
texts using an OR value that is especially suitable for
medical applications. In our study, the OR value mea-
sures the association that compares the likelihood of
disease of exposed patients to the likelihood of disease
of unexposed patients. Compared with the existing on-
tologies, we built a more domain-specific and complete
ontology for gastrointestinal diseases. The experimental
results demonstrate that the direct and automated

construction of a high-quality health ontology from
medical records is feasible.
Practically, the proposed approach provides possible

references for clinicians and ontologists. The proposed
approaches can offer a quick overview of disease-
relevant factors and their probability distribution to
users. The learned probabilities render the ontology
more interpretable.
Several limitations are encountered in this study. The

disease/symptom modeling is conducted based on EMR
records; thus, it is critical to have a large volume of
high-quality EMR records. However, the records could
easily be biased. In addition, this study focused only on
the first disease that is listed in the medical record and
ignored the other diseases and complications. Although
this method accords with clinical logic and effectively

Fig. 3 Diagnosis of cirrhosis based on the generated SDNB ontology and the proposed SDNB classifier
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reduces noise during the reasoning process, it will
reduce the amount of useful information.
Accordingly, one of the more promising avenues for

future research is the incorporation of other data-mining
techniques, such as heuristic learning and clustering, for
attribute distillation [41]. Meanwhile, we will study the
entire diagnosis results in terms of the data integrity and
distribution. A distribution plot of the numbers of
identified/associated diseases per EMR record will be ex-
plored to identify important information.

Conclusions
In this paper, we present a medical knowledge probabil-
ity discovery method that is based on the analysis and
extraction of EMR text data for enriching medical ontol-
ogies with probability information. The experimental
results demonstrate that the proposed method can
effectively identify accurate medical knowledge probabil-
ity information from EMR data. In addition, we evaluate
the performance of the proposed method under various
scenarios, including diagnosis classification and diagno-
sis reasoning.
Although we have presented an application of the

ontology-based Bayesian approach in gastrointestinal dis-
eases, the search algorithm is not limited to gastrointes-
tinal diseases. Our ontology-based Bayesian approach is
amenable to a wide range of extensions that may be useful
in scenarios in which the features are interrelated.

Methods
In this section, we introduce an improved naïve Bayes
classifier for triplet probability computation for con-
ducting a medical knowledge probability discovery task
and enrich the ontology with knowledge-triplet prob-
ability information.

Ontology construction with EMRs
We obtain 100,198 EMRs, collecting from February
2015 to July 2016, from a partner clinic located in a mu-
nicipality of China. Among all these EMRs, 31,120 are
about gastrointestinal diseases, and they are adopted as
training and testing sets in this study. In the medical
record, according to the patient’s symptoms, the number
of diseases diagnosed by the doctor ranges from 1 to 7,
and the corresponding medical records account for
64.30, 23.03, 10.21, 1.88, 0.47, 0.1 and 0.01% of the total
medical records, respectively (see Fig. 4). It should be
noted that we only count the primary disease listed in
the medical record. For example, the EMR with ID
00292987 is about an 80 years old male, who suffers
from chronic gastritis and left ureteral calculi. Since he
was in the Department of Gastroenterology, the doctor
focused on his primary disease chronic gastritis and

listed his known long-term disease (left ureteral calculi)
as other diseases.
As the EMRs are provided in the formats of image and

PDF, we transform them into texts using an Optical
Character Recognition (OCR) tool. At present, the
accuracy of data recognition through OCR tools varies
from 90 to 99% depending on the identification content.
We randomly sample 20 transformed EMRs to find
frequent error characters that are caused by the OCR
tool. Then, based on these OCR error patterns and the
EMR organization formats, we design a set of regular
expressions to extract the patient fields as needed. To be
more specific, the EMRs from our partner clinic can be
categorized into three organization formats and have
similar segmentation indicators, including “sex”, “age”,
“symptom”, “diagnosis”, “admissions records”, “discharge
records” and “medical history”, which facilitates the
design of regular expressions.
For the proofreading of medical record data, if errors

occur frequently in the same situation (e.g., when identi-
fying information in a table, the presence of table line
may result in the appearance of meaningless symbols),
they would be statistically adjusted and removed. To
further ensure the accuracy of text recognition, we
invited three medical students to proofread all the
extracted texts. According to statistics, word recognition
errors that require their correction exist in less than 2%
of medical records. Some common mistakes include the
Chinese word “脉” being misidentified as recognized as
“Sz1” for unknown reason, and the word “日” being mis-
identified as “曰”.
As this analysis focuses on diseases that are related to

gastrointestinal diseases, we attempt to identify the med-
ical data that pertain to gastrointestinal diseases. Based
on the diagnosis results that are presented in the EMRs,
we filter out those data for which the premier diagnosis
is not a gastrointestinal disease. After preprocessing

Fig. 4 Distribution of the number of diseases diagnosed by doctors
in all involved medical record data
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steps, we retain 31,720 EMR data, which correspond to
different patients according to the serial numbers of the
outpatient clinic and hospital.
The inputs of this task are a set of EMRs, an example

of which is presented in Table 4.
The EMR texts are in Chinese and require word seg-

mentation to divide the text into Chinese component
words. In this paper, we use a Chinese word segmenta-
tion tool, namely, jieba,1 to generate the tokenized
causal-mention sentences.
We use the International Classification of Diseases

(ICD-10) in the Chinese language and the largest med-
ical e-dictionary2 for word matching. The e-dictionary
contains 12 million terms in Chinese, which cover
vocabulary in various clinical departments, basic medi-
cine, molecular biology, medicines, instruments and
traditional Chinese medicine. Selecting these two med-
ical dictionaries as the target, we perform n-gram entity
name matching to extract medical entities from raw
texts. Typically, an n-gram is a contiguous sequence of n
items from a specified sample of text.
The disease-symptom mentions are extensive in EMR

data. The patient usually describes his/her symptoms and
medical history with explicit temporal and causal indica-
tors (e.g., “before”, “after”, and “since”), while the doctor
usually provides diagnosis and therapy suggestions in
response to questions, in which the doctor refers to symp-
toms and diseases, along with their relationships. The
mentions of lesions, pathologies, and susceptible popula-
tions, among others, are also extracted. Then, we match
entity pairs in the same text to possible knowledge triplets
using an alias table. Via this approach, we extract the
knowledge triplets from the raw medical data.
Afterwards, we add the entity tag in the EMR data to

each matched entity and the triplet is transformed into an
entity pair: (entity1; tag1)→ (entity2; tag2) (e.g., (catch-a-
cold; symptom)→ (fever; disease)). The same entity may
have multiple tags (e.g., a disease can become a symptom
under various clinical conditions) and play multiple roles
in the ontology. Finally, such triplets are composed as an
ontology by combining the aliases (see Fig. 5).

Via entity name matching, the knowledge of gastrointes-
tinal system diseases3 in the disease ontology is adopted to
enrich the generated ontology. Consider the disease “aller-
gic bronchopulmonary aspergillosis” as an example. We
can obtain its superclass (aspergillosis), disease ID (DOID:
13166) and other cross-reference information (e.g., OMIM:
103920, MESH:D001229, and ICD9CM:518.6).
However, the generated SDNB ontology is not suffi-

ciently accurate for use because there is no information
that explicitly specifies the probability of the co-
occurrence of a disease and a symptom. In the remain-
der of this section, we introduce an improved naïve
Bayes classifier for conducting probability discovery.

Symptom-dependency-aware Naïve Bayes classifier
We propose a symptom-dependency-aware naïve Bayes
classifier that is based on the assumption that symptoms
have a level of dependency among them. The proposed
naïve Bayes classifier calculates the probability that a
patient is suffering from a specified disease and outputs
the relevant symptoms of that disease. Afterwards, via
innovative approaches, we incorporate the value of the
probability of a disease into the ontology.
Figure 6 shows a flow diagram for calculating the dis-

ease probability using the symptom-dependency-aware
naïve Bayes classifier. The calculation process includes
ontology queries and naïve Bayes classification. During
the gastroenterology diagnosis, the proposed method
reads the proposed ontology using Java code to query
the following information in the ontology: a disease and
its relevant symptoms, the probability of a disease before
we observe any symptoms, and the conditional probabil-
ity of a symptom given a disease. All this information is
considered as the basis for classification.
Then, the naïve Bayes classification steps determine

the probabilities that various diseases will occur when
symptom Si occurs. Finally, the classifier outputs a set of
diseases that have high probabilities and other symptoms
that are associated with these diseases. Our model allows
the user to select additional relevant symptoms as a sup-
plement to the initial query. The classifier will continue
to operate until the user completes symptom selection,
at which point the diagnosis results will be complete.

Naïve Bayes
Formally, we consider k disease categories, namely, {D1,
D2,D3…Dk}, and m diagnostic samples, namely, {S1, S2,
S3,…Sm}, where each sample contains n symptom attri-
butes, which are denoted as Si = {Si1, Si2, Si3,…Sin}.
Equation (3) expresses the naïve Bayes computation,

where P(Df ) denotes the probability of disease Df before
we observe any symptoms. We obtain P(Df ) based on
statistical results or expert experiences. Given a symp-
tom Si, P(Df| Si) is the posterior probability of Df.

Table 4 Example of Chinese EMR data that has been translated
into English

Item Content

GENDER Male

AGE 48

ILLNESS_DESC The patient complained of abdominal discomfort after
meals, especially high-fat meals. He also had aching in
his right shoulder and back.

BODY_EXAM An ultrasound of the upper abdomen
revealed cholelithiasis.

DIAG_DESC Cholecystitis
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Fig. 5 Subgraph of the generated ontology

Fig. 6 Flow diagram of disease probability calculation using the improved naïve Bayes classifier based on attribute relevance
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The conditional probability of Si equals P(Si|Df ) if Df

holds. Here, PðSijD f Þ
PðSiÞ can be treated as an adjustment

factor for the disease probability P(Df). If the adjustment
factor is > 1, P(Df ) will be augmented; hence, the prob-
ability of occurrence of disease Df is higher; if the adjust-
ment factor is < 1, P(Df ) will be weakened; hence, the
probability of occurrence of Df is lower. If the value of
the adjustment factor = 1, the probability of occurrence
of disease Df is unaffected.

P Df jSi
� � ¼ P Df

� �
∙P SijDf
� �

P Sið Þ ð3Þ

According to the assumption of attribute independ-
ence, which underlies naïve Bayes, the Bayesian multi-
plicative equation can be simplified to Equation (4):

P Df jSi
� � ¼

P Df
� �

∙
Yn
j¼1

P SijjDf
� �

P Sið Þ ð4Þ

Symptom-dependency-aware Naïve Bayes classifier
A symptom-dependency-aware naïve Bayes classifier is
designed based on the attribute relevance. Naïve Bayes
evaluates the correlation between symptoms in terms of
the dependency degree between symptom vectors. The
conditional probability of a symptom vector is evaluated
as the product of the conditional probability of each
symptom and the dependency degree of the symptom
vector. By calculating the symptom vectors, the prob-
ability of a disease, namely, P(Df ), is used to estimate its
posterior probability.

1) Correlations between symptoms

As expressed in Equation (5), the OR value between
any two nodes is evaluated based on the co-occurrence
frequency among symptoms in the EMRs. Using 30,060
EMR data as training set, a threshold of at least 5 co-
occurrences between symptom pairs was selected as a
denoising measure. Here, 5 corresponds to the number
of co-occurrences between symptom pairs in each EMR
record. We experimented with several co-occurrence
thresholds (0, 2, 5 and 10) and selected the smallest
value that performed well in the automatic evaluation.
According to the pre-experiment, the number of EMRs
has little impact on the threshold setting.
The OR value can be used to estimate the mutual

information strength between symptom Si and disease
Df. If the OR between symptom Si and disease Df ex-
ceeds 1, then having symptom Si is considered to be a
risk factor for disease Df. If the OR value is less than 1,
symptom Si is not highly relevant to disease Df:

OR Si;Df
� � ¼ P Si ¼ 1jDf ¼ 1

� � � P Si ¼ 0jDf ¼ 0
� �

P Si ¼ 0jDf ¼ 1
� � � P Si ¼ 1jDf ¼ 0

� �
ð5Þ

To estimate the mutual information between symp-
toms, namely, to quantify how strongly the presence or
absence of symptom Si is associated with the presence
or absence of symptom Sj, we simultaneously calculate
OR(Si, Sj) as:

OR Si; S j
� � ¼ P Si ¼ 1jS j ¼ 1

� � � P Si ¼ 0jS j ¼ 0
� �

P Si ¼ 0jS j ¼ 1
� � � P Si ¼ 1jS j ¼ 0

� �
ð6Þ

Based on the obtained OR value, the correlations be-
tween the symptoms is:

Corr Si;S jð Þ D fj ¼ OR Si; S j
� �

OR Si;Df
� �

∙OR S j;Df
� � ; j! ¼ ið Þ ð7Þ

2) The symptom-dependency-aware naïve Bayes classi-
fier that is based on attribute relevance

The improved formula, which evaluates the posterior
probability by taking into account the dependency de-
gree of the symptom vector, is presented as Equation (8):

P Df jSi
� � ¼

CorrSi D fj ∙P Df
� �

∙
Yn
j¼1

P SijjDf
� �

P Sið Þ ð8Þ

where CorrSijD f
denotes the dependency degree of symp-

tom vector Si, which can be calculated via Equation (9).
There are n symptoms and C2

n denotes the number of
pairwise symptom combinations:

CorrSi D fj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn

i; j¼1
Corr Si;S jð Þ D fj

Cn2

r
j < ið Þ ð9Þ

The main strategy is to represent the dependency
degree of a symptom vector as the correlation product
of symptom pairs approximately, since the dependency
degree of the symptom vector is proportional to the cor-
relations between the pairs of symptoms.

3) Optimization of the Symptom-dependency-aware
Naïve Bayes classifier

Adaptive boosting (AdaBoost) [42] is used to optimize
the proposed naive Bayes classifier. AdaBoost randomly
selects the symptom vectors from the training database
and trains the proposed classifier on the selected subset.
The remaining data are used as test data. Vectors that
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are misclassified will form the subset for training; hence,
the proposed classifier will learn the misclassified symp-
tom vectors in the next round.
We utilize the effect of the number of symptoms in

the symptom vector to smooth the product by calculat-
ing the correlation coefficient. The training process is
described as follows:

[Step 1] Sample Statistics.

We count the number of samples #Df for disease Df,
the number of samples #Sij|Df in which symptom Sij is
associated with disease Df, and the number of samples
#(Si,Sj)|Df in which symptom pair (Si,Sj) occurs with
disease Df.

[Step 2] Disease and Symptom Probability Evaluation.

Using the results from the sample statistics, the prob-
ability of a disease, namely, P(Df ), and the conditional
probability of a symptom, namely, P(Sij|Df), can be calcu-
lated via Equation (10) and Equation (11), respectively:

P Df
� � ¼ CountD f þ 1ð Þ= mþ kð Þ ð10Þ

P SijjDf
� � ¼ CountSij D fj þ 1

� �
= CountD f þ k
� � ð11Þ

where m is the number of samples in the training set
S and k is the number of diseases. The Laplace cor-
rection (the “+ 1” in the numerator and the “+ k” in
the denominator) is utilized to estimate probabilities
in machine learning.

[Step 3] Pairwise Symptom Conditional Probability and
Symptom Correlation Matrix.

We estimate the conditional probability P((Si,Sj)|Df ) of
symptom pair (Si,Sj). The correlation of each symptom
pair is evaluated via Equation (7) to produce a matrix of
symptom correlations.
In the classification process, given the symptom

vectors, we calculate the posterior probability of a
disease and select the disease that has the maximum
posteriori probability.

[Step 1] Vector Correlation.

Given a test sample Si = {Si1, Si2, Si3,…Sin}, the depend-
ency degree CorrSijD f

of symptom vector Si is calculated
via Equation (9) with the symptom correlation matrix.

[Step 2] Symptom Posterior Probability and Diagnosis
Classification.

We calculate the disease posterior probability P(Df|Si)
via Equation (8) and select the diseases with high poster-
iori probability values as the diagnosis classification
results.

Enriching the ontology with probabilities
After obtaining the disease- and symptom-relevant prob-
abilities via the symptom-dependency-aware naïve Bayes
calculation, we need to add the values of the probabil-
ities into the ontology.
A MySQL database is used to store the disease prob-

ability and symptom conditional probability that were
evaluated via the original naïve Bayes classifier or the
improved naïve Bayes classifier. The data conversion
between this MySQL database and the ontology in web
ontology language (OWL) is conducted by the Owlready
package [43]. The probability values of a disease are
added to DataProperty of the ontology rather than to
AnnotationProperty. Thus, the ontology metrics can be
calculated by Protégé and read by Owlready, rdflib or
any other ontology development tool [44]. Via this
approach, the symptom-dependency-aware naïve Bayes
classifier can perform the disease probability calculation.

Endnotes
1https://github.com/fxsjy/jieba
2http://dic.medlive.cn
3https://www.ebi.ac.uk/ols/ontologies/doid/terms?iri=

http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FDOID_77
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