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Background: Deep learning techniques have been successfully applied to bioimaging problems; however, these
methods are highly data demanding. An approach to deal with the lack of data and avoid overfitting is the application
of data augmentation, a technique that generates new training samples from the original dataset by applying
different kinds of transformations. Several tools exist to apply data augmentation in the context of image classification,
but it does not exist a similar tool for the problems of localization, detection, semantic segmentation or instance
segmentation that works not only with 2 dimensional images but also with multi-dimensional images (such as stacks

Results: In this paper, we present a generic strategy that can be applied to automatically augment a dataset of
images, or multi-dimensional images, devoted to classification, localization, detection, semantic segmentation or
instance segmentation. The augmentation method presented in this paper has been implemented in the open-source
package CLoDSA. To prove the benefits of using CLoDSA, we have employed this library to improve the accuracy of
models for Malaria parasite classification, stomata detection, and automatic segmentation of neural structures.

Conclusions: CLoDSA is the first, at least up to the best of our knowledge, image augmentation library for object
classification, localization, detection, semantic segmentation, and instance segmentation that works not only with 2
dimensional images but also with multi-dimensional images.
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Background

Deep learning techniques are currently the state of the art
approach to deal with bioimaging problems [1, 2]. How-
ever, these methods usually require a lot of data to work
properly, and this might be a challenge in the bioimaging
context. First of all, acquiring new data in problems related
to, for instance, object recognition in biomedical images
might be difficult [3—5]. Moreover, once the images have
been acquired, they must be manually annotated, a task
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that is time-consuming and requires experts in the field to
conduct it correctly [6].

A successful method that has been applied to deal with
the problem of limited amount of data is data augmen-
tation [7, 8]. This technique consists in generating new
training samples from the original dataset by applying
transformations that do not alter the class of the data. This
method has been successfully applied in several contexts
such as brain electron microscopy image segmentation
[9], melanoma detection [3], or the detection of gastroin-
testinal diseases from endoscopical images [5]. Due to this
fact, several libraries, like Augmentor [10] or Imgaug [11],
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and deep learning frameworks, like Keras [12] or Tensor-
flow [13], provide features for data augmentation in the
context of object classification.

In general, those augmentation libraries have not been
designed to deal with four common tasks in bioimag-
ing problems: object localization (the identification of the
position of an object in an image), object detection (the
identification of the position of multiple objects in an
image), semantic segmentation (predicting the class of
each pixel of the image), and instance segmentation (gen-
erating a pixel-wise mask for every object in the image).
These four problems can also take advantage from data
augmentation [9, 14]; but, at least up to the best of our
knowledge, it does not exist a general purpose library that
can be applied to those problems and works with the stan-
dard annotation formats. This is probably due to the fact
that, in the classification context, transformation tech-
niques for image augmentation do not generally change
the class of an image, but they might alter the annotation
in the other four problems. For instance, applying the ver-
tical flip operation to a melanoma image does not change
the class of the image; but the position of the melanoma in
the new image has changed from the original image. This
means that, for each specific problem, special purpose
methods must be implemented, or artificially generated
images must be manually annotated. Neither of these two
solutions is feasible when dealing with hundreds or thou-
sands of images. In addition, augmentation libraries focus
on datasets of 2 dimensional (2D) images, but do not
deal with multi-dimensional images (such as z-stacks or
videos).

In this paper, we present a generic method, see
“Methods” section, that can be applied to automatically
augment a dataset of images devoted to classification,
localization, detection, semantic segmentation, and
instance segmentation using the classical image
augmentation transformations applied in object recog-
nition; moreover, this method can be also applied to
multi-dimensional images. Such a method has been
implemented in an open-source library called CLoDSA
that is introduced in “Implementation” section — the
library, together with several examples and the docu-
mentation, is available at https://github.com/joheras/
CLoDSA. We show the benefits of using CLoDSA
when training models for different kinds of problems
in “Results” section, and compare this library with other
augmentation libraries in “Discussion” section. The paper
ends with a section of conclusions and further work.

Methods

In this section, we present an approach to augment images
for the problems of object classification, localization,
detection, semantic segmentation and instance segmen-
tation. First of all, it is important to understand how the
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images are annotated in each of these five problems. In the
case of object classification, each image is labeled with a
prefixed category; for object localization, the position of
the object in the image is provided using the bounding box
(that is, the minimum rectangle containing the object); for
object detection, a list of bounding boxes and the category
of the objects inside those boxes are given; in semantic
segmentation, each pixel of the image is labeled with the
class of its enclosing object; and, finally in instance seg-
mentation, each pixel of the image is labeled with the
class of its enclosing object and objects of the same class
are distinguished among them. An example of each kind
of annotation is provided in Fig. 1. It is worth noting
that, instance segmentation is the most general case, and
the other problems can be seen as particular cases of
such a problem; however, special purpose techniques and
annotation formats have been developed to tackle each
problem; and, therefore, we consider them separately.

Image augmentation for object classification is the
simplest case. This task consists in specifying a set of
transformations for which an image classification prob-
lem is believed to be invariant; that is, transformations
that do not change the class of the image. It is impor-
tant to notice that image-augmentation techniques are
problem-dependent and some transformations should
not be applied; for example, applying a 180° rotation
to an image of the digit “6” changes its class to the
digit “9”

In the literature, the most commonly chosen image
augmentation techniques for object classification are geo-
metric transformations (such as translations, rotations,
or scaling), color transformations (for instance, chang-
ing the color palette of the image or normalizing the
image), filters (for example, Gaussian or median fil-
ters), and elastic distortions [8]. Other more specific
techniques such as Generative Adversarial Networks
(GANs) [15] have been also applied for image aug-
mentation in object classification [16]; however, we will
not consider GANs in our work since they cannot be
directly applied for image augmentation in the other four
problems.

For image augmentation in localization, detection, seg-
mentation, and instance segmentation, we consider the
classical image augmentation techniques applied in object
classification, and split them into two categories. The for-
mer category consists of the techniques that leave invari-
ant the position of the objects in the image; for example,
changing the color palette of the image does not modify
the position of an object. On the contrary, techniques that
modify the position of the image belong to the latter cat-
egory; for instance, rotation and translation belong to this
category. A list of all the transformations that have been
considered in this work, and their corresponding category,
is available in Table 1.
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Fig. 1 Examples of annotations, from left to right, for classification, localization, detection, semantic segmentation, and instance segmentation.
Images obtained from the Oxford-IlIT Pet Dataset [17] which are available under a Creative Commons Attribution-ShareAlike 4.0 International License

Image augmentation for localization, detection, seg-
mentation, and instance segmentation using the tech-
niques from the “invariant” category consists in applying
the technique to the image and returning the resulting
image and the original annotation as result. The rest of
this section is devoted to explain, for each problem, how
the annotation can be automatically generated for the
techniques of the “variant” category.

In the case of object localization, the first step to auto-
matically generate the label from an annotated image con-
sists in generating a mask from the annotated bounding
box — i.e. a black image with a white rectangle indicating
the position of the object. Subsequently, the transformation

Table 1 List of considered augmentation techniques

Position invariant techniques Position variant techniques

Average blur Crop

Bilateral blur Elastic deformation
Brightness noising Flip

Color noising Rescale

Contrast noising Rotation

Dropout Skewing

Gamma correction Translation

Gaussian blur
Gaussian noise
Hue jitter
Median blur
Normalization
Random erasing
Salt and pepper
Saturation jitter
Sharpen

Value jitter
Channel shift
Lightning

Change space color

technique is applied to both the original image and the
generated mask. Afterwards, from the transformed mask,
the white region is simply located using basic contours
properties, and the bounding box of the region is obtained
— some transformations might generate a really small
bounding box, or produce an image without bounding box
at all since it will be located outside the boundaries of the
image; to avoid that problem, a minimum percentage is
required to keep the image; otherwise, the image is dis-
carded. Finally, the transformed image is combined with
the resulting bounding box to obtain the new annotated
image. This process is depicted in Fig. 2 using as example
the horizontal flip operation.

The procedure for image augmentation in object detec-
tion relies on the method explained for object localization.
Namely, the only difference is that instead of generating a
unique mask, a list of masks is generated for each bound-
ing box of the list of annotations. The rest of the procedure
is the same, see Fig. 3 using as example the translation
operation.

In the semantic segmentation problem, given an image
I, each pixel I;j of the image — i.e. the pixel of row i
and column j of I — is labeled with the class of its enclos-
ing object, this annotation is usually provided by means
of an image A of the same size as the original image,
where A(;;, provides the category of the pixel /(;j, and
where each pixel category is given by a different value. In
this case, the idea to automatically generate a new anno-
tated image consists in applying the same transformation
to the original and the annotation image, the result will
be the combination of the two transformed images, see
Fig. 4 where this procedure is shown using the rotation
operation.

Finally, we present the procedure for the instance seg-
mentation problem. The idea is similar to the method
explained for object detection. A mask is generated for
each instance of the image. Subsequently, the transforma-
tion technique is applied to both the original image and
the generated masks. Afterwards, from the transformed
masks, the new instances are obtained. This process is
depicted in Fig. 5.
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mask and the transformed image

Fig. 2 Process to automatically label augmented images for the localization problem: (1) generation of the mask, (2) application of the
transformation operation (horizontal flip) to both the mask and the original image, and (3) combination of the bounding box containing the new

The aforementioned procedures are focused on 2D
images, but they can also be applied to multi-dimensional
images that can be decomposed as a collection of images
— this includes z-stacks and videos among others. The
method consists in decomposing the multi-dimensional
image into a collection of 2D images, applying the cor-
responding procedure, and finally combining back the
resulting images into a multi-dimensional image.

Implementation

The techniques presented in the previous section have
been implemented as an open-source library called
CLoDSA (that stands for Classification, Localization,

Detection, Segmentation Augmentor). CLoDSA is imple-
mented in Python and relies on OpenCV [18] and SciPy
[19] to deal with the different augmentation techniques.
The CLoDSA library can be used in any operating system,
and it is also independent from any particular machine
learning framework.

CLoDSA configuration

CLoDSA augmentation procedure is flexible to adapt to
different needs and it is based on six parameters: the
dataset of images, the kind of problem, the input anno-
tation mode, the output annotation mode, the generation
mode, and the techniques to be applied. The dataset of

Fig. 3 Process to automatically label augmented images for the detection problem: (1) generation of the masks, (2) application of the
transformation operation (translation) to the masks and the original image, and (3) combination of the new masks and the transformed image
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Fig. 4 Process to automatically label augmented images for the semantic segmentation problem. From the original image (top left) and the
annotation image (bottom left), two new images are generated by applying the transformation (in this case a 90° rotation) to both of them (top
right and bottom right images). Images obtained from [20], these images are available under a Attribution-NonCommercial 3.0 Unported licence

(1)

ad

(3)

Fig. 5 Process to automatically label augmented images for the instance segmentation problem. From the original annotated image (left), (1) the
original image and a mask for each instance is obtained; (2) a vertical flip is applied to each image; and (3) the images are combined
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images is given by the path where the images are located;
and the kind of problem is either classification, local-
ization, detection, segmentation, instance segmentation,
stack classification, stack detection, or stack segmentation
(the former five can be applied to datasets of 2D images,
and the latter 3 to datasets of multi-dimensional images).
The other four parameters and how they are managed in
CLoDSA deserve a more detailed explanation.

The input annotation mode refers to the way of pro-
viding the labels for the images. CLoDSA supports the
most-widely employed formats for annotating classifica-
tion, localization, detection, semantic and instance seg-
mentation tasks. For example, for object classification
problems, the images can be organized by folders, and the
label of an image be given by the name of the containing
folder; another option for object classification labels is a
spreadsheet with two columns that provide, respectively,
the path of the image and the label; for object localization
and detection there are several formats to annotate images
such as the PASCAL VOC format [21] or the OpenCV
format [22]; for semantic segmentation, the annotation
images can be given in a devoted folder or in the same
folder as the images; and, for instance segmentation, the
COCO format is usually employed [23]. CLoDSA has
been designed to manage different alternatives for the dif-
ferent problems, and can be easily extended to include
new input modes that might appear in the future. To this
aim, several design patterns, like the Factory pattern [24],
and software engineering principles, such as dependency

Table 2 List of supported annotation formats
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inversion or open/closed [25], have been applied. The list
of input formats supported by CLoDSA for each kind of
problem is given in Table 2 — a detailed explanation of the
process to include new formats is provided in the project
webpage.

The output annotation mode indicates the way of stor-
ing the augmented images and their annotations. The
first option can be as simple as using the same format
or approach used to input the annotations. However, this
might have the drawback of storing a large amount of
images in the hard drive. To deal with this problem, it
can be useful to store the augmented dataset using the
standard Hierarchical Data Format (HDF5) [26] — a for-
mat designed to store and organize large amounts of
data. Another approach to tackle the storage problem, and
since the final aim of data augmentation is the use of the
augmented images to train a model, consists in directly
feeding the augmented images as batches to the model, as
done for instance in Keras [12]. CLoDSA features these
three approaches, and has been designed to easily include
new methods in the future. The complete list of output
formats supported by CLoDSA is given in Table 2.

The generation mode indicates how the augmentation
techniques will be applied. Currently, there are only two
possible modes: linear and power — in the future, new
modes can be included. In the linear mode, given a dataset
of nimages, and a list of m augmentation techniques, each
technique is applied to the n images producing at most
n x m images. The power mode is a pipeline approach

Data Problem Input format Output format
2D Images Classification A folder for each class of image A folder for each class of image
An HDFS5 file [26]
A Keras generator [12]
Localization Pascal VOC format [21] Pascal VOC format
An HDF5 file
Detection Pascal VOC format Pascal VOC format

Segmentation

Instance
segmentation

Multi- Video Classification
dimensional
Images

Video Detection

Stack segmentation

YOLO format [27]

A folder containing the images
and their associated masks

COCO format [23]

JSON format from Image)

A folder for each class of video

Youtube BB format [28]

Pairs of tiff files containing the
stack and the associated mask

YOLO format

A folder containing the images
and their associated masks

An HDF5 file
A Keras generator
COCO format

JSON format from ImageJ

A folder for each class of video

Youtube BB format

Pairs of tiff files containing the
stack and the associated mask
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where augmentation techniques are chained together. In
this approach, the images produced in one step of the
pipeline are added to the dataset that will be fed in the
next step of the pipeline producing a total of (2”7 — 1) x n
new images (where 7 is the size of the original dataset and
m is the cardinal of the set of techniques of the pipeline).

Finally, the last but not least important parameter is the
set of augmentation techniques to apply — the list of tech-
niques available in CLoDSA is given in Table 1, and a more
detailed explanation of the techniques and the parame-
ters to configure them is provided in the project webpage.
Depending on the particular problem, the CLoDSA users
can select the techniques that are more fitted for their
needs.

The CLoDSA architecture

In order to implement the methods presented in “Methods”
section, we have followed a common pattern applicable to
all the cases: the Dependency Inversion pattern [24]. We
can distinguished three kind of classes in our architecture:
technique classes, that implement the augmentation tech-
niques; transformer classes, that implement the different
strategies presented in “Methods” section; and augmentor
classes, that implement the functionality to read and save
images and annotations in different formats. We explain
the design of these classes as follows.

We have first defined an abstract class called Technique
with two abstract subclasses called PositionVariantTech-
nique and PositionlnvariantTechnique — to indicate
whether the technique belongs to the position vari-
ant or invariant class — and with an abstract method
called apply, that given an image produces a new
image after applying the transformation technique. Sub-
sequently, we have implemented the list of techniques
presented in Table 1 as classes that extend either the
PositionVariantTechnique or the PositionInvariantTech-
nique class, see Fig. 6.

Subsequently, we have defined a generic abstract class
[29] called Transformer< T, T, >, where T represents
the type of data (2D or multi-dimensional images) to be
transformed, and T5 represents the type of the annotation
for T1; for example, a box or a mask — the concrete types
are fixed in the concrete classes extending the abstract
class. This abstract class has two parameters, an object
of type Technique, and a function f from label to label;
and an abstract method called transform that given a
pair (71, T2) (for instance, in object detection, an image
and a list of boxes indicating the position of the objects
in the image) produces a new pair (77, T>) using one
of the augmentation strategies presented in “Methods”
section — the strategy is implemented in the subclasses
of the Transformer< Ti,To > class. The purpose of
the function f is to allow the transform method to not
only change the position of the annotations but also their
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associated class. As we have previously mentioned, in
general, data augmentation procedures apply techniques
that do not change the class of the objects of the image;
but there are cases when the transformation technique
changes the class (for instance, if we have a dataset of
images annotated with two classes, people looking to the
left and people looking to the right, applying a verti-
cal flip changes the class); the function f encodes that
modification — by default, this function is defined as
the identity function. This part or the architecture is
depicted in Fig. 7.

Finally, we have defined an interface called IAug-
mentor that has three methods addTransformer, read-
DataAndAnnotations, and applyAugmentation; see Fig. 8.
The classes implementing this interface are in charge
of reading the data and annotations in a concrete for-
mat (using the readDataAndAnnotations), applying the
augmentation (by means of the applyAugmentation and
using objects of the class Transformer injected using
the addTransformer method), and storing the result —
the input and output format available are indicated in
Table 2. In order to ensure that the different objects of the
architecture are constructed properly (that is, satisfying
the required dependencies) the Factory pattern has been
employed [24].

Therefore, using this approach, the functionality of
CLoDSA can be easily extended in several ways. It is pos-
sible to add new augmentation techniques by adding new
classes that extend the Technique class. Moreover, we can
also extend the kinds of problems that can be tackled in
CLoDSA by adding new classes that extend the Trans-
former class. Finally, we can manage new input/output for-
mats by providing classes that implement the JAugmentor
interface. Several examples showing how to include new
functionality in CLoDSA can be found in the project
webpage.

Using CLoDSA

We finish this section by explaining the different modes
of using CLoDSA. This library can be employed by both
expert and non-expert users.

First of all, users that are used to work with Python
libraries can import CLoDSA as any other library and
use it directly in their own projects. Several examples
of how the library can be imported and employed are
provided in the project webpage. This kind of users can
extend CLoDSA with new augmentation techniques eas-
ily. The second, and probably the most common, kind
of CLoDSA’s users are researchers that know how to
employ Python but do not want to integrate CLoDSA with
their own code. In this case, we have provided several
Jupyter notebooks to illustrate how to employ CLoDSA
for data augmentation in several contexts — again the
notebooks are provided in the project webpage and also as
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Technique

- Technique()
+ apply(Image): Image

/

PositionVariantTechnique

- PositionVariantTechnique()

%

PositionlnvariantTechnique

- PositioninvariantTechnique()

T

Translation Rotation

-x:int
-yint

- angle: int

+ Rotation(int)

+ Translation(int,int) + apply(Image): Image

GaussianBlur GammacCorrection

- kernel : int - gamma: double

+ GaussianBlur(int)
+ apply(Image): Image

+ GammacCaorrection(double)
+ apply(Image): Image

+ apply(Image): Image

Fig. 6 Simplification of the CLoDSA UML diagram for augmentation techniques

supplementary materials. An example of this interaction
is provided in Appendix A.

CLoDSA can be also employed without any knowl-
edge of Python. To this aim, CLoDSA can be executed
as a command line program that can be configured
by means of a JavaScript Object Notation (JSON) file
[30]. Therefore, users who know how to write JSON
files can employ this approach. Finally, and due to the
fact that the creation of a JSON file might be a chal-
lenge for some users since there is a great variety of
options to configure the library; we have created a step-
by-step Java wizard that guides the user in the process of
creating the JSON file and invoking the CLoDSA library.
In this way, the users, instead of writing a JSON file, select
in a simple graphical user interface the different options
for augmenting their dataset of images, and the wizard is
in charge of generating the JSON file and executing the

augmentation procedure. Besides, since new configura-
tion options might appear in the future for CLoDSA, the
Java wizard can include those options by modifying a con-
figuration file — this avoids the issue of modifying the
Java wizard every time that a new option is included in
CLoDSA.

Results

To show the benefits of applying data augmentation using
CLoDSA, we consider three different bioimaging datasets
as case studies.

Malaria parasite classification

The first case study focuses on an image classification
problem. To this aim, we consider the classification of
Malaria images [31], where images are labelled as par-
asitized or uninfected; and, we analyse the impact of

Transformer<T1,T2>
- f: Label --> Label

+ transform(T1,T2): (T1,T2)

Technique

- Technique()
+ apply(Image): Image

TransformerlmageClassification

+ transform(Image,Label): (Image,Label)

+ transform(Listimages,ListBoxes): (Listimages,ListBoxes)

TransformerListimageDetection

Fig. 7 Simplification of the CLoDSA UML diagram for transformers
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IAugmentor

+ addTransformer(Transformer)
+ readDataAndAnnotations()
+ applyAugmentation()

FolderFolderLinearClassification YOLOYOLOLinearClassification

+ addTransformer(Transformer)
+ readDataAndAnnotations()
+ applyAugmentation()

+ addTransformer(Transformer)
+ readDataAndAnnotations()
+ applyAugmentation()

Fig. 8 Simplification of the CLoDSA UML diagram for augmentors

Transformer<T1,T2>
-f: Label --> Label

+ transform(T1,72): (T1,T2)

TransformerimageClassification TransformerListimageDetection

+ transform(Image, Label): (Image,Label) + transform(Listimages, ListBoxes): (Listimages,ListBoxes)

applying data augmentation when constructing models
that employ transfer-learning [32].

Transfer learning is a deep learning technique that con-
sists in partially re-using a deep learning model trained
in a source task in a new target task. In our case, we
consider 7 publicly available networks trained on the Ima-
geNet challenge [33] (the networks are GoogleNet [34],
Inception v3 [35], OverFeat [36], Resnet 50 [37], VGG16
[38], VGG19 [38], and Xception v1 [39]) and use them
as feature extractors to construct classification models
for the Malaria dataset. For each feature extractor net-
work, we consider 4 datasets: D; is the original dataset
that consists of 1000 images (500 images per class); Do
was generated from D; by applying flips and rotations
(Do consists of 5000 images, the original 1000 images
and 4000 generated images); D3 was generated from D;
by applying gamma correction and equalisation of his-
tograms (D3 consists of 3000 images, the original 1000
images and 2000 generated images); and, Dy is the com-
bination of Dy and D3 (D4 consists of 7000 images, the
original 1000 images and 6000 generated images). In order
to evaluate the accuracy of the models, a stratified 5-fold
cross-validation approach was employed using the FrIm-
Cla framework [40] (a tool for constructing image classifi-
cation models using transfer learning), and the results are
shown in Fig. 9.

As can be seen in the scatter plot of Fig. 9, the accu-
racy of the models constructed for each feature extractor
method increases when data augmentation is applied. The
improvement ranges from a 0.4% up to a 6.5%; and, there
is only one case where applying data augmentation has a
negative impact on the accuracy of the model. Moreover,
we can notice that we obtain better models only apply-
ing flips and rotations (dataset D) than using a bigger
dataset where we have applied not only flips and rota-
tions but also color transformations (dataset Dg). This
indicates the importance of correctly selecting the set

of data augmentation techniques — an active research
area [41-43].

Stomata detection

In the second example, we illustrate how CLoDSA can
be employed to augment a dataset of images devoted to
object detection, and the improvements that are achieved
thanks to such an augmentation. In particular, we have
trained different models using the YOLO algorithm [27]
to detect stomata in images of plant leaves — stomata
are the pores on the plant leaf that allow the exchange
of gases.

For this case study, we have employed a dataset of 131
stomata images that was split into a training set of 100
images (from now on D), and a test set of 31 images.
The dataset D; was augmented using three approaches:
applying different kinds of flips (this dataset is called
D, and contains 400 images); applying blurring, equali-
sation of histograms and gamma correction (this dataset
is called D3 and contains 400 images); and, combin-
ing Dy and D3 (this dataset is called D4y and contains
700 images).

Using each one of the four datasets, a YOLO model
was trained for 100 epochs; and, the performance of those
models in the test set, and using different metrics, is
shown in Table 3. As can be seen in that table, the mod-
els that are built using the augmented datasets produce
much better results. In particular, the precision is simi-
lar in all the models, but the recall and F1-score of the
augmented datasets are clearly higher (for instance, the
Fl-score goes from 75% in the original dataset to 97%
in D3). As in the previous case study, one of the models
constructed from smaller datasets (namely, D3) produces
better results that the one built with a bigger dataset (D).
This again shows the importance of having a library that
easily allows to generate different datasets of augmented
images.




Casado-Garcia et al. BVIC Bioinformatics (2019) 20:323 Page 10 of 14
Il D1
Il D2
Xception e o o o |HHE D3
I D4
VGG19 ) ° °
VGG16 o0 ° e
Resnet ° o®
Overfeat e o oo
Inception o o o o
GoogleNet o 0 e o
75 80 90 95
Accuracy
Fig. 9 Scatter plot showing the accuracy of the models constructed for the different versions of the Malaria dataset (where Dj is the original dataset;
and D, D3 and D4 are the augmented datasets) using different feature extractor methods

Semantic segmentation of neural structures

Finally, we show how CLoDSA can improve results in
semantic segmentation tasks. In particular, we tackle the
automatic segmentation of neural structures using the
dataset from the ISBI challenge [44]. In this challenge,
the dataset consists of 30 images (512 x 512 pixels)
from serial section transmission electron microscopy of
the Drosophila first instar larva ventral nerve cord. Each
image is annotated with a ground truth segmentation
mask where white pixels represents cells and black pixels
membranes.

Table 3 Results using YOLO models trained with different
datasets (Dy is the original dataset, D, is D1 augmented using
flips; D3 is Dy augmented using blurring, gamma correction and
equalisation; and D4 is the combination of D, and Ds) for the
stomata dataset

Precision Recall F1-score P FP FN loU
D 097 0.61 0.75 591 21 374 0.75
Dy 0.97 0.88 0.92 852 26 113 0.81
D3 0.95 1.00 0.97 961 52 4 0.79
Dy 0.99 0.90 0.94 869 12 96 0.83

From the dataset of 30 images, we split the dataset into a
training set containing 20 images (we call this dataset D),
and a test set with the remaining images. We augmented
the dataset D; using CLoDSA in three different ways. First
of all, we constructed a dataset Dy from D; by applying
elastic deformations (the dataset D, contains 40 images,
the 20 original images of D; and 20 generated images).
In addition, we built a dataset D3 from D; by applying
geometric and colour transformations (namely, rotations,
translations, flips, shears, gamma correction and equal-
izations) — the dataset D3 contains 220 images, the 20
original images of D; and 200 generated images. And,
finally, a dataset D4 was constructed by combining the
datasets Dy and D3 (the dataset D4 contains 240 images
since the images of D; are only included once).

From these four datasets, we have trained four dif-
ferent models using the U-Net architecture [14] for 25
epochs. Those models have been evaluated using the test
set and considering as metrics the accuracy, the F1-score,
the precision, the recall, the specificity, and the balanced
accuracy. The results are shown in Table 4. Since the num-
ber of white pixels and black pixels in the mask images are
imbalanced, the most interesting metric is the balanced
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Table 4 Results using several models trained with different datasets (D; is the original dataset, D, is Dy augmented using elastic
deformations, D5 is Dy augmented using geometric and color transformations, and Dy is the combination of D, and Ds) for the ISBI

challenge
Accuracy F1-score Precision Recall Specificity Balanced accuracy
Dy 0.90 0.94 0.93 0.94 0.76 0.85
Dy 0.90 0.94 0.94 0.94 0.77 0.855
D3 0.90 0.94 0.95 092 0.82 0.87
Dy 091 0.94 0.94 0.94 0.78 0.86

accuracy (that combines the recall and the specificity);
and, as we can see from Table 4, by applying data augmen-
tation we can improve the results of our models.

Discussion

Image augmentation techniques have been successfully
applied in the literature; and most of those techniques
can be directly implemented using image processing and
computer vision libraries, such as OpenCV or SciPy, or
even without the help of third-party libraries. However,
this means reinventing the wheel each time; and, hence,
several libraries and frameworks have appeared over the
years to deal with image augmentation for object classifi-
cation.

Some of those libraries, like Data-Augmentation [45]
or CodeBox [46], provide a few basic augmenta-
tion techniques such as rotation, shifting and flip-
ping. There are other libraries with more advanced
features. Augmentor [10] uses a stochastic, pipeline-
based approach for image augmentation featuring the
most common techniques applied in the literature.
Imgaug [11] provides more than 40 augmentation
techniques, and albumentations [47] is the fastest
augmentation library. CLoDSA includes almost all the
augmentation techniques implemented in those libraries
and also others that have been employed in the literature
but were not included in those libraries. A comparison
of the techniques featured in each library is available
in the project webpage, and also as a supplementary
material.

All the aforementioned libraries are independent from
any particular machine learning framework, but there
are also image augmentation libraries integrated in sev-
eral deep learning frameworks. The advantage of those
libraries is that, in addition to save the images to disk,
they can directly fed the augmented images to a train-
ing model without storing them. The main deep learn-
ing frameworks provide data augmentation techniques.
Keras can generate batches of image data with real-
time data augmentation using 10 different augmenta-
tion techniques [48]. There is a branch of Caffe [49]
that features image augmentation using a configurable
stochastic combination of 7 data augmentation tech-
niques [50]. Tensorflow has TFLearn’s DataAugmentation

[51], MXNet has Augmenter classes [52], DeepLearn-
ing4] has ImageTransform classes [53], and Pytorch has
transforms [54].

In addition to these integrated libraries for image aug-
mentation, the Augmentor library, that can be used inde-
pendently of the machine learning framework, can be
integrated into Keras and Pytorch. This is the same
approach followed in CLoDSA where we have developed a
library that is independent of any framework but that can
be integrated into them — currently such an integration is
only available for the Keras framework.

Most of those libraries, both those that are independent
of any framework, and those that are integrated into a
deep learning library, are focused on the problem of object
classification, and only Imgaug and albumentations can be
applied to the problems of localization, detection, seman-
tic segmentation and instance segmentation. CLoDSA can
be used for dataset augmentation in problems related to
classification, localization, detection, semantic segmenta-
tion, and instance segmentation; and, additionally brings
to the table several features that are not included in any
other library.

The main difference between CLoDSA and the libraries
Imgaug and albumentations in the problems related
to localization, detection, semantic segmentation, and
instance segmentation is the way of handling the anno-
tations. The annotations of the images in Imgaug or
albumentations must be coded inside Python before using
them for the augmentation process; on the contrary,
CLoDSA deals with the standard formats for those imag-
ing problems. From the users point of view, the CLoDSA
approach is simpler since they can directly use the anno-
tation files generated from annotation tools (for instance,
Labellmg [55], an annotation tool for object detection
problems, or the Visipedia Annotation Toolkit for image
segmentation [56]) and that can be latter fed to deep
learning algorithms.

Another feature only available in CLoDSA is the chance
of automatically changing the class of an object after
applying a transformation technique. This feature can
be applied not only when augmenting images for object
classification, but also for the other problems supported
by CLoDSA. Finally, image augmentation libraries are
focused on 2D images; on the contrary, CLoDSA not only
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works with this kind of images, but can also apply aug-
mentation techniques to multi-dimensional images that
can be decomposed in a collection of images (such as
stacks of images, or videos). As in the case of 2D images,
CLoDSA can augment those multi-dimensional images
for the classification, localization, detection, semantic seg-
mentation, and instance segmentation problems.

Conclusions and further work

In this work, we have presented an approach that allows
researchers to automatically apply image augmentation
techniques to the problems of object classification, local-
ization, detection, semantic segmentation, and instance
segmentation. Such a method works not only with 2D
images, but also with multi-dimensional images (such as
stacks or videos). In addition, the method has been imple-
mented in CLoDSA. This library has been designed using
several object oriented patterns and software engineering
principles to facilitate its usability and extensibility; and
the benefits of applying augmentation with this library
have been proven with three different datasets.

In the future, we plan to expand the functionality of
CLoDSA to include more features; for example, gener-
ate images using a stochastic pipeline approach as in [10],
include more augmentation techniques, or integrate it
into more deep learning frameworks. Another task that
remains as further work is the definition of a method
that could employ GANs to augment images for the prob-
lems of localization, detection, semantic segmentation
and instance segmentation.

Appendix A: A coding example

Let us consider that we want to augment a dataset of
images for object detection using the annotation for-
mat employed by the YOLO detection algorithm [27]
— in this format, for each image a text file containing
the position of the objects of such an image is pro-
vided. The dataset is stored in a folder called yoloimages,
and we want to apply three augmentation techniques:
vertical flips, random rotations, and average blurring.
After loading the necessary libraries, the user must spec-
ify the six parameters explained in “Implementation”
section (the path to the dataset of images, the kind of
problem, the input annotation mode, the output anno-
tation mode, the generation mode, and the techniques
to be applied). We store those values in the following
variables.

INPUT PATH = "yolo images/"

PROBLEM = "detection"

ANNOTATION MODE = "yolo"

OUTPUT_MODE = "yolo"

OUTPUT_PATH = "augmented yolo_ images"
GENERATION MODE = "linear"
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Subsequently, we define an augmentor object that
receives as parameters the above variables.

augmentor =
createAugmentor (PROBLEM, ANNOTATION
MODE, OUTPUT MODE,
GENERATION MODE, INPUT PATH,
{"outputPath" :OUTPUT PATH})

The above function uses the Factory pattern to con-
struct the correct object, but the user does not need to
know the concrete class of the object.

Afterwards, we define the augmentation techniques
and add them to the augmentor object using a
transformer object.

transformer = transformerGenerator
(PROBLEM)

# Vertical flip

vFlip = createTechnique("flip",
{"£lip":0})

augmentor.addTransformer (transformer
(VvF1lip))

# Rotation

rotate = createTechnique ("rotate", {})

augmentor.addTransformer (transformer
(rotate))

# Average blurring

avgBlur = createTechnique ("average
blurring", {"kernel" 5})
augmentor.addTransformer (transformer
(avgBlur) )

Finally, we invoke the applyAugmentation method
of the augmentor object to initiate the augmentation
process:

| augmentor.applyAugmentation ()

After a few seconds (depending on the initial amount of
images), the new images and their corresponding annota-
tions will be available in the output folder.
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