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Abstract

Background: Breast and prostate cancers are typical examples of hormone-dependent cancers, showing
remarkable similarities at the hormone-related signaling pathways level, and exhibiting a high tropism to bone. While
the identification of genes playing a specific role in each cancer type brings invaluable insights for gene therapy
research by targeting disease-specific cell functions not accounted so far, identifying a common gene signature to
breast and prostate cancers could unravel new targets to tackle shared hormone-dependent disease features, like
bone relapse. This would potentially allow the development of new targeted therapies directed to genes regulating
both cancer types, with a consequent positive impact in cancer management and health economics.

Results: We address the challenge of extracting gene signatures from transcriptomic data of prostate
adenocarcinoma (PRAD) and breast invasive carcinoma (BRCA) samples, particularly estrogen positive (ER+), and
androgen positive (AR+) triple-negative breast cancer (TNBC), using sparse logistic regression. The introduction of
gene network information based on the distances between BRCA and PRAD correlation matrices is investigated,
through the proposed twin networks recovery (twiner) penalty, as a strategy to ensure similarly correlated gene
features in two diseases to be less penalized during the feature selection procedure.

Conclusions: Our analysis led to the identification of genes that show a similar correlation pattern in BRCA and PRAD
transcriptomic data, and are selected as key players in the classification of breast and prostate samples into ER+
BRCA/AR+ TNBC/PRAD tumor and normal tissues, and also associated with survival time distributions. The results
obtained are supported by the literature and are expected to unveil the similarities between the diseases, disclose
common disease biomarkers, and help in the definition of new strategies for more effective therapies.

Keywords: Gene network, Sparse logistic regression, Breast invasive carcinoma, Triple-negative breast cancer,
Prostate adenocarcinoma

Background
Breast invasive carcinoma (BRCA) and prostate adeno-
carcinoma (PRAD) are the two most common invasive
cancers in women and men, respectively [1]. In both
types of cancers, the vast majority of cases are hormone-
dependent, meaning that tumor growth is deeply related
to hormone-related signaling pathways. About 70% of all
BRCA are estrogen receptor (ER) and/or progesterone
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receptor (PR) positive (ER+ and/or PR+), and endocrine
treatment can be effective in all stages of disease [2].

In the PRAD case, androgen/androgen receptor (AR)
signaling pathway is deeply involved in the progression
of the disease, and androgen deprivation therapy (ADT)
with anti-androgens remains as the main treatment in
early and late stage disease [3]. Hormone-dependent sig-
naling pathways like ER, PR or AR, ultimately regulate
numerous cell functions, and positively impact cell pro-
liferation [4, 5]. However, ER and AR signaling are not
exclusively important in BRCA and PRAD, respectively. It
is known that estrogens play an important role in male sex
hormone secretion, in the physiology of normal prostate
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tissues, and in prostate carcinogenesis. In fact, selective
targeting of ERα or β may be an option in the treat-
ment of castration resistant metastatic prostate cancer
cells [6]. By the other hand, AR is expressed in about 80%
of primary breast cancers, particularly in triple-negative
breast cancer (TNBC), characterized by lack of expres-
sion of estrogen receptor 1 (ER), progesterone receptor
(PR), and human epidermal growth factor receptor type
2 (HER2) [7], and associated with a poor prognosis [8].
AR-inhibiting drugs have indeed shown antitumorigenic
activity in preclinical and proof-of-concept clinical studies
in TNBC [9].

Given that BRCA and PRAD are hormone-dependent
cancers, possibly sharing layers of signaling and regulatory
pathways, it is important to unravel common players that
could establish a link between the hormone-dependence
and the fact that both types of cancers exhibit a high
tropism to bone. To achieve that, one possible solution
is to, given a classification model, extract the most rel-
evant features in the discrimination between tumor and
normal tissue, out of the full set of dozens of thousands
of features currently delivered by high-throughtput ‘omic
technologies. Classification of tumor and normal tissue can
be performed separately for BRCA and PRAD, however,
given the similarities between the two diseases, a common
strategy to classify patients tissue, while simultaneously
identifying the genes playing a role in both diseases, would
be of great value. This way, a considerable reduction in the
effort in defining new therapies could be accomplished.

Statistical learning in high-dimensional ‘omic data poses
many challenges, in particular for parameter estimation,
since the models are seldom identifiable. One way to cope
with this problem is to add constraints in the parame-
ters space. For instance, imposing sparsity in the solution
will enable feature selection since a large subset of the
parameters will be exactly zero. Several methods have
been applied in the context of ‘omic data, namely the
lasso and elastic net, which impose a l1 regularizer and
a linear combination of l1 (lasso) and l2 (ridge) penal-
ties, respectively [10, 11]. While the ridge penalty cannot
shrink coefficients exactly to zero, therefore keeping all
the variables in the model, the lasso estimator enables per-
forming variable shrinkage and selection at the same time,
making the solution sparse.

Model constraints can benefit from external knowl-
edge on the biological disease processes, often given by
network information. For example, groups of genes are
co-expressed under certain conditions or their protein
products interact with each other to carry out a biological
function [12], which can be represented by graphs. Given
a graph G := (V , E), V denotes vertices (or nodes) and
E the set of edges. In a gene network, vertices are genes
and edges represent a weighted relation between two
genes. It has been advocated that incorporating network

information as a constraint in the loss function potentially
increases the model predictive performance of, e.g., sparse
Cox and logistic regression models, as shown when mod-
eling the survival of ovarian cancer carcinoma patients
and classifying patients into breast cancer subtypes
[12–14]). Furthermore, including network-based regu-
larizers may improve model interpretability since prior
knowledge/information via constraints will drive param-
eter estimation towards meaningful biological solutions.
Such network information can be either obtained by a pri-
ori defined pathways and network interactions available
in public databases, by de novo construction of specific
subnetworks from the set of mutated or differentially
expressed genes (e.g., [15, 16]), or by the data correlation
itself [13].

In this work we combine correlation-based regularizers
and sparse logistic regression to solve a binary classifica-
tion problem with BRCA and PRAD cancer tissues, and
normal tissue from breast and prostate cancer patients
as classes. Different datasets will be considered in two
case studies in the search for shared gene signatures
in BRCA and PRAD: I) ER+ BRCA vs. PRAD, showing
similarities at the ER signaling level and shared marked
bone osteotropism; and II) AR+ TNBC vs. PRAD, shar-
ing AR-signaling dependency. With the goal of identifying
a common network to each BRCA subtype and PRAD
data, ER+ BRCA, AR+ TNBC and PRAD gene correlation
networks will be generated using the Pearson correlation
between observed (gene expression) variables as similar-
ity measure. For a given gene in the network, the more
similar its correlation pattern between the two diseases
under consideration is, the less penalized it will be in the
regularization term of sparse logistic regression. Selected
similarly correlated genes in the two diseases, i.e., playing
a role in discriminating between cancer and non-cancer,
can be seen as potential biomarkers candidates in the two
groups of patients.

Methods
Datasets
The transcriptomic data on breast and prostate can-
cer patients used in this work were obtained from The
Cancer Genome Atlas (TCGA) Data Portal (https://
cancergenome.nih.gov/).

Breast invasive carcinoma (BRCA)
The BRCA RNA-Seq Fragments Per Kilo base per Mil-
lion (FPKM) dataset was imported using the ‘brca.data’
R package1. The BRCA gene expression data is com-
posed of 57251 variables for a total of 1222 samples from
1097 individuals. From those samples, 1102 correspond
to primary solid tumor, 7 to metastases and 113 to nor-
mal breast tissue. Only samples from primary solid tumor
were selected for analysis, from those only ER+ BRCA
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samples were considered to avoid the introduction of con-
founding effects by accounting for non-hormonal BRCA
tumor information in the search for a common gene
signature for BRCA and PRAD. Information on the sam-
ples ‘positive’ clinical status for ER was obtained from
the BRCA clinical data also available from the TCGA.
The BRCA response variable Y is binary, coded with ‘1’
for tumor (802 samples) and ‘0’ for normal (79 samples)
tissue.

Triple-negative breast cancer (TNBC)
The TNBC dataset was built from the BRCA dataset
described above. The TNBC binary response vector Y was
created, with ‘1’ corresponding to TNBC individuals (with
ESR1, PGR and ERBB2 ‘negative’ expression), and non-
TNBC (‘0’) to non-TNBC (other types of BRCA) patients,
whenever at least one of the three genes is ‘positive’. The
individuals’ status regarding ER, PR and HER2, needed
for building Y, were obtained from the BRCA clinical data
available from the TCGA, composed of 114 variables, as
described in Lopes et al. (2018) [17, 18]. Only AR+ TNBC
samples (with AR expression larger than the median AR
expression over all TNBC samples) were considered for
building the TNBC dataset, accounting for 80 tumor and
113 normal tissue samples.

Prostate adenocarcinoma (PRAD)
The PRAD RNA-Seq Fragments Per Kilo base per Mil-
lion (FPKM) dataset was imported using the ‘prad.data’ R
package2. The PRAD gene expression data is composed of
57035 variables for a total of 551 samples from 500 indi-
viduals. From those samples, 495 correspond to primary
solid tumors, 1 to metastases and 52 to normal tissue.
Only samples from primary solid tumor were considered
for analysis. The PRAD response variable Y is binary,
coded with ‘1’ for tumor samples and ‘0’ for normal tis-
sue samples. The PRAD dataset is composed of 495 tumor
and 52 normal samples.

Data pre-processing
FPKM normalized ER+ BRCA, AR+ TNBC, and PRAD
gene expression data were log-transformed and Z-score
normalized prior to data analysis. A subset of ∼ 20000
variables in each dataset was considered for further anal-
ysis, corresponding to the protein coding genes reported
from the Ensembl genome browser [19] and the Consen-
sus CDS project [20], and shared by each pair of diseases
under evaluation (ER+ BRCA vs. PRAD and AR+ TNBC
vs. PRAD).

Classification modeling
Sparse logistic regression
Binary logistic regression describes the relationship
between one or more independent variables and a binary

outcome vector Y = {Yi}i=1,...,n, which is given by the
logistic function

P(Yi = 1|Xi) = exp
(
XT

i β
)

1 + exp
(
XT

i β
) , (1)

where Xi, i = 1, ..., n, is the vector of p covariates for
observation i, P(Yi = 1|Xi) is the probability of success for
observation i, and β = (β1, β2, . . . βp) are the regression
coefficients associated with the p independent variables.

The parameters of the logistic model are estimated
by maximizing the log-likelihood function of the logistic
model, given by

l(β)=
n∑

i=1

{
yi log P(Yi = 1|Xi)+(1 − yi)log[ 1 − P(Yi = 1|Xi)]

}
,

(2)

where the binary variable yi indicates success (yi = 1)
or unsuccess (yi = 0) for observation i. By the introduc-
tion of a regularization term, the log-likelihood function
becomes

l(β)=
n∑

i=1

{
yilog P(Yi =1|Xi)+(1 − yi)log[ 1−P(Yi = 1|Xi)]

}+F(β),

(3)

where

F(β) = λ
{
α‖β‖1 + (1 − α)‖β‖2

2
}

(4)

stands for the elastic net penalty, with α = 1 corre-
sponding to lasso and α = 0 to ridge, and the tuning
parameter λ controlling the amount of shrinkage in the
coefficients.

Correlation-based network regularization
With the specific goal of weighting variables based on
their similarities across two given diseases, we propose
twiner, a structured regularizer based on the pairwise
correlations between variables, independently obtained
from two given datasets.

Consider two correlation matrices for diseases A and B,
�A =

[
σ A

1 , ..., σ A
p

]
and �B =

[
σ B

1 , ..., σ B
p

]
, respectively,

where each column σ j ∈ R
p represents the correlation

of each gene j = 1, . . . , p with the remaining ones. The
proposed dissimilarity measure dj(A, B) of gene j between
A and B is given by the angle of the corresponding vectors,
i.e.,

dj(A, B) = arccos
< σ A

j , σ B
j >

‖σ A
j ‖ · ‖σ B

j ‖ , j = 1, . . . , p. (5)

The rationale of using the angle is that two patterns
will be identified as similar if they have the same pro-
portionality between the entries across the two datasets,
irrespective of the magnitude of the vectors. In the con-
text of the present application, one gene has a similar
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role in BRCA and PRAD, if it is similarly correlated with
the remaining genes in the two diseases. This correlation-
based regularization constitutes the basis of twiner,
since this dissimilarity will then be used as a penalization
for the cost function. The weighting vector to be used as
a penalization w = (w1, ..., wj, ..., wp) is therefore based on
this distance, normalized by their maximum value:

wj = dj(A, B)

maxk dk(A, B)
, j, k = 1, . . . , p. (6)

The penalty term in Eq. 4 takes the form

F(β) = λ
{
α‖w ◦ β‖1 + (1 − α)‖w ◦ β‖2

2
}

, (7)

with vector w representing the factors that control how
much of the penalty λ affects each coefficient, and ◦
standing for the element wise (or Hadamard) product.

For a given gene j, the smaller the distance between σ A
j

and σ B
j , the more similar the diseases are regarding the

overall gene j correlation pattern. Therefore, the result-
ing twin networks recovery (twiner) penalty enables the
identification of variables with similar (twin) correlation
with the remaining variables across the two diseases, with
smaller penalties being associated to genes with smaller
distances between the diseases’ correlation matrices. The
influence these genes have in the outcome will be assessed
by regularized logistic regression based on the elastic net
penalty.

The modeling strategy described above will be applied
in two case studies with the goal of finding common gene
signatures in i) ER+ BRCA and PRAD, and ii) AR+ TNBC
and PRAD, as described next.

Classification of BRCA and PRAD RNA-Seq data
Sparse logistic regression using the elastic net penalty
(EN) was used to classify RNA-Seq data from patients into
ER+ BRCA, AR+ TNBC and PRAD vs. normal breast and
prostate tissue samples. The overall procedure for dataset
construction is illustrated in Fig. 1.

With the goal of finding a common gene signature
between ER+ BRCA and PRAD cancer types, ER+ BRCA
and PRAD data were grouped into a single class, i.e.,
tumor, and EN applied to classify RNA-Seq data into ER+
BRCA or PRAD (tumor) vs. normal samples, herein called
BRCAPRAD model. Three quarters of randomly selected
samples were assigned to training samples for model con-
struction, whereas the remaining samples were assigned
to test samples for model evaluation. The classification
was performed using two models: 1) EN; and 2) sparse
logistic regression using the twiner penalty (twiner).
For both EN and twiner models the alpha parameter
was set to α = 0.9, which yields a adequate number
of features to be further analysed without compromising

clinical interpretability. The Pearson correlation matrices
from ER+ BRCA and PRAD RNA-Seq data are matrices
�A and �B, as seen above, and the response Y vector is a
binary vector with ‘0’ corresponding to normal tissue and
‘1’ to tumor (ER+ BRCA or PRAD) tissue. The angular
distance between σ A

j and σ B
j , corresponding to the corre-

lation pattern of variable j in matrices �A and �B was used
for building the weight vector w as explained above. With
the goal of searching for shared disease biomarkers, genes
showing larger angular distances between correlation vec-
tors in the two diseases were discarded, only keeping those
(out of the previous ∼ 20000) showing an angular distance
less than 75°, at the same time contributing to reduce
model complexity. The new dimension in the variables
space was thus decreased to 16367 genes.

EN and twiner models were generated 100 times for
randomly chosen training and test sets. The median val-
ues for the mean squared error (MSE) of classification,
the area under the Precision-Recall curve (AUC) [21,
22] and the number of misclassifications, along with the
set of variables selected in more than 75% of the runs,
were taken for comparison of the modeling strategies
employed.

The same analysis was performed in the search for a
common gene signature between AR+ TNBC and PRAD
cancer types. As for the ER+ BRCA vs. PRAD case, only
genes (out of the previous ∼ 20000) showing lower angu-
lar distances were considered, yielding 14598 genes for
model building in the AR+ TNBC vs. PRAD case. EN
and twiner models were generated to classify RNA-Seq
data into AR+ TNBC or PRAD tumor samples (‘1’) vs.
TNBC and PRAD normal samples (‘0’), herein called the
TNBCPRAD model.

For biological interpretation of the variables selected
by the methods, gene correlation networks were repre-
sented only for ER+ BRCA, AR+ TNBC, and PRAD data,
using the variables exclusively selected by EN, twiner
and shared by the two models.

Finally, as an attempt to clinically validate our approach,
the variables selected by EN and twiner were tested
in a survival analysis on ER+ BRCA, AR+ TNBC and
PRAD tumor data, using the Cox regression model [23].
The individuals in each dataset were separated in two
groups by the median of the fitted relative risk. This allows
to perform the Log-Rank test via the Kaplan-Meier esti-
mator [24], and to assess if the survival curves of the
two groups are statistically different by calculating the p-
values. Increased risk groups’ separability by a given set of
genes is expected to trigger further research on the role of
these genes in the disease.

Individual models for predicting the class, tumor vs.
normal, independently for ER+ BRCA, AR+ TNBC and
PRAD data, herein called ER+ BRCA, AR+ TNBC and
PRAD models, were also built, using the same set
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Fig. 1 Schematic representation of the procedure to construct the BRCAPRAD (blue dashed line) and TNBCPRAD (red dashed line) datasets
analysed. BRCA, Breast Invasive Carcinoma; TNBC, Triple-Negative Breast Cancer; ER+ BRCA, estrogen receptor positive BRCA; AR+ TNBC, androgen
receptor positive TNBC; PRAD, Prostate Adenocarcinoma

of variables used for the combined BRCAPRAD and
TNBCPRAD models, as explained above. The goal was to
identify (if any) genes selected in common by indepen-
dent disease models (potential shared disease biomark-
ers), and the overlap with BRCAPRAD and TNBCPRAD
sparse logistic models aiming at extracting common
gene signatures from two diseases through the twiner
penalty. Similarly to the independent BRCAPRAD nd
TNBCPRAD models, training and test sets were randomly
generated. The optimization of the parameters λ and α

based on the MSE for the models described above was
performed by 10-fold cross-validation (CV), with varying
α values (1 > α > 0) tested.

The glmnet R package [25] implemented in the free R
statistical software [26] was used in our study for building
the above sparse logistic regression models with elastic net
regularization. The w vector was introduced as penalty
factor in the glmnet function. Differentially expressed
genes across tumor and normal ER+ BRCA, AR+ TNBC
and PRAD tissue were identified using the limma Biocon-
ductor R package [27], in order to support further clinical
analysis and interpretation of the obtained genes.

Results
Principal component analysis
Before classification of samples into ER+ BRCA/AR+
PRAD and PRAD tumor and normal breast and prostate

samples, a first non-supervised analysis was intended
to visualize samples’ grouping in a reduced dimensional
space. A Principal Component Analysis (PCA) was
applied to a dataset comprising gene expression data
from ER+ BRCA, AR+ TNBC and PRAD tumor tis-
sue samples, along normal tissue samples from breast
and prostate patients. A clear separation between
ER+ BRCA/AR+ TNBC and PRAD tumor samples is
observed in the space of the first two principal com-
ponents (Fig. 2), though partial overlap is observed
when looking at PCs individually. Overlap between
ER+ BRCA/AR+ TNBC tumor and normal samples is
absent in PC2, as opposed to that observed for PRAD
tumor and normal samples, showing overlap in both
PCs. Finally, great overlap between BRCA (ER+ BRCA)
and TNBC (AR+ TNBC) is observed in the subspace
represented (Fig. 2).

Sparse logistic regression
Sparse logistic regression models were built indepen-
dently for ER+ BRCA, AR+ TNBC and PRAD data for the
classification of patients into tumor or normal tissue. The
ER+ BRCA model was based on α = 0.9, ending up in the
selection of 42 variables and 1 misclassification in the test
set (Table 1). The model generated for AR+ TNBC dataset
was based on an α value of 0.8, yielding the selection of
63 variables and no misclassifications in both training and
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Fig. 2 Representation of ER+ BRCA, AR+ TNBC and PRAD tumor and normal samples in the space of the first two principal components. ER+ BRCA,
estrogen receptor positive Breast Invasive Carcinoma; AR+ TNBC, androgen receptor positive Triple-Negative Breast Cancer; PRAD, Prostate
Adenocarcinoma

test sets. The PRAD model selected 68 variables, con-
sidering an optimum α value of 0.5, and misclassified 11
patients in the training set and 6 in the test set. A higher
number of misclassifications was obtained for the PRAD
dataset, as foreseen by PCA (Fig. 2). No variables were
selected in common between the ER+ BRCA and PRAD
models (Fig. 3a), whereas only one variable, gene NKAPL,
was selected in common between the TNBC and PRAD
models using this strategy (Fig. 3b).

ER+ BRCA vs. PRAD
EN and twiner were applied to the BRCAPRAD dataset,
as a means to identify a common gene signature between
ER+ BRCA and PRAD diseases. Summary results of the
two modeling strategies applied to 100 random training
and test sets can be found in Table 2. A median MSE
decrease in 11% and 4% for the training and test sets
was observed, respectively (Table 2). Three genes were
always selected by the 100 EN models (BGN, GLRA4 and
NKAPL) and 2 by twiner models (NKAPL and PAK3),

with NKAPL being selected in common by the two mod-
elling strategies.

Seventeen genes were selected in more than 75
out of 100 twiner models (Fig. 3; Table 3), 8 in
common with EN (CXCR2, GLRA4, LRRC3B, NKAPL,
PAK3, RP11-729L2.2, SCN5A and TMEM236) and
the remaining 9 (BMT2, CLEC11A, CSGALNACT2,
HMGCS1, POLR2H, RP11-371E8.4, SCARA5, SLC17A7
and ZBTB24) exclusively selected by twiner (Fig. 3;
Table 3). Out of the genes selected by twiner, 4
(GLRA4, LRRC3B, PAK3 and SLC17A7) were shared
with the BRCA model and 1 (NKAPL) with the PRAD
model, respectively (Table 3). Most genes from the 9
genes exclusively selected by twiner (Fig. 3a) have
lower weights compared to those exclusively selected
by EN and selected in common by the two strategies
(Fig. 4a), meaning that their correlation pattern across
the genes space is more similar between ER+ BRCA
and PRAD cancer types, compared to the remaining
genes selected.

Table 1 Summary of BRCA, TNBC and PRAD EN models (MSE, mean squared error; AUC, area under the precision-recall curve; Miscl,
misclassifications; Vars, nr. of variables selected)

α # Vars
MSE AUC # Miscl

Train Test Train Test Train Test

BRCA 0.9 42 0.0001 0.0065 1 1 0 1

TNBC 0.8 63 0.0002 0.0025 1 1 0 0

PRAD 0.5 68 0.0187 0.0309 0.97 0.97 11 6
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Fig. 3 Venn diagrams representing the number of variables selected by elastic net (EN) (blue) and twiner (red), and by EN-BRCA (pink) and
EN-PRAD (light blue) individual models, for the two case studies evaluated: a) ER+ BRCA vs. PRAD; and b) AR+ TNBC vs. PRAD. ER+ BRCA, estrogen
receptor positive Breast Invasive Carcinoma; AR+ TNBC, androgen receptor positive Triple-Negative Breast Cancer; PRAD, Prostate Adenocarcinoma

Figure 5 shows the correlation gene networks for
the ER+ BRCA and PRAD tumor and normal samples
regarding the genes exclusively selected in more than 75
BRCAPRAD EN and twiner models built on 100 ran-
domly selected training and test sets, as well as the genes
selected in common by the two model strategies. The
thickness of the connecting lines represents the strength
of the correlation, whereas green represents a positive
correlation and red signals a negative correlation. In the
search for shared disease biomarkers, and towards labora-
tory and clinical validation, particular attention might be
given to the similarities between the relationships across

less penalized selected genes (red coloured genes) and
common (green) genes in ER+ BRCA and PRAD tumor
samples, compared to that observed for BRCA and PRAD
normal tissue samples.

AR+ TNBC vs. PRAD
With the goal of finding a common gene signature in
AR+ TNBC and PRAD, EN and twiner were applied to
the TNBCPRAD dataset. A less pronounced model accu-
racy improvement was obtained for twiner over EN,
compared to the BRCAPRAD case, with a median MSE
decrease in 5% for the training set (Table 2).

Table 2 Summary of BRCAPRAD and TNBCPRAD model results by EN and twiner, considering the median values obtained from 100
models built on randomly generated training and test sets (MSE, mean squared error; AUC, area under the precision-recall curve; Miscl,
misclassifications; Vars, nr. of variables selected)

# Vars
MSE AUC # Miscl

Train Test Train Test Train Test

BRCAPRAD EN 58 0.013 0.018 0.98 0.98 17 9

twiner 69 0.012 0.018 0.99 0.98 15 9

TNBCPRAD EN 61 0.025 0.034 0.97 0.96 16 8

twiner 71 0.025 0.034 0.97 0.96 14 8
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Table 3 Genes selected by EN and twiner; pink and blue arrows indicate up- (↑) and down-regulated (↓) genes in ER+ BRCA, AR+
TNBC and PRAD, respectively

ER+ BRCA vs. PRAD

Exclusively selected by EN

↑↑BGN ↓DNAJB1 ↓↓DUOXA2 ↓↓HSD17B13 ↓↓KCNS1

↓↓KY ↑↑RAB17 ↓↓RP11-903H12.5

Exclusively selected by twiner

↓↓BMT2 ↑↑CLEC11A CSGALNACT2 ↑↓HMGCS1 ↑↑POLR2H

↑RP11-371E8.4 ↓↓SCARA5 ↓ SLC17A7 ↑↑ZBTB24

Shared between EN and twiner

↓↓CXCR2 ↓↓GLRA4 ↓↓LRRC3B ↓↓NKAPL ↓↓PAK3

↓↓RP11-729L2.2 ↓↓SCN5A ↓↓TMEM236

Shared between twiner and EN-BRCA

↓↓GLRA4 ↓↓LRRC3B ↓↓PAK3 ↓ SLC17A7

Shared between twiner and EN-PRAD

↓↓NKAPL

AR+ TNBC vs. PRAD

Exclusively selected by EN

↑↑C3orf80 ↓↓CXCR2 ↑↑LEMD2 ↓↓SDHD ↑↑SIM2

Exclusively selected by twiner

↓↓CD300LG ↑↑CTU1 ↓↓KLHL4 ↓↓PARK2 ↓↓SCARA5

↓↑SLC35E2 ↓↓SNCG ↑↑UCN

Shared between EN and twiner

↑↑BGN ↓DNAJB1 ↓↓GLRA4 ↓↓GSTM3 ↓↓NKAPL

Shared between twiner and EN-TNBC

↑↑BGN ↓↓CD300LG ↓↓NKAPL ↓↓PARK2 ↓↓SCARA5

Shared between twiner and EN-PRAD

↑↑CTU1 ↓DNAJB1 ↓↓KLHL4 ↓↓NKAPL

Thirteen genes were selected in more than 75 out of
100 twiner models (Fig. 3; Table 3), 5 in common
with EN (BGN, DNAJB1, GLRA4, GSTM3 and NKAPL),
and the remaining 8 (CD300LG, CTU1, KLHL4, PARK2,
SCARA5, SLC35E2, SNCG and UCN) exclusively selected
by twiner (Fig. 3b; Table 3). A total of 5 genes were
selected in common between twiner and the individual
AR+ TNBC model (BGN, CD300LG, NKAPL, PARK2 and
SCARA5) and 4 (CTU1, DNAJB1, KLHL4 and NKAPL)
with the PRAD model (Table 3). From the 8 genes
exclusively selected by twiner (Fig. 3b), particularly 2
(SLC35E2 and UCN) have lower weights compared to the
remaining genes exclusively selected by EN and selected
in common by the two strategies (Table 3; Fig. 4b), cor-
responding to two genes that show a similar correlation
pattern across AR+ TNBC and PRAD cancer types, and
that are relevant in the classification of breast/prostate
tissue into tumor (AR+ TNBC/PRAD) and normal tissue.

As for the ER+ BRCA vs. PRAD case, the correlation
networks for the genes selected were obtained for the
AR+ TNBC vs. PRAD tumor and normal samples (Fig. 6).
In both case studies, the relationships highlighted in the
correlation networks for the relevant genes selected by
our analysis is expected to be matter for further disease
understanding and biomarker research.

Survival analysis
With the goal of assessing the clinical significance of
accounting for the variables selected by our method,
the genes selected by EN and twiner were tested in
a survival analysis using the Cox regression model on
ER+ BRCA, AR+ TNBC and PRAD tumor data. This
constitutes an external and independent evaluation of
the genes selected under the context of survival anal-
ysis, with the goal of expanding the usefulness of this
approach to different clinical data types. Indeed, if the
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Fig. 4 Weights of the variables selected by elatic net (EN) (blue) and twiner (red), and selected in common by the two modeling strategies
(green), for the two case studies evaluated: a) ER+ BRCA vs. PRAD; and b) AR+ TNBC vs. PRAD. ER+ BRCA, estrogen receptor positive Breast Invasive
Carcinoma; AR+ TNBC, androgen receptor positive Triple-Negative Breast Cancer; PRAD, Prostate Adenocarcinoma

common gene signatures identified are also associated
with the distribution of follow-up times and status, this
would strengthen correlation-based regularization as a
promising method to support prognostic assessment in
cancer studies.

Figures 7 and 8 show the survival curves obtained for
each dataset considered in the ER+ BRCA vs. PRAD and
AR+ TNBC vs. PRAD cases, respectively. In the first case
(Fig. 7), significance by the log-rank test for the differ-
ence in the survival distributions for high and low risk
patients (separated by the median of the fitted relative
risk) is highly increased in ER+ BRCA, while for PRAD the
difference becomes significant. In the second case (Fig. 8),
the difference for high and low risk individuals becomes
statistically significant in both AR+ TNBC and PRAD.
These results clearly indicate that accounting for genes
showing a similar correlation pattern across the diseases,
and without losing predictive ability, indeed improves the
separation of high and low-risk patients.

Discussion
After analyzing the computational results, an evaluation
of the role of the genes selected in the diseases studied
becomes crucial when the goal is to unravel new tar-
gets to tackle shared disease features. A discussion on
the relevance of the selected genes on the clinical and
oncobiology of breast and prostate cancers can be found
next.

ER+ BRCA is the most frequent subtype of breast
cancer amongst women. ER+ BRCA shares with PRAD
the response to hormone signaling and marked bone
osteotropism. Bone metastases are the principal site of
metastasis in ER+ BRCA and PRAD, significantly affect-
ing morbidity and mortality. However, it is still unknown
if and how hormone signaling is involved in specific bio-
logical features of bone tropic metastasis initiating cells.

In this work we proposed to identify events specifically
deregulated in both ER+ BRCA and PRAD cancers. We
hypothesized that these events could reflect a possible
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Fig. 5 Network representation of the correlation between the genes selected by elastic net (EN) and twiner in the ER+ BRCA vs. PRAD case study;
a) and b) stand for tumor and normal samples, respectively. ER+ BRCA, estrogen receptor positive Breast Invasive Carcinoma; PRAD, Prostate
Adenocarcinoma

association with bone tropism and/or hormone signal-
ing. Our analysis led to the identification of nine genes
exclusively selected by twiner, five identically deregu-
lated in ER+ BRCA and PRAD (Table 3). Amongst these,
three genes were up-regulated (CLEC11A, POLR2H and
ZBTB24) and two down-regulated (BMT2 and SCARA5).
Amongst the three up-regulated, CLEC11A may be
directly implicated in bone tropism or bone metastasis
development.

CLEC11A was previously found to be part of a gene
set up-regulated in cancer stem cell populations upon
therapeutic insult [28]. CLEC11A encodes a C-type lectin
domain protein, osteolectin, which is an osteogene-
sis driver usually secreted by bone stromal cells that

promotes the differentiation of mesenchymal progenitors
into mature osteoblasts [29]. Therefore, identification of
CLEC11A in our model may be associated with a blas-
tic bone metastasis phenotype, typical in PRAD and also
frequent in BRCA.

In silico analysis had previously identified POLR2H as
one of the key genes involved in the occurrence of PRAD,
and POLR2H protein was significantly upregulated in
PRAD tissues [30]. However, its role in cancer needs to be
further explored.

Finally, ZBTB24 encodes the poorly characterized zinc
finger and BTB domain containing 24 protein, which
belongs to the large ZBTB family of transcriptional repres-
sors. Although its function is still unknown, it was recently
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Fig. 6 Network representation of the correlation between the genes selected by elastic net (EN) and twiner in the AR+ TNBC vs. PRAD case study;
a) and b) stand for tumor and normal samples, respectively. AR+ TNBC, androgen receptor positive Triple-Negative Breast Cancer; PRAD, Prostate
Adenocarcinoma

shown that ZBTB24 is involved in the control of DNA
methylation [31]. It will be important to address its spe-
cific role in BRCA and PRAD.

Amongst the down-regulated genes, SCARA5 (Scav-
enger receptor class A member 5) is a candidate tumor
suppressor in several malignancies; however, its role in
BRCA cell growth and metastasis is still unclear. SCARA5
was found to be down-regulated in BRCA tissues and
cells and correlated with clinicopathologic characteris-
tics [32]. In this study, SCARA5 overexpression signif-
icantly suppressed cell proliferation, colony formation,
invasion, and migration, and induced G0/G1 arrest and
apoptosis. Recently, another group reported that SCARA5
expression was significantly decreased in tumors (92.2%),

compared to non-cancerous tissue samples, due to the
hypermethylation of the promoter [33]. There are no
reports implicating SCARA5 in PRAD, but based on our
results we hypothesize a similar pattern of expression.
BMT2 has not been previously implicated in BRCA or
PRAD.

AR (androgen receptor)-signaling is particularly impor-
tant in prostate cancer, however, AR is also expressed in
up to 90% of ER+ BRCA, and to a lesser degree, in HER2
amplified tumors [34]. Although in BRCA HER2+ AR
does not seem to play a role, in ER+ BRCA, AR signaling
has been correlated with a better prognosis due to its
inhibitory activity, but it also may increase resistance to
anti-estrogen therapies such as tamoxifen. AR blockade
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Fig. 7 Kaplan-Meier survival curves obtained for the ER+ BRCA and PRAD datasets using the variables selected by elastic net (EN) (a and c) and
twiner (b and d). ER+ BRCA, estrogen receptor positive Breast Invasive Carcinoma; PRAD, Prostate Adenocarcinoma

can resensitize cells, and therefore is potential target in
ER+ breast cancer. In TNBC, gene expression profiling
studies have led to the identification of a luminal androgen
receptor (LAR) subtype that is dependent on AR signaling,
and there seems to be an association between AR expres-
sion and improved outcomes in TNBC. Clinical studies
targeting AR have indeed shown promising results in this
setting. Although to a significant less extent, TNBC may
also metastize to the bone, however, the incidence of bone
metastasis is significantly higher for the LAR subtype [35].
Therefore, we interrogated if we also could find common
genes deregulated in TNBC with elevated AR expression,
AR+ (AR values > median AR expression) and PRAD, AR-
dependent. We found seven genes equally deregulated in
both AR+ TNBC and PRAD (Table 3): CTU and UCN, up-
regulated; and CD300LG, KLHL4, PARK2, SCARA5 and
SNCG, down-regulated. Only SCARA5 was detected in
the ER+ BRCA vs. PRAD analysis, suggesting specificity
for AR+ TNBC.

CTU1 (cytosolic tRNA thiouridilase) is involved in
maintaining genome stability, since post-transcriptional
modifications of transfer RNAs (tRNAs) at the wobble uri-
dine 34 (U34) base are highly conserved and contribute
to translation fidelity [36]. Partner enzymes in U34 tRNA

modification, including ELP3 and CTU1/2 were found
to be up-regulated in human breast cancers and sustain
metastasis, through the translation of the oncoprotein
DEK, that promotes the translation of the pro-invasive
transcription factor LEF1 [37].

UCN (urocortin) has been previously reported to atten-
uate TGFβ1-induced Snail1 and Slug expressions, both
in ER+ BRCA and TNBC in vitro models [38], suggest-
ing that urocortin may inhibit TGFβ1 oncogenic signal-
ing and ultimately EMT. Therefore, UCN up-regulation
would be associated with a better prognosis, a less
invasive disease. However, it was also suggested that
urocortin may have a dual role in cancer, since it dif-
ferentially binds to CRFR1 or CRFR2 and either acti-
vates or blocks the Bcl-2/Bax/caspase-9 axis, leading to
apoptosis or survival, respectively [39]. In clinical sam-
ples, UCN was found to be elevated in PRAD, although
no correlations with clinical features were presented in
this study [40].

The above described SCARA5, and also SNCG, PARK2,
CD300LG and KLHL4, were down-regulated in both AR+
TNBC and PRAD.

The loss of epigenetic control of SNCG (synuclein-
gamma) seems to be a molecular indicator of metastasis
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Fig. 8 Kaplan-Meier survival curves obtained for the AR+ TNBC and PRAD datasets using the variables selected by elastic net (EN) (a and c) and
twiner (b and d). AR+ TNBC, androgen receptor positive Triple-Negative Breast Cancer; PRAD, Prostate Adenocarcinoma

in a wide range of human cancers, including BRCA and
PRAD [41]. In this case, is the reactivation of SNCG gene
expression by DNA demethylation the contributing fac-
tor to malignant progression of many solid tumors and its
expression in primary carcinomas is an effective molec-
ular indicator of distant metastasis. Silencing SNCG in
a prostate cancer cell line has shown to decrease pro-
liferation and invasion in vitro, and tumor growth in
vivo, with the exception of castrated mice [42], suggest-
ing AR-dependence. It was shown that SNCG interacts
with AR and promotes prostate cancer cellular growth
and proliferation by activating AR transcription in an
androgen-dependent manner, whereas SNCG was almost
undetectable in benign or androgen-independent tissues
prostate lesions. SNCG in PRAD was also described to be
activated by Cav-1 in the tumor microenvironment [43].
Nevertheless, decreased expression of SNCG may corre-
spond to a more indolent disease. In breast cancer, it
was shown that TNBC cell lines do not express SNCG,
in accordance with our results [44]; although in another
study using a small cohort of 55 cases there was no associ-
ation between the clinicopathologic parameters including
histologic grade, ER positivity and HER2 status and the
level of SNCG [45].

PARK2 (PARKIN, E3 ubiquitin ligase) is involved in
autosomal recessive parkinsonism. PARK2 presents a
partial mitochondrial localization at the outer mito-
chondrial membrane and its depletion results in
abnormal mitochondrial morphology. An in silico
analysis has shown that PARK2 may be related to
cell cycle control, suggesting a role in carcinogenic
processes [46].

In accordance to our findings, CD300LG was found
to be down-regulated in AR+ TNBC tissues when com-
pared with adjacent normal studies [47], but its role
in cancer is still unknown. This gene encodes the
CD300 antigen-like family member G protein, also called
nepmucin or CLM-9, expressed extensively in a vari-
ety of organisational venules and capillary endothelial
cells in many organs. It is hypothesized that it may
be involved in recruitment of immune cells, and that
CD300LG down-regulation results in immune escape of
cancer cells [48].

Also KLHL4 (Kelch like family member 4) was expected
to be down-regulated in breast cancer. A previous study
has shown that this gene is down-regulated downstream
of IGFBP5, silenced in response to stromal cells in ERα-
positive breast cancer cells [49]. As this is part of a
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mechanism of induced resistance to anti-estrogen therapy,
KLHL4 down-regulation is expected to be associated with
worse prognosis.

From the biological interpretation above, several links
between the results obtained by our method and disease
biology have been established, which reinforces the ability
of our method to identify shared disease features in breast
and prostate cancers. Moreover, these genes are able to
stratify patients into high or low risk, according to overall
survival, and deserve further studies to clearly determine
their role in the progression of BRAC and PRAD.

Conclusions
High-dimensional data leads to ill-posed inverse problems
that cannot be tackled easily. Regularized optimization is a
promising strategy to cope with undetermined problems,
since it adds extra constraints to the loss function, which,
if chosen carefully, can provide biological and clinical
insight. We presented the twiner penalty, a correlation-
based regularizer designed to enable the selection of sim-
ilarly correlated genes in two diseases by sparse logistic
regression, as a strategy to identify common key players
in both diseases. The usefulness of the strategy proposed
is shown in the context of Breast Invasive Carcinoma
(BRCA) and Prostate Adenocarcinoma (PRAD), which
show remarkable similarities at the hormone-related sig-
naling pathways level. While being largely supported by
the literature and clinical evidence by survival analysis,
our results identified putative disease biomarkers which
are expected to greatly improve our knowledge on the
diseases and contribute to the definition of new target
therapies.

Endnotes
1 https://github.com/averissimo/brca.data/releases/

download/1.0/brca.data_1.0.tar.gz
2 https://github.com/averissimo/tcga.data/releases/

download/2017.07.21-prad/prad.data_1.0.tar.gz
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