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Abstract

Background: Protein secondary structure (PSS) is critical to further predict the tertiary structure, understand protein
function and design drugs. However, experimental techniques of PSS are time consuming and expensive, and thus
it's very urgent to develop efficient computational approaches for predicting PSS based on sequence information
alone. Moreover, the feature matrix of a protein contains two dimensions: the amino-acid residue dimension and
the feature vector dimension. Existing deep learning based methods have achieved remarkable performances of
PSS prediction, but the methods often utilize the features from the amino-acid dimension. Thus, there is still room
to improve computational methods of PSS prediction.

Results: We propose a novel deep neural network method, called DeepACLSTM, to predict 8-category PSS from
protein sequence features and profile features. Our method efficiently applies asymmetric convolutional neural
networks (ACNNs) combined with bidirectional long short-term memory (BLSTM) neural networks to predict PSS,
leveraging the feature vector dimension of the protein feature matrix. In DeepACLSTM, the ACNNSs extract the
complex local contexts of amino-acids; the BLSTM neural networks capture the long-distance interdependencies
between amino-acids. Furthermore, the prediction module predicts the category of each amino-acid residue based
on both local contexts and long-distance interdependencies. To evaluate performances of DeepACLSTM, we
conduct experiments on three publicly available datasets: CB513, CASP10 and CASP12. Results indicate that the
performance of our method is superior to the state-of-the-art baselines on three publicly datasets.

Conclusions: Experiments demonstrate that DeepACLSTM is an efficient predication method for predicting 8-
category PSS and has the ability to extract more complex sequence-structure relationships between amino-acid
residues. Moreover, experiments also indicate the feature vector dimension contains the useful information for
improving PSS prediction.
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Background
Protein secondary structure (PSS) is the 3-

dimensional form of local segments in protein se-
quences [1, 2], and secondary structure elements un-
affectedly form as an intermediate before the protein
sequence folds into its tertiary structure. The predic-
tion of PSS is a vital intermediate step in tertiary
structure prediction and is also regarded as the bridge
between the protein sequence and tertiary structure
[3, 4]. The accurate identification of PSS cannot only
enable us to understand the complex dependency re-
lationships between protein sequences and tertiary
structures, and also promote the analysis of protein
function and drug design [3, 5-7]. The experimental
identification of PSS is expensive and time consum-
ing, and thus it becomes urgent to develop efficient
computational approaches for predicting PSS based
on sequence information alone. However, accurately
predicting PSS from sequence information and under-
standing dependency relationships between sequences
and structures are a very challenging task in compu-
tational biology [3, 4, 8].

PSS often is classified into 3 categories: H (helices), E
(strands) and C (coils); in addition, according to the
DSSP program [9], PSS is also classified into 8 categor-
ies: G (3-turn helix), H (4-turn helix), I (5-turn helix), T
(hydrogen bonded turn), E (extended strand in parallel
and/or anti-parallel B-sheet conformation), B (residue in
isolated B-bridge), S (bend) and C (coil). Of course, the
methods of PSS prediction [3, 4] are also commonly
classified into 3-category prediction and 8-category pre-
diction. Compared to 3-category prediction, the predic-
tion of 8-category secondary structure can reveal more
detail structure information of proteins and the task is
also more complex and challenging. Thus, this paper
only focuses on 8-category PSS prediction based on pro-
tein sequences.

PSS prediction has been extensively studied [6].
Many computational methods have also been pro-
posed to identify secondary structures, such as statis-
tical methods [10], SVM [11], CRF [12], and the
methods have achieved remarkable performances.
Statistical methods [10] were used to identify the sec-
ondary structures by analyzing the probability of the
specific amino acid, but their performances are far
from the application due to the inadequate features
extracted. Subsequently researchers [11, 13] also pro-
posed secondary structure prediction methods based
on SVM or SVM variation. Although the methods
have been used successfully, both statistical models
and traditional machine learning methods have their
own limitations. In brief, traditional methods heavily
rely on handcrafted features and easily ignore the
long-distance dependencies of protein sequences.
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Inspired by the remarkable success in computer vision
[14], speech recognition [15] and sentiment classification
[16], deep learning based methods are now being inten-
sively used in many biological research fields, such as
protein contact map [17], drug-target binding affinity
[18, 19], chromatin accessibility [20] and protein func-
tion [21, 22]. The main advantages of deep learning
methods are that they can automatically represent the
raw sequence and learn the hidden patterns by non-
linear transformations. Moreover, these convolutional
neural networks (CNNs) and recurrent neural networks
(RNNs) models have already been applied to the PSS
prediction (3, 4, 8, 23, 24].

It’s well known that the dependencies between amino-
acid residues usually contain local contexts and long-
distance interdependencies [3, 4, 24] in protein se-
quences. Consequently, according to the dependencies
between amino-acid residues, deep learning based
methods can be classified into three categories: local
context based methods, long-distance dependency based
methods, local context and long-distance dependency
based methods. Firstly, local context based methods in-
dicated that the methods usually identified the secondary
structure of each amino acid based on the local contexts
or statistical features in protein sequences. Pollastri et al.
[25] proposed a prediction method, called SSpro8, based
on PSI-BLAST-derived profiles by bidirectional recur-
rent neural networks (BRNNs). Wang et al. proposed a
conditional neural field (CNF) prediction method. Sec-
ondly, long-distance dependency based methods indi-
cated that the methods mainly focused on the long-
distance dependency of between amino-acid residues.
Senderby et al. [26] utilized bidirectional long short-
term memory (BLSTM) to capture the long-distance de-
pendency of between amino-acid residues for PSS pre-
diction. Finally, local context and long-distance
dependency based methods indicated that the methods
exploited both local contexts and long-distance depend-
encies to predict PSS. Zhou et al. [6] presented a new
supervised generative stochastic network (GSN) predic-
tion method. Guo et al. presented a hybrid deep learning
framework integrating two-dimensional CNNs with bi-
directional recurrent neural networks. Zhou et al. [8]
proposed an end-to-end deep network method, which
was called a deep convolutional and recurrent neural
network (DCRNN) leveraging cascaded convolutional
and recurrent neural networks. Zhang et al. [4] pre-
sented a novel deep learning architecture, called convo-
lutional residual recurrent neural networks (CRRNNSs),
leveraging convolutional neural networks, residual net-
works, and bidirectional recurrent neural networks.
Zhou et al. [3] presented a novel deep learning model,
called CNNH, by utilizing multiple CNNs with the high-
way network.
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Compared to traditional machine learning methods,
deep learning based methods can automatically extract
amino acid features and hidden patterns in protein se-
quences. The feature representation of each amino-acid
sequence usually forms the matrix, and it’s obvious that
the matrix contains two dimensions (rows correspond to
amino acid dimensions, and columns correspond to fea-
ture vector dimensions). CNNs based secondary struc-
ture prediction methods [3, 4] have achieved remarkable
results. However, the methods only capture features
along the amino-acid residue dimension. Thus, the
methods may ignore some important features, which are
hidden in the feature vector dimension of protein se-
quences and likely to be useful for predicting the sec-
ondary structures.

Inspired by the success of asymmetric convolutional
neural networks (ACNNs) [27] and ultra-deep neural
networks [17] in protein contact map prediction, we
propose a novel method, called DeepACLSTM, to
predict 8-category PSS. DeepACLSTM efficiently ap-
plies ACNNs combined with BLSTM neural networks
to predict PSS, leveraging the feature vector dimen-
sion of the protein feature matrix. The main contri-
butions of this work include: (1) the asymmetric
convolutional operation is used to extract complex
local contexts between amino-acid residues in protein
sequences. Moreover, two stacked BLSTM neural
networks are used for further extracting the long-
distance interdependencies between amino-acid
residues. (2) To verify the efficacy of our Dee-
pACLSTM, we carry out 8-category PSS prediction
experiments on three public test datasets respectively:
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demonstrate that our proposed method consistently
outperforms other benchmark methods. In addition,
experiments also indicate that the feature vector di-
mension contains the useful information for improv-
ing 8-category PSS prediction.

Results

Overview of DeepACLSTM

As illustrated in Fig. 1, our proposed deep asymmetric
convolutional long short-term memory neural model,
called DeepACLSTM, comprises of three modules: Local
feature encoding module, Long-distance encoding mod-
ule and Prediction module.

In DeepACLSTM, sequence features and profile fea-
tures are first concatenated into the matrix represen-
tation of proteins. The local feature encoding module
maps the matrix into the local dependency feature of
amino-acid residues by asymmetric convolution filters
that include two convolutional filters: 1 x 2d convolu-
tional filters and k x 1 convolutional filters. Asymmet-
ric convolutional filters first scan along the input for
capturing the low level feature patterns of protein se-
quences by 1x2d convolutional operations with M
filters; and then subsequent k x 1 convolutional opera-
tions with M filters further project the low level fea-
ture patterns from 1 x 2d convolutional filters to high
level local dependency patterns by kx 1 convolutional
filters. The long-distance dependency encoding mod-
ule captures long-distance dependencies from the rep-
resentation extracted by the local feature encoding
module using two stacked BLSTM neural networks.

The prediction module takes the representation
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Fig. 1 Overview of DeepACLSTM structure
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the long-distance dependency encoding module as in-
put, and then predicts 8-category secondary structure
of each amino-acid residue through the softmax func-
tion. In our model, the fully connected layer with a
rectified linear unit (ReLU) reduces input features to
a low dimension, for the purpose of alleviating com-
putational burden and meanwhile facilitating the ex-
traction of high level features. Moreover, input
features are also discarded at random by the dropout
operation [28].

Implementation of DeepACLSTM

A distinguishing characteristic of our model is the use of
asymmetric convolutional operations and BLSTM.
Asymmetric convolution operations contain two types of
filters, as showed in Fig. 1. Benefitting from the rapid
development of deep learning toolbox, we can easily use
the high level neural network API tool (Keras, https://
github.com/fchollet/keras) to design an abstract model,
and the backend of Keras is Tensorflow.

Firstly, we develop our proposed DeepACLSTM by
Keras API For example, 1 x 2d convolutional filters are
implemented by the Convolution1D layer and k x 1 con-
volutional filters are implemented by the convolution2D
layer from Keras. The stacked BLSTM is implemented
by the LSTM layer from Keras.

Secondly, we train the model and update the parame-
ters in DeepACLSTM using the adaptive moment esti-
mation (Adam) algorithm [29]. The datasets and the
codes of our method can be accessed online at https://
github.com/GYBTA/DALSTM/. Finally, Table 1 shows
our proposed deep learning based methods typically
have various parameters. In Table 1, FC represents the
fully connected layer and NP represents the number of
parameters.

Table 1 The main structures and parameters of DeepACLSTM

Layer Type Size NP
embedding 21 441
Convolution1D 1x42 1806
Convolution2D 3x1 168
Dropout1 0.5 0

FC' 400 706,000
LSTM}, 300 841,200
LSTM}, 300 841,200
LSTMZ 300 721,200
LSTM; 300 721,200
Dropout2 04 0

FC? 600 600,600
Softmax 8 4808
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Evaluation metrics

The Q8 accuracy is the main evaluation metric in 8-
category secondary structure prediction [3, 8]. This
paper only focuses on 8-category PSS prediction, so the
performance of our model is also evaluated by Q8 accur-
acy, which is the percentage of the amino-acid residues
predicted correctly. A bigger value indicates a better per-
formance of PSS prediction.

Experimental settings

As shown in Fig. 1, the input of DeepACLSTM is a N x
d matrix, where N is the length of the input sequence
and d is the dimension of vectors. In our work, in order
to deal with sequences and compare performance with
other baseline methods conveniently [3, 6], all the pro-
tein sequences are normalized to N (N=700) amino
acids in the training, validation and test dataset. In other
words, for all the datasets, protein sequences shorter
than 700 amino acids are padded with zero vectors. Se-
quences longer than 700 amino acids are truncated for
the training and validation dataset. For protein se-
quences longer than 700 amino acids in the test dataset,
we split them to two overlapping sequences.

To prevent our method from overfitting, L2
regularization, Dropout [28] techniques and early-
stopping methods are exploited during training our Dee-
pACLSTM. The dropout is first applied between the
local feature encoding module and the long-distance de-
pendency module. Then the dropout is applied between
the prediction module and the long-distance dependency
module. We also adopt the early-stopping method with
the maximum number of iterations, and it would stop
training the model after 5 times of the unimproved loss
value on the validation set. The DeepACLSTM is trained
on a single NVIDIA GeForce GTX 1060 GPU with 6GB.

The choice of input features

In the section, we analyze whether both the sequence
features and profile features are necessary to predict
PSS. Thus, we conduct three experiments on CB513
dataset. The parameters of DeepACLSTM are shown in
Table 1. The first experiment evaluates DeepACLSTM
with sequence features and the Q8 accuracy is 57.1%;
the second experiment evaluates DeepACLSTM with
profile features and the Q8 accuracy is 69.6%; moreover,
the third experiment evaluates DeepACLSTM with se-
quence and profile features and the Q8 accuracy is
70.5%.

The results in Fig. 2 show that DeepACLSTM can ob-
tain the best performance when both sequence and pro-
file features are used as the input features. Thus, we
regard sequence and profile features as the input fea-
tures of our method.
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Fig. 2 The performance of DeepACLSTM on different input features

Results of DeepACLSTM

We mainly exploit four protein datasets, which con-
sist one training dataset called CB5534 and three
publicly available test datasets: CB513, CASP10 and
CASP11. Their details are described in section
“Methods”. For validation datasets, we randomly div-
ide CB5534 into the training set and the validation
set. We train our model on the CB5534 and compare
the Q8 accuracy of our method with the baseline
methods on three public test datasets: CB513,
CASP10 and CASP11.

Experimental results of DeepACLSTM are summa-
rized in Table 2 and Table 3 on the test datasets in de-
tail. Table 2 shows the performance of DeepACLSTM
with different LSTM output dimensions ranging from 50
to 500. Table 3 shows the performance of DeepACLSTM
with different filter sizes from 3 to 21. From Table 2, we
can see that our method obtains the best Q8 accuracy

Table 2 The Q8 accuracy (%) of DeepACLSTM with different
LSTM units and the best values are marked in bold

LSTM output dimension CASP10 CASP11
50 71.8 70.2
100 724 70.5
150 74.2 721
200 741 72.2
250 74.5 723
300 75.0 73.0
350 73.7 718
400 738 716
450 74.8 718
500 721 70.1
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Table 3 The Q8 accuracy (%) of DeepACLSTM with different
filter size and the best values are marked in bold

Filter Size CASP10 CASP1
3 75.0 73.0
5 739 72.1
7 74.2 72.1
9 74.7 724
11 744 723
13 713 700
15 69.6 68.6
17 743 723
19 735 716
21 74.0 71.7

when the output dimension of LSTM is 300. When the
output dimension of LSTM is increased to 300, the Q8
accuracy is increased obviously, and then the accuracy
starts to decrease. The main reason may be that our
method could capture the most long-distance depend-
ency information when the output dimension is in-
creased to 300 in LSTM. While the output dimension of
LSTM is bigger or smaller than 300, our method cannot
capture more information of residues in protein se-
quences. Thus, the LSTM output dimension of our
method is 300 in our model.

From Table 3, we can find that our method can get
the best Q8 accuracy when the filter size is 3. The Q8
accuracy decreases gradually with the increase of the fil-
ter size. When the filter size is increased, the local fea-
ture encoding model can extract local correlations
between more remote amino-acid residues, but the Q8
accuracy of DeepACLSTM is decreased. The reason is
possible that the bigger convolutional filter size inte-
grated with BLSTM neural networks cannot extract
more amino-acid features. Thus, the filter size of the
local feature encoding module is 3 in our model.

Comparison with baseline methods

PSS is critical for analyzing protein function and drug
design [3, 30]. Many computational methods have been
proposed for improving the performance of PSS predic-
tion. In this paper, we compare our method with the fol-
lowing approaches:

+ SSpro8: Pollastri et al. [25] used ensembles of bidir-
ectional recurrent neural network architectures and PSI-
BLAST-derived profiles to improve the prediction of 8-
category PSS.

+ CNF: Wang et al. presented a new probabilistic
method for 8-category secondary structure prediction
using a conditional neural field (CNF). The CNF predic-
tion method not only models the complex relationship
between sequence features and secondary structures, but
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also exploits the interdependencies among secondary
structure types of adjacent residues.

t+ DeepCNF: Wang et al. [31] proposed an extension
method of CNF (DeepCNF) based on deep learning
techniques, which was an integration method between
CNF and shallow convolutional neural networks.
DeepCNF could extract both complex sequence struc-
ture relationships and interdependencies between adja-
cent secondary structures.

t+ GSN: Zhou et al. [6] presented a new supervised
generative stochastic network (GSN) based method to
predict local secondary structure with deep hierarchical
representation, which learned a Markov chain to sample
from a conditional distribution.

+ DCRNN: Li et al. [8] proposed an end-to-end deep
network that predicted 8-category PSS from integrated
local and global features between amino-acid residues.
The deep architecture utilized CNNs with different filter
sizes to capture multi-scale local features and three
staked gate recurrent units to capture global contextual
features.

+ CNNH: Zhou et al. [3] presented a novel deep learn-
ing based prediction method for PSS, called CNNH, by
using multi-scale CNNs with the highway network.
Their deep architecture has a highway between two
neighbor convolutional layers to deliver information
from the current layer to next layer to capture contexts
between amino-acid residues.

+ CBRNN: Guo et al. [32] presented a hybrid deep
learning framework integrating two-dimensional CNNs
with bidirectional recurrent neural networks for improv-
ing the accuracy of 8-category secondary structure
prediction.

In Table 4, the Q8 accuracies of SSpro8, CNF and
DeepCNF are reported by Wang et al. [23] (2016) and
Guo et al. reported the Q8 accuracy of CBRNN [32]
(2018).

We first compare our method with the SSpro8, CNF,
and DeepCNF. The methods mainly extract local con-
texts between amino-acid residues. Their results are
shown in Table 4. From the Table 4, we can see that the
Q8 accuracy of our method obviously outperforms the
baseline methods on three public datasets; moreover, we

Table 4 The Q8 accuracy (%) of our method and baseline
methods and the best performance are marked in bold
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can also find that the Q8 accuracy of DeepACLSTM in-
creases by 2.2, 3.2 and 0.7% respectively than DeepCNF
on CB513, CASP10 and CASP11 datasets. The outper-
formance indicates that DeepACLSTM can extract more
long-distance interdependencies for improving the per-
formance of 8-category secondary structure prediction.
Compared to CBRNN, the performance of Dee-
pACLSTM increases by 0.3, 0.5 and 0.5% on CB513,
CASP10 and CASP11 respectively, which indicates that
more local structural information can be captured by
the asymmetric convolution.

In addition, we also compare DeepACLSTM to the
baseline methods on CB513 and CB6133 datasets, in-
cluding GSN, DCRNN and CNNH. The baseline
methods cannot only extract the local contexts, and also
capture long-distance dependency in protein sequences.
Their results are shown in Table 5. From Table 5, the
Q8 accuracy of our method increases by 0.2 and 0.2%
than CNNH on CB513 and CB6133 datasets respect-
ively. The outperformance indicates that asymmetric
convolution can extract more local contexts between
amino-acid residues and BLSTM neural networks inte-
grated with asymmetric convolutions can extract more
long-distance dependency information than CNNs with
the highway.

In Table 5, the Q8 accuracy of GSN is reported by
Zhou et al. [6] (2014), the Q8 accuracy of DCRNN is re-
ported by Li et al. [8] (2016) and the Q8 accuracy of
CNNH is reported by Zhou et al. [3] (2018).

Influence of the dropout settings

In the section, we explore that how different dropout
rates and dropout settings impact on learning robust
and effective features in protein sequences. Specially,
our model contains two types of dropout settings:
dropoutl (D1) and dropout2 (D2).

In order to obtain the optimal dropout rate, we first
conduct two sets of experiments on CB513 based on
the parameter settings in Table 1; and each dropout
rate refers to a variable ranging from 0.1 to 0.9.
Experimental results on CB513 dataset are listed in
Fig. 3 and Fig. 4.

Table 5 The Q8 accuracy (%) of our method and baseline

Methods (B513 CASP10 CASP11 methods and the best performance are marked in bold

SSpro8 63.5 64.9 65.6 Methods CB6133 CB513
CNF 64.9 64.8 65.1 GSN 721 66.4
DeepCNF 68.3 71.8 723 DCRNN 73.2 694
CBRNN 70.2 74.5 72.5 CNNH 74.0 703
DeepACLSTM 70.5 75.0 73.0 DeepACLSTM 74.2 70.5
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From Fig. 3, we can see that DeepACLSTM with the
D1 rate (P=0.5) obtains the best Q8 accuracy. When
the dropout rate P is bigger than 0.5, then the Q8 accur-
acy is decreased obviously. The main reason is possible
that DeepACLSTM with the D1 rate (P =0.5) can learn
more robust and effective features between the local fea-
ture encoding module and the long-distance dependency
module.

From Fig. 4, it’s obvious that DeepACLSTM with the
D2 rate (P =0.4) obtains the best Q8 accuracy between
the prediction module and the long-distance dependency
module. When the dropout rate is bigger than 0.4, then
the Q8 accuracy is decreased obviously. The main rea-
son is possible that DeepACLSTM with our model with
D2 rate (P = 0.4) can learn more robust and effective fea-
tures on the protein feature matrix.

Thus the D1 rate and the D2 rate are 0.5 and 0.4 in
DeepACLSTM respectively. Moreover, in order to
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explore the influence of the dropout settings on
DeepACLSTM with the parameter settings in Table 1,
we conduct four experiments to get the appropriate
dropout setting on test dataset CB513, CASP10 and
CASP11. The four settings are YD1-YD2, YD1-ND2,
ND1-YD2 and ND1-ND2, respectively. YD indicates the
model adopts the dropout and ND indicates the model
doesn’t adopt the dropout. Specially, YD1-YD2 shows
that our method uses D1 and D2. YD1-ND2 shows that
our method uses D1 and doesn’t use D2. ND1-YD2
shows that our method doesn’t use D1 and only uses
D2. ND1-ND2 shows that our method doesn’t use D1
and D2.

The experimental results are shown in Table 6. As
shown in Table 6, DeepACLSTM with YDI1-YD2
achieves the best performance 70.5, 75.0 and 73.0% re-
spectively on CB513, CASP10 and CASP11 dataset.
From Table 6, we can see that the Q8 accuracy of our
method with YD1-YD2 outperforms other settings on
three public test datasets. Thus, we adopt the dropout
setting to avoid overfitting and achieve the best perform-
ance in DeepACLSTM.

Discussion

Compared to the baseline methods, DeepACLSTM uti-
lizes ACNNSs to learn the local contexts from the protein
feature matrix during training the model. As shown in
Fig. 1, the protein feature matrix is first delivered to the
local feature encoding module, which is an asymmetric
convolution  containing  1-dimensional and  2-
dimensional convolutional filters. The convolutional fil-
ters with 1 x 2d extract information from the feature
vector dimension on each amnion-acid residue; and then
features from convolutional filters with 1 x 2d are fed
into the convolutional filters with k x 1 hat capture the
adjacent k amino-acid residues of each position in pro-
tein sequences. As shown in Table 3, we also conduct 10
experiments of DeepACLSTM with different filter sizes
ranging from 3 to 21 and it’s obvious that DeepACLSTM
can achieve the best performance when the filter size is
3 in asymmetric convolutional operations. That’s to say,
the asymmetric convolutional operation with adjacent 3
amino-acid residues can extract more local complex fea-
tures in protein sequences. Secondly, the output of the
local feature encoding module is organized as the local

Table 6 The Q8 accuracy (%) of our method on different
dropout settings

Dropout Setting CB513 CASP10 CASP11
YD1-YD2 70.5 75.0 73.0
YD1-ND2 68.5 723 70.3
ND1-YD2 69.1 733 711
ND1-ND2 69.2 73.7 71.0




Guo et al. BMC Bioinformatics (2019) 20:341

feature of protein sequences and then is fed into the
long-distance dependency encoding module, which con-
tains two stacked BLSTM neural networks. As shown in
Table 2, we conduct 10 experiments of DeepACLSTM
with different LSTM output dimension ranging from 50
to 500 and find DeepACLSTM can achieve the best per-
formance when the LSTM output dimension is 300. In
other words, the long-distance dependency encoding
module with 300 LSTM output dimension has ability to
learn more long-distance dependency based on the local
features captured by the local feature encoding module.

Based on the above discussion, we can find that Dee-
pACLSTM with different convolutional filter sizes and
LSTM output dimensions can get different performances
of predicting PSS based on sequence information, and
the appropriate parameter adjustment can further im-
prove the performance of the model.

Conclusion

Understanding the complex dependency relations is a
very important task in computational biology between
sequences and structures. In order to predict 8-category
PSS accurately, we have proposed a novel deep learning
method for predicting PSS based on sequence informa-
tion, called DeepACLSTM. Compared to the state-of-art
methods, the performance of our method is superior to
their performances on three public test datasets: CB513,
CASP10 and CASPI11. Experiments demonstrate that
DeepACLSTM is an efficient method for predicting 8-
category secondary structure. Moreover, experiments
also indicate the feature vector dimension contains use-
ful information for improving PSS prediction. Moreover,
the asymmetric convolution integrated with BLSTM
neural networks can extract more local contexts and
more long-distance interdependencies between amino-
acid residues in protein sequences, which are important
to improve 8-category PSS prediction.

Residual neural networks achieved remarkable per-
formance in PSS [4] prediction and protein contact map
prediction [17]. Moreover, Zhang et al. [4] also utilized
four types of input features, including a position-specific
scoring matrix (PSSM), protein coding features, conser-
vation scores, and physical properties, to characterize
each residue in protein sequences. Inspired by Zhang et
al. [4] and Wang et al. [17], in the future, we would im-
prove our method from the following two aspects: (1)
adding other additional properties in input features of
proteins, such as physical properties, (2) extending the
prediction model using residual networks.

Methods

Firstly, we introduce four publicly available datasets that
the models are trained and tested on. Then, we describe
in detail the initial representation of amino-acid residues
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with the embedding technique, which aims to encode
the discrete sequence feature into the continuous se-
quence feature. Moreover, we also describe asymmetric
convolutional operations, containing two types of convo-
lutional filters in detail, which is the components of the
local context encoding module. The local context encod-
ing module takes the amino-acid vector matrix as input
and produces higher-level presentation of amino-acid
residues in protein sequences; and then we introduce
the stacked BLSTM neural networks which are used to
incorporate local contexts on both sides of every amino-
acid position to get the long-distance interdependencies
in the input. Finally, two types of features are
concatenated and fed into the prediction module.

Data sources

We evaluate our method on three public test datasets:
CB513, CASP10 and CASP11, which were previously
used as the test datasets for PSS prediction [3, 4, 8]. The
details of datasets are as follows.

CB6133 dataset

The CB6133 [33] dataset was produced by PISCES
CullPDB [34] and was a non-homologous dataset with
known secondary structures. CB6133 contains 6128 pro-
tein sequences. When the dataset is used to test the
model, 5600 proteins are regarded as the training data-
set, and 256 proteins are regarded as the validation data-
set and 272 proteins are regarded as the test dataset.

CB513 dataset

The CB513 [33] dataset contains 514 protein sequences
and is widely regarded as a test dataset [3, 8] for PSS
prediction.

CASP10 and CASP11 dataset
The CASP10 and CASP11 [3, 8] datasets contain 123
and 105 protein sequences, respectively. They are often
regarded as the test datasets.

Since there exists some redundancy between CB6133
and CB513 datasets, the CB513 dataset cannot be used
to evaluate the models directly. Therefore, sequences
over 25% similarity need to be filtered in CB6133 be-
tween CB6133 and CB513; finally, the new dataset
achieved is named as CB5534 dataset and it contains
5534 protein sequences. When the performance of
DeepACLSTM is evaluated on test datasets: CB513,
CASP10 and CASP11, 5278 proteins of the CB5534 are
randomly chosen as the training dataset, and other pro-
teins are regarded as the validation dataset, which aims
at optimizing the parameters of the model during train-
ing the model.
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Input features

DeepACLSTM takes the feature sequence of a given
protein as input, and predicts the corresponding second-
ary structure labels of amino acids. For each amino acid
in a protein sequence, its input feature is a 2d (d = 21)
dimensional vector, which concatenates the sequence
feature and profile feature [3, 8, 33]. As shown in Fig. 1,
the sequence feature is a d-dimensional vector encoding
the type of the amino acid in a protein, and the profile
feature is also a d-dimensional vector, called the position
special scoring matrix (PSSM). In DeepACLSTM, the
profile feature was generated by the PSI-BLAST [35]
and rescaled by a logistic function [36].

In addition, the sequence feature vector is a sparse
one-hot vector, while the profile feature vector is a dense
vector. In order to avoid the influence of feature incon-
sistency, we also transform the sparse sequence features
to the dense sequence features by an embedding oper-
ation from Keras (https://github.com/fchollet/keras). As
shown in Fig. 1, after the embedding operation and con-
catenating operation, we obtain the sequence features
with size of N x 2d.

Local feature encoding module

Convolutional neural networks (CNNSs) often contain
three convolutional operations: 1-dimensional convolu-
tional operations, 2-dimensioanl convolutional opera-
tions and 3-dimensional convolutional operations. 1-
dimensional convolutional operations are usually used
for dealing with sequence data, such as sentiment ana-
lysis and sequence structure prediction [16, 23, 27];
Moreover 2-dimensional and 3-dimensional convolu-
tional operations are often used to capture spatiotempo-
ral feature in image recognition and video classification
[37-39]. CNN based methods [3-5] have been applied
in PSS prediction and achieve remarkable successes.
Nevertheless, the methods often ignore features from
the feature vector dimension, which may be useful for
improving the performance of PSS prediction.

In our method, the local feature encoding module ex-
ploits the asymmetric convolution to extract the local
hidden patterns and features of adjacent amino-acid res-
idues from the input matrix. This module contains 1-
dimesnional convolutional operations and 2-dimensional
convolutional operations, as shown in Fig. 1.

Instead of exploiting k x 2d convolutional operations
described in Kim [40], we factorize k x 2d convolution
operations into 1 x 2d convolution operations followed
by the k x 1 convolution operations, as utilized by Liang
et al. [27] and Wang et al. [17].

Let x: x1xox3 - %n_2%n_ 1%y denotes the protein se-
quence with N amino-acid residues. Generally, let x;.;, ;
refer to the concatenation of amino acids x;j, %, 1, =", %; .+
i—1» %j+;. As shown in Fig. 1, the convolutional
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operation corresponding to the 1 x 2d convolutional op-

eration with the filter W' eR***? is applied to each

amino acid x; in protein sequences and generates a cor-
1

responding feature c;:

¢ =f(W'®ux;+B) 1)

where ® is element-wise multiplication, B is a bias term
and f is a non-linear function such as the sigmoid,
hyperbolic tangent and rectified linear unit. In this
paper, we chooses rectified linear unit (ReLU) [41] as the
nonlinear function; Then we can get the feature map c’:

= [cf,cé,cﬁ, "'aczlv-vaII\z-pC}v] (2)

As shown in Fig. 1, after the 1 x2d convolution, the
second convolutional operation corresponding to the
kx 1 convolution with the filter W? e R**! is exploited
to the window of k features in the feature map c' to pro-
duce the new feature c? and the feature map c*

¢ =f (W @)y +B) 3)
¢ = [cf,cg,cg, "'7612\1-2755\1-1’5?\1] (4)

where ®, B and W are the same as described above.

DeepACLSTM first applies the asymmetric convolu-
tion including two types of convolution operations to
the representation matrix of proteins. Each type of
convolutional operations have M filters. Thus the out-
put of the convolution operation has M feature maps.

In order to generate the input of the stacked BLSTM
neural networks, for each output of the second convolu-
tional operation in the local context encoding module,
we apply the fully connected (FC) layer with the ReLu
activation function to get the input feature of BLSTM in
protein sequences:

m = FC'(W"c* + B") (5)

Finally, the amino-acid sequence is represented as m:
my, Mo, ***, Min_ 1, WIN.

In summary, CNNs [27] have the ability of captur-
ing local relationships of spatial or temporal struc-
tures, but it only performs excellently in extracting n-
gram features of amino acids at different positions of
protein sequences through convolutional filters. In
addition, long-distance interdependencies [3, 8, 24] of
amino-acid residues are also critical for predicting
PSS; therefore, the local complex features generated
by asymmetric convolutions are fed into the stacked
BLSTM to further extract long-distance interdepend-
encies between amino-acid residues.
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Long-distance dependency encoding module
The long-distance dependency encoding module includes
two stacked BLSTM neural networks; this section describes
the LSTM unit and explains how BLSTM neural networks
can generate a fixed-length feature vector of each amino
acid. Recurrent neural networks (RNNs) have achieved re-
markable results in sequence modeling, but the gradient
vector possible grows or degrades exponentially over long
sequences during training [42]. Thus LSTM neural net-
works are designed to avoid the problems by introducing
gate structures. LSTM [42, 43] neural networks are able to
handle input sequences with arbitrary length via a transi-
tion function on a hidden vector /4, as the formula (10).
Figure 5 represents the internal structure of a LSTM unit.
At the time step ¢, the hidden vector %, is computed by
current input 1, received and its previous hidden vector /,
_; at time £. LSTM utilizes three gates (input gate i;, forget
gate f; and output gate o;) and a memory cell ¢, to control
information processing of each amino acid at time step .
Formally, the information of a LSTM unit can be com-
puted by the following formulas:

S, = sigmoid(W ym, + W thy_y + By) (6)
iy = sigmoid(W m; + Wih;_1 + B;) (7)

¢ =f,Q¢1+i® tanh(Wem, + Wehq + B,)
(8)
or = sigmoid(W om; + Wohi1 + B,) (9)

h; = 0, ® tanh(c;) (10)

Where f;, i, 0, and ¢, are the activation values of the forget
gate, input gate, output gate and internal memory cell, re-
spectively. Moreover, W, B and ® respectively represent the
weight matrix, bias term and element-wise multiplication.

In our work, a BLSTM neural network consists of two
LSTM neural networks in parallel, as showed in Fig. 6; one

m

Fig. 5 Internal architecture of the LSTM cell

Page 10 of 12

h V] h,
( ‘»’ ( 7 xi V )
Output ) ( )| ( )
WA/ &)\— é\—
Stacked O 1 Wi |-
BLSTN s O
Imput @ |~ ML
m m m,
Fig. 6 Architecture of stacked BLSTM neural networks

runs on the input sequence and the other runs on the re-
verse of the input sequence. We exploit two stacked BLSTM
neural networks to capture more long-distance interdepend-
encies of amino-acid residues. The first BLSTM neural net-
work is exploited to protein sequences (m1y, My, -, Mn_1,
my) at each time step to obtain a left-to-right sequence of

o - —
hidden states 4" (h}, hy, -+, hy,_,, hy) and a right-to-left se-

quence of hidden states /' (h},h%, e h}\H, h}\,); and then
the second BLSTM neural network is exploited directly to

obtain the same hidden states: #* (12, h3, -+, b3, ,, H3;) and

—

W (hf, h%, LR h,z\[f17 hlzv) based on the previous hidden state

vectors (h}, hy, -y, hy) and (), by, - Ty, hy).

Finally, we concatenate the outputs of the second
BLSTM neural network to obtain the final feature repre-
sentation containing both the forward and backward in-
formation of each amino acid. The feature vectors of
each residue at time step ¢ by the second BLSTM neural
network are:

—
h = concat(hf, hf) (11)

Prediction module

DeepACLSTM has two fully connected hidden layers in
the prediction module. Moreover, in order to get the
whole features of protein sequences, we concatenate
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local features m from the first fully connected layer and

—_—
long-distance features /*, h* from long-distance depend-
ency encoding module by the following formula:

h = concat (hZ, ", m) (12)

The features of a protein sequence are finally recorded
as h=[hy,h,hy, - by o, in_1, By, and then are fed
into the first fully connected (FC) layer with the ReLU
activation function to obtain the feature representation
I, by the following formula:

W = FC*(W"h + B") (13)

Moreover, the feature representation /' is fed into the
second fully connected layer with the softmax activation
function and performs 8-category secondary structure
prediction by the formula:

y= softmax(\xfshf +B) (14)

The objective function of our method is to minimize
the cross-entropy loss function.
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