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Abstract

Background: Molecule identification is a crucial step in metabolomics and environmental sciences. Besides in silico
fragmentation, as performed by MetFrag, also machine learning and statistical methods evolved, showing an
improvement in molecule annotation based on MS/MS data. In this work we present a new statistical scoring method
where annotations ofm/z fragment peaks to fragment-structures are learned in a training step. Based on a Bayesian
model, two additional scoring terms are integrated into the new MetFrag2.4.5 and evaluated on the test data set of
the CASMI 2016 contest.

Results: The results on the 87 MS/MS spectra from positive and negative mode show a substantial improvement of
the results compared to submissions made by the former MetFrag approach. Top1 rankings increased from 5 to 21
and Top10 rankings from 39 to 55 both showing higher values than for CSI:IOKR, the winner of the CASMI 2016
contest. For the negative mode spectra, MetFrag’s statistical scoring outperforms all other participants which
submitted results for this type of spectra.

Conclusions: This study shows how statistical learning can improve molecular structure identification based on
MS/MS data compared on the same method using combinatorial in silico fragmentation only. MetFrag2.4.5 shows
especially in negative mode a better performance compared to the other participating approaches.
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Background
The identification of small molecules such as metabolites
is a crucial step in metabolomics and environmental sci-
ences. The analytical tool of choice to achieve this goal
is mass spectrometry (MS) where ionized molecules can
be differentiated by their mass-to-charge (m/z) ratio. As
a single m/z value is not sufficient for the unequivocal
determination of the molecular structure, tandem mass
spectrometry (MS/MS) is applied, which results in the
formation of fragment ions of the entire molecule. These
fragments result in fragment peaks that are characterized
by their m/z and intensity value. The intensity correlates
with the amount of ions detected with that particularm/z
value. These m/z fragment peaks can be used to infer
additional hints about the underlying molecular structure.
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The interpretation of the generated data is complex
and usually requires expert knowledge. Over the past
years, several software tools have been developed to over-
come the time-consuming manual analysis of the growing
amount of MS/MS spectra in an automated way. The first
approaches tried to reconstruct observed fragment spec-
tra by performing in silico fragmentation in either a rule
based (e.g. MassFrontier [1]) or combinatorial manner
such as MetFrag [2, 3], MIDAS [4], MS-Finder [5] and
MAGMa [6].
MetFrag was one of the first combinatorial approaches

developed and performs in silico fragmentation of molec-
ular structures. Given a single MS/MS spectrum of an
unknownmolecule,MetFrag first selects molecular candi-
dates from databases given the neutral mass of the parent
ion. In the next step, each of the retrieved candidates
is treated individually and fragmented in silico using a
bond-disconnection approach. The generated fragment-
structures are assigned to the m/z fragment peaks of the
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MS/MS spectrum, based on the comparison of the theo-
retical mass of the generated structure and the m/z value
of the acquired fragment peak. Given a set of assignments
ofm/z fragment peaks to fragment-structures for one can-
didate, MetFrag calculates a score that indicates how well
the candidate matches the given MS/MS spectrum. These
scores are used to rank all retrieved candidates. Ideally, the
correct one is ranked in first place.
Statistical approaches have evolved, which are learn-

ing fragmentation processes on the basis of annotated
experimental MS/MS data. CFM-ID [7] is using Markov-
chains to model transitions of fragment-structures for
the prediction of MS/MS spectra. Generated spectra can
be aligned with the spectrum of interest and report the
candidates with the best matching spectral prediction.
FingerID [8] usesMS/MS spectra to predictmolecular fin-
gerprints. These Fingerprints are bit-wise representations
of molecular structures where each position in the fin-
gerprint encodes a structural property of the underlying
molecule. FingerID uses support vector machines (SVM)
and is enhanced by CSI:FingerID (CSI:FID) [9], integrat-
ing fragmentation trees which are calculated by SIRIUS
[10]. CSI:IOKR [11] replaces the SVM prediction by an
input-output kernel regression approach. Recent analysis
in one of the latest CASMI (Critical Assessment of Small
Molecule Identification) contests (2016) [12] reveal that
techniques supported by statistical learning (i.e. CSI:FID
and CSI:IOKR) are the most promising and powerful
methods used to perform structure elucidation if only the
MS/MS data is considered.
In this work we introduce a new statistical approach

to evaluate candidates for MS/MS spectra. Using training
data, probabilities of the predicted fragment-structures
given the observed m/z peaks are estimated with a
Bayesian approach. These probabilities are integrated as
new scoring terms for MetFrag to rank candidates. The
new scoring schema is tested on the challenge data sets
of the CASMI contest 2016. The method shown here
complements the different machine learning and statis-
tical approches that perform MS/MS spectra prediction
(CFM-ID), prediction of molecular fingerprints (CSI:FID,
CSI:IOKR) and now combining in silico fragmentation
and statistical scoring for the evaluation of retrieved
molecular candidates. The new scoring functions are
available with the new MetFrag version 2.4.5.

Methods
This section introduces the notation and the Bayesian
model approach used to evaluate how likely a fragment-
structure is in the presence of an m/z fragment peak.
The resulting probabilities are defined across the domain
of all possible fragment-structures and all m/z fragment
peaks, but can be reduced to become tractable. The result-
ing probability distribution will be used in the candidate

score ScRawPeak indicating whether a candidate can explain
the m/z fragment peaks with fragment-structures seen in
the training spectra. In analogy, neutral losses will also be
considered. The parameter estimation to model the prob-
ability distribution is at the heart of our approach. We
describe how they are estimated from training data, taking
care to clearly separate training data from evaluation data.
Finally we describe the evaluation using the CASMI 2016
challenge data and comparison to the results obtained
by other approaches and state-of-the art small molecule
identification programs.
First, we introduce notations required for our approach.

A summary of the notation used in the following and
their description can be found in Additional files 4
and 5: Tables S1 and S2. Consider a set of N centroided
MS/MS spectra m = {mn|n = 1, . . .N} where mn =
(mn1, . . .mnKn) consists of Kn m/z fragment peaks mnk .
Furthermore, for each spectrummn a set of candidates cn
of length Cn is given, typically retrieved from a database.
For a given candidate cnc ∈ cn, MetFrag performs an
in silico fragmentation and assigns each observed m/z
fragment peak mnk to one of the generated fragment-
structures, denoted fnck in the following. This can be
interpreted as explaining them/z fragment peakmnk with
the fragment-structure fnkc. On the basis of the in sil-
ico fragmentation, assignments of m/z fragment peaks
to fragment-structures (mn, f nc), c = 1, . . .Cn, are deter-
mined. As there is not necessarily a matching fragment-
structure for every m/z fragment peak mnk , we introduce
⊥ in case anm/z fragment peakmnk cannot be annotated,
and denote fnck =⊥ in this case.
As stated in the introduction, we want to evaluate

candidates for an MS/MS spectrum by a statistical scor-
ing approach to be integrated into MetFrag. There-
fore, we apply a scoring term based on the probability
P(f nc|mn). The distribution P(f |m) models the occurence
of fragment-structures in f in the correct candidate for
a given list m of m/z fragment peaks in an observed
spectrum. In the following we assume the independence
of the assignments of m/z fragment peaks to fragment-
structures yielding

P(f |m) =
K∏

k=1
P(fk|mk),

with m = (m1, , . . . ,mK ) and f = (f1, . . . fK ). From a
chemical point of view, we know that certain m/z frag-
ment peaks occur concurrently with other m/z fragment
peaks (or at least with a higher certainty) due to multi-
stage fragmentation pathways that lead to a further frag-
mentation of a generated fragment-structure. However,
for the sake of model simplification we do not consider
this information when assuming independence of assign-
ments ofm/z fragment peaks to fragment-structures.
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A fragment-structure can be regarded as a connected
charged molecular structure consisting of atoms con-
nected via bonds. A graph can be used as data structure
to represent a fragment-structure, as atoms and bonds
can be represented by graph nodes and edges, respec-
tively. However, to reduce the computational costs for
comparing graphs by determining graph isomorphisms,
especially whenworking with thousands or even hundreds
of thousands of fragment-structures, we use molecular
fingerprints as a bit-string representation of a molecu-
lar structure. Each bit of the fingerprint describes the
presence or absence of a molecular feature within the
structure. As different fragment-structures may share the
same fingerprint, this approach reduces the the domain
size and also generalizes very similar fragment-structures
that would explain the same m/z fragment peak. There
are different molecular fingerprint functions available,
e.g., the MACCSFingerPrint [13] and the LingoFinger-
print [14]. A fragment-structure fingerprint is defined as
f̃k = MolFing(fk), calculated by the fingerprint function
MolFing.
We regard two fragment-structures f and f ′ to be equal,

if f̃ and f̃ ′ are equal, although f and f ′ might be struc-
turally different. This reduces the comparison to constant
time as the fingerprint length is independent of the size
of the fragment-structure. The distribution can now be
re-defined as

P(̃f |m) =
K∏

k=1
P(̃fk|mk).

The comparison of twom/z fragment peaksm andm′ can
not be performed as a simple test for equality by m = m′.
This is impractical for MS measurements as they show a
certain degree of deviation depending on the mass accu-
racy of the instrument. For this reason, the m/z range
covered by training and test spectra is discretized into
non-equidistant bins [ bi, bi+1]. The boundaries are calcu-
lated as bi+1 = bi + 2 · (mzppm(bi) + mzabs) with b0
set to the minimum mass value of this range. The values
mzabs andmzppm(bi) represent the absolute (inm/z) and
relative mass (in ppm) deviation given by the MS setup.
Twom/z fragment peaksm andm′ are considered to be

equal if they fall into the same bin. In the following each
m/z fragment peakm is discretized to the central value of
its bin.

Domains and Parameters
As a next step, the two domains M of m/z values m and F
of all fragment-structure fingerprints f̃ need to be defined.
For M one could consider all bins resulting from dis-
cretization. However, this is impractical as the major part

of this domain is not observed for a given data set. Like-
wise, the domain F can be defined to contain all possible
fragment-structure fingerprints. Using the MACCSFin-
gerprint with 166 bits would result in 2166 ≈ 9.35 · 1049
different fingerprints. In practice this space needs to be
reduced to be tractable, and again only a fraction will be
observed for a given problem. For a spectral training data
set ofN MS/MS spectra andCn candidates each, we define
a reduced peak domain M̃tr and a reduced fingerprint
domain F̃tr as

M̃tr = {mnk|n ∈ 1, . . .N , k = 1, . . .Kn} ⊆ M

F̃tr =
{
f̃nck|n∈1, . . .N , c=1, . . .Cn, k=1, . . .Kn

}
⊆ F ,

which are them/z fragment peaks and fragment-structure
fingerprints observed in this data set.
Furthermore, we define Dtrain as a list of all assign-

ments of m/z fragment peaks to fragment-structures in
the training data, i.e.

Dtrain=(
(mnk , fnck)|n=1, . . .N , c=1, . . .Cn, k=1, . . .Kn

)
.

Besides the MS/MS spectra given in this training data
set we also need to address observations of an additional
centroided MS/MS query spectrum mq that is not part of
the training data set. The processing of mq is illustrated
in Fig. 1. The domains are extended by the observa-
tions retrieved from this single query spectrum with Cq
candidates and Kq m/z fragment peaks, i.e.

M̃ = M̃tr ∪ {mqk|k = 1, . . .Kq}
F̃ = F̃tr ∪ {̃fqck|c = 1, . . .Cq, k = 1, . . .Kq}.

To define the distribution P(̃f |m) with m ∈ M̃ and
f̃ ∈ M̃, we introduce the notation θm̃f := P(̃f |m), which
is the probability of fragment-structure fingerprint f̃ given
an observed mass m. The complete set of parameters is
given as

θ = (θm̃f ), for m ∈ M̃, f̃ ∈ F̃ .

Parameter estimation
The parameters are initially not known and need to be
estimated from the training data. In the process of param-
eter estimation cn is set to only contain the known cor-
rect candidate (Cn = 1) for the generation of Dtrain
as this results in mainly correct predicted fragment-
structure assignments as ground truth. The generation
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Fig. 1MetFrag processing of a single query spectrum (mq). The input for a MetFrag processing run is a query MS/MS spectrum and the candidate
list. Fragments are generated in silico for each candidate and mapped tom/z fragment peaks in the given spectrum. The output is a list of
assignments ofm/z fragment peaks to fragment-structures for each candidate

of Dtrain is illustrated in Fig. 2 where only the correct
candidate for each spectrum is processed. One paradigm
for parameter estimation is the maximum likelihood
principle

θ̂
ML = argmax

θ

P(Dtrain|θ),

which results in

θ̂ML
m̃f =

Nm̃f∑
f̃ ′∈F̃ Nm̃f ′

,

with Nm̃f =
∑

(mt ,̃ft)∈Dtrain

δ(̃ft , f̃ )δ(mt ,m)

Nm̃f is the absolute frequency of the assignments of m/z
fragment peaks to fragment-structures (m, f̃ ) in the train-
ing data setDtrain.
If such an assignment (m, f̃ ) resulting from the query

spectrum is not contained in the training data, a probabil-
ity θ̂ML

m̃f
= 0 is estimated. As a consequence the probability

P(̃f |m) for the query will be zero.

Due to the limitation of the available training data,
this situation will arise quite often. To avoid this prob-
lem, we use the Bayes paradigm including a priori dis-
tribution for the parameters to be estimated. In addi-
tion, as we only consider the correct candidate for each
spectrum in Dtrain it is not possible to reliably esti-
mate parameters in case f̃ =⊥, which is the proba-
bility for an m/z fragment peak without an assigned
fragment-structure. Within the Bayesian approach we
model this probability with the prior distribution and set
Nm⊥ = 0.
In the following we will use the mean posterior (MP)

principle

θ̂MP
m̃f = EP(θ |Dtrain,π)[ θ ]

where

P(θ |Dtrain,π) = P(θ |π)P(Dtrain|θ)

P(Dtrain|π)

is the a posteriori distribution of parameters θ . As a prior
distribution P(θ |π) on the parameters we use a prod-
uct Dirichlet distribution with hyper parameters πm̃f ,
m ∈ M̃, f̃ ∈ F̃ defined as

πm̃f =
{

α, f̃ �=⊥
β , f̃ =⊥

}
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Fig. 2 The training phase. The training consists of two major phases. For each phase a subset of the known reference MS/MS spectra is used. In the
first phase MetFrag generates a list of assignments ofm/z fragment peaks to fragment-structures for the given MS/MS spectra and their correct
candidates. These assignments are generated by the in silico fragmentation of the correct candidate and the mapping of the generated
fragment-structures to them/z fragment peaks in the training spectrum. This assignments list (Dtrain) is used in the second training phase along
with the second subset of the reference spectra. Here, for each MS/MS spectrum the correct candidate is ranked with a candidate list using the
consensus candidate score integrating besides the fragmenter (ScMetFrag) the two new statistical scoring terms (ScPeak , S

c
Loss). The number of correct

Top1 rankings is used to optimize pseudo count and scoring weight parameters. The first training phase is used in analogy for the generation of the
list containing assignments ofm/z fragment losses to fragment-structures (DL

train)

where α and β are also called pseudo counts.
The parameter estimation is given by

θ̂MP
m̃f =

Nm̃f + πm̃f
∑

f̃ ′∈F̃
(
Nm̃f ′ + πm̃f ′

) .

Fragment losses
Fragment losses can provide additional evidence for a
molecular structure as the difference between two m/z
fragment peaks provides hints about a substructure that
was lost but not observed directly by an m/z fragment
peak (neutral loss). However, we want to include this
information in the evaluation of candidates for a given
MS/MS spectrum. We define lnkh to be the m/z fragment

loss between two different m/z fragment peaks mnk and
mnh from the spectrummn, where

lnkh = mnk − mnh, mnk > mnh.

For each pair of assignments of m/z fragment peaks to
fragment-structures (mnk , fnck) and (mnh, fnch) with fnch
being a genuine substructure of fnck (fnck �= fnch), we intro-
duce fnckh as a loss fragment-structure. This fragment-
structure is a substructure of fnck , that is generated if all
bonds and atoms present in fnch are removed (fnckh =
fnck \ fnch). If fnckh is connected, we define (lnkh, fnckh) to
be an assignment of an m/z fragment loss to a fragment-
structure.
In analogy to the pairs of m/z fragment peaks and

fragment-structures (mnk , fnck), we define the domains for
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the m/z fragment losses and loss fragment-structures for
the N MS/MS training spectra as

L̃tr = {lnkh|n ∈ 1, . . .N , k = 1, . . .Kn, h = 1, . . .Kn}
F̃L
tr =

{
f̃nckh|n ∈ 1, . . .N , c = 1, . . .Cn,

k = 1, . . .Kn, h = 1, . . .Kn
}

for a given training data set

DL
train = (

(lnkh, fnckh)|n = 1, . . .N , c = 1, . . .Cn,
k = 1, . . .Kn, h = 1, . . .Kn)

of assignments of m/z fragment losses to fragment-
structures.
In addition, both domains need to be extended for the

additional query MS/MS spectrummq

L̃ = L̃tr ∪ {lqkh|k = 1, . . .Kq, h = 1, . . .Kq},
F̃L = F̃L

tr ∪
{
f̃qckh|c= 1, . . .Cq, k= 1, . . .Kq, h = 1, . . .Kq

}
.

We consider the distribution P(̃f |l) for assignments of
fragment-structures tom/z fragment losses with l ∈ L̃ and
f̃ ∈ F̃L, and denote φL

l̃f
:= P(̃f |l). In analogy to the esti-

mation of the parameters θm̃f , we can now formulate the
estimation of φL

l̃f
including a Dirichlet a priori distribution

with the additional hyper parameters ψl̃f :

ψl f̃ =
{

αL, f̃ �=⊥
βL, f̃ =⊥

}

This yields the mean posterior estimates

φ̂MP
l f̃ =

NL
l̃f

+ ψl̃f
∑

f ′∈F̃L
(
NL
l̃f ′ + ψl̃f ′

) ,

with NL
l̃f =

∑

(lt ,̃ft)∈DL
train

δ(̃ft , f̃ )δ(lt , l)

analogous to the parameter estimation for the assign-
ments of m/z fragment peaks to fragment-structures,
where NL

l̃f
is the absolute frequency of the m/z fragment

loss and fragment-structure pair (l, f̃ ) observed in the
training data setDL

train.

Evaluation of the assignments of fragment-structures to
m/z fragment peaks and losses in MetFrag candidate
scoring
To evaluate a given candidate c retrieved from a com-
pound database for an MS/MS query spectrum mq based
on the statistical models, we define a score for both the
models of the assignments of m/z fragment peaks/losses
to fragment-structures. In addition, the MetFrag frag-
menter score ScMetFrag as defined in [3] is also integrated
in this candidate evaluation. We define the score ScFin as

the final or consensus score for a candidate c to be the
weighted sum of these three scoring terms

ScFin = ω1 · ScMetFrag + ω2 · ScPeak + ω3 · ScLoss
ωi ≥ 0,

∑

i=1,2,3
ωi = 1.

To define ScPeak and ScLoss, we first introduce the raw score
of a candidate as

ScRawPeak = 1

− logP
(
f̃ nc|mn, θ̂

MP)

using the log likelihood based on the estimated param-
eters θMP for the assignment of an m/z fragment peak
to a fragment-structure (mn, f nc) for candidate c. With
f̃ nc = (̃fnc1, . . . , f̃ncKn) and mn = (mn1, . . . ,mnKn) the log
likelihood decomposes as

logP
(
f̃ nc|mn, θ̂

MP) =
Kn∑

k=1
logP

(
f̃nck |mnk , θ̂

MP) .

Furthermore, the raw score is normalized to the interval
[ 0, 1] by

ScPeak = ScRawPeak
maxc′∈Cq Sc

′
RawPeak

.

Using identical ranges for the different scoring terms as
for the MetFrag fragmenter score simplifies their integra-
tion into the weighted sum of the final score. The score
for including the assignments of m/z fragment losses to
fragment-structures ScLoss is defined in analogy.

Method evaluation
For the evaluation of the presented approach we used
the challenge data set and evaluation procedures of the
CASMI 2016 contest. In this contest candidate lists were
provided by the organizers along with the spectra to be
used by all participants. After the contest, several par-
ticipants which used statistical learning (e.g. CSI:FID,
CSI:IOKR, CFM-ID) coordinated which compounds were
used in the training steps to improve the comparabil-
ity between methods. They exchanged the InChIKeys
(InChI: International Chemical Identifier) [15] of the spec-
tra used in training their approaches, although it was not
guaranteed that two participants used exactly the same
MS/MS spectrum for a compound identified by a com-
mon InChIKey if they used different spectral databases.
This evaluation is based on 87 of the 208 spectra provided
originally in the challenge, as the remaining 121 spectra
were removed as they were included in the training data of
at least one participant. The results for this subset of the
challenge spectra were published in [12] and used here in
Table 2 for comparison against MetFrag2.4.5. We used the
same set of InChIKeys to obtain the training spectra for
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this paper. The training data is available from the github
repository accompanying the paper.

Preparation of the training data set
The training data set includes MS/MS spectra provided
by the contest organizers consisting of 312 CASMI train-
ing spectra. Participants were allowed to use additional
training spectra retrieved from spectral databases e.g.
the MassBank of North America (MoNA) [16] and the
Global Natural Products Social Molecular Networking
(GNPS) [17] spectral library. The InChIKeys of the
molecules of these additional spectra were provided by the
participants.
We used the provided InChIKeys to retrieve the addi-

tional training spectra by querying the MoNA and GNPS
spectral databases. For MoNA, retrieved MS/MS spec-
tra from one institution were merged in case more than
one spectrum was present for a molecule based on the
first block the InChIKey. Thus for one InChIKey several
merged spectra can be present in case they originate from
different sources. Spectra originating from GNPS spectral
database were merged independently of their source. The
spectra merging was performed by averaging m/z frag-
ment peaks within a specified mass range (given by MS
setup of the MS/MS spectra) and retaining the peak of
maximum intensity. This resulted in 5 622 spectra (4728
positive and 884 negative) which were used for train-
ing. To reduce the spectral complexity only the 40 most
abundant (based on intensity) m/z peaks in each spec-
trum were used. The same applies to test spectra used for
evaluation.

Training of parameters
In the training phase the optimal parameters used to
calculate the candidates’ consensus score need to be deter-
mined. This parameter set consists of the absolute fre-
quencies Nm̃f and NL

l̃f
of the assignments ofm/z fragment

peaks and losses to fragment-structures, the hyper param-
eters α, β , αL and βL, and the score weights ω1, ω2 and
ω3. The whole training phase described in this paragraph
is illustrated in Fig. 2.
Training was separated into two phases where in the

first phase the Nm̃f and NL
l̃f
parameters were determined

using only the correct candidate for each training spec-
trum. Based on these absolute frequencies the optimal
hyper parameters and weight scores are determined in the
second phase.
If we had used the same data set for the estimation

of all parameters, Dtrain and DL
train would have con-

tained the same pairs of m/z fragment peaks/losses and
fragment-structures for the correct candidate to be ranked
in the second phase. The correct candidate would then
be favoured during candidate ranking. This is not rep-
resenting a realistic case when a query spectrum of an

unobserved molecule is processed where we expect also
m/z fragment peak and loss assignments not previously
observed in the optimization phase.
For this reason the complete training data set was

split randomly into two disjunct groups of spectra. The
splitting was performed by dividing the unique list of
InChIKeys (first block) with a ratio of 70:30 and collect-
ing each corresponding spectrum to a group based on the
InChIKey of the underlying molecule. The larger group is
used in the first phase to calculate the Nm̃f and NL

l̃f
.

In the first phase the correct candidate of each spectrum
was processed by MetFrag’s in silico fragmentation. The
m/z fragment peaks explained by a fragment-structure
were corrected to the mass of the molecular formula of
the assigned fragment-structure. This is required to be
independent of the different mass accuracies of MS/MS
spectra acquired under different instrument conditions.
Thus the list of assignments ofm/z fragment peaks/losses
to fragment-structuresDtrain andDL

train contained assign-
ments with the corrected m/z values used for the calcula-
tion of Nm̃f and NL

l̃f
.

In the second training phase candidates were retrieved
from a local PubChem [18] mirror (June 2016) using the
monoisotopic mass of the correct candidate of each spec-
trum and a relative mass deviation dependent on the
experimental conditions of the underlying MS measure-
ment. To reduce runtime the correct and at most 500
randomly sampled candidates were processed from the
retrieved list of candidates. The rank of the correct can-
didate was determined and the overall number of Top1
ranks was used as optimization criterion.
For the hyper parameters the optimization was per-

formed by a grid search over an initial domain including
a set of all combinations of the values 0.0025, 0.0005
and 0.0001 resulting in a total of 34 = 81 sets of hyper
parameters. If the optimal number of Top1 ranks was
located at the border of this hyper parameter domain the
search space was extended by increasing or decreasing the
parameter by a factor of 5 or 1/5 respectively. This pro-
cedure was continued until an optimum was found with
an improvement of less than 1% compared to the previous
optimumof Top1 ranks. For the score weights a set of 1000
parameter combinations was sampled equally distributed
on the simplex. Consensus scores and the rankings of the
correct candidates were calculated for all combinations of
hyper parameters and weights resulting in initially 81.000
combinations.
Subsequent to this training procedure, the absolute fre-

quencies Nm̃f and NL
l̃f
were recalculated using the entire

training data set to increase the observation domain of
assignments of m/z fragment peaks/losses to fragment-
structures used for the processing of the challenge
data set.
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Fingerprint function
To investigate the effect of the fingerprint function MolF-
ing on the results, the complete training phase was per-
formed four times with different fingerprint functions for
the same training spectra. For comparison the Lingo- [14],
the MACCS- [13], the Circular- [19], and the GraphOn-
lyFingerprint were used. For calculation of the different
fingerprints CDK (version 2.1) [20] implementations were
used. The fingerprint with the best training result was
selected for the processing of the challenge data set.

Processing of the CASMI challenge data set
After the training phase and the selection of the finger-
print function, the in silico fragmentation and scoring was
performed for the 87 challenge spectra using the provided
candidate lists. Candidates that included non-connected
substructures or non-natural isotopes (like deuterium)
were discarded from the candidate lists. The candidate
ranking was performed after the removal of multiple
stereoisomers in compliance with the contest rules and
evaluation. Stereoisomers were detected based on the first
block of the candidates’ InChIKey representing themolec-
ular skeleton and only the best scoring stereoisomer was
regarded for candidate ranking. The results were evalu-
ated and compared on the basis of the average Top1, Top3,
and Top10 rankings and the median and mean average
rankings of the correct candidate as in [12].

Stability of parameter optima and ranking results
Splitting of the training data set for the two phases was
performed randomly. As the resulting parameters depend

on the splitting, we performed ten independent trials with
different splits of the training data. The resulting parame-
ters and their performance on the challenge data set were
reported to investigate the effect of randomization.

Results
Comparison of different fingerprint functions
The ranking results obtained in the training phase on
the basis of the different fingerprint functions (MolF-
ing) are shown in Fig. 3. The fingerprints used are the
Lingo-, MACCS-, Circular-, and GraphOnlyFingerprint.
The training results are based on the spectra processed
in the second phase during training consisting of 1389
to 1471 spectra in positive and 255 to 279 spectra in
negative mode depending on the run and the spectra
splitting.
Comparable results are obtained with the Circular- and

LingoFingerprint across both ion modes and across the
different rankings as shown in Fig. 3 by the similar curve
for the Top1, Top3 and Top10 rankings. Similar means
of the rankings across the ten runs confirm this obser-
vation with 402.3, 639.8, and 881.2 for the mean Top1,
Top3 and Top10 rankings using the Circular- and 398.4,
640.0 and 881.9 using the LingoFingerprint. These two
fingerprint functions show superior results for the Top1
rankings compared toMACCS with 371.0 and GraphOnly
328.6. For Top3 and Top10 rankings and positivemode the
MACCSFingerprint gives comparable results. Top3 and
Top10 rankings in negative mode are comparable for all
fingerprint functions.

Fig. 3 Top rankings of training results. The Top rankings (Top1, Top3, Top10) of the ten training runs are shown for the different fingerprint function.
The results are based on the rankings of the correct candidates of the training data used in the second training phase consisting of 1389 to 1471
spectra in positive mode (top) and 255 to 279 spectra in negative mode (bottom)



Ruttkies et al. BMC Bioinformatics          (2019) 20:376 Page 9 of 14

The CircularFingerprint shows with the runs R07 in
positive and R09 in negative mode the overall highest
number of Top1 rankings with 518 of the 1686 training
spectra. Due to this performance the CircularFingerprint
is used for subsequent investigations and the evaluation of
the challenge data set.

Randomization of training data sets
In this section we evaluate the impact of the random-
ization of the training data on parameter optimization.
Table 1 shows the optimal parameter sets and the per-
formance achieved on the training data using the Circu-
larFingerprint. The overall ranking results vary across the
ten runs for the Top1, Top3 and Top10 numbers in both
positive and negative ion mode as expected. Boxplots of
the parameter sets are shown in Fig. 4. The variation of
optimal hyper parameters as well as weights shows a simi-
lar pattern for both positive and negative ion mode where
a larger variation can be observed in negative mode. Par-
ticularly the pseudo counts for annotated m/z fragment
peaks show a broader variation with 5e-04 to 2e-05 (α)

and 1e-03 to 2e-05 (αL) compared to positive mode with
1e-04 as optimum for α and an interval of 2e-03 to 1e-04
for αL.
The largest of the weights combining the three scores is

ω2 which gives the score ScPeak the largest influence in the
overall assessment. The median of ω2 is 0.4855 in positive
and 0.4935 in negative mode. The impact of the original
MetFrag score ScMetFrag and ScLoss are distinctively lower
and comparable to each other. The weight ω1 for the Met-
Frag score has a median of 0.2875 in positive and 0.2840 in
negative mode. The weights for ω3 are 0.2355 respectively
0.2045.
In the following we analyze the robustness and the

homogeneity of the results on the challenge data set with
regard to varying parameters across the parameter space
evaluted during optimization. This also helped to obtain a
better explanation on the deviation of optimized param-
eters. Specifically we compare the distribution of the
Top1 rankings considering (i) the ten optimal parameter
sets from the ten randomizations, (ii) the parameter sets
within the convex hull constituted by these ten optimal

Table 1 Ranking results in the training phase based on the CircularFingerprint

Top1 Top3 Top10 Top1 (%) α β αL βL ω1 ω2 ω3 # Spectra

Negative Mode

55 93 151 20.8 0.00002 0.00250 0.00050 0.00050 0.268 0.460 0.272 265

51 89 155 19.5 0.00002 0.06250 0.01250 0.00050 0.434 0.380 0.186 261

62 101 165 22.9 0.00050 0.01250 0.00010 0.01250 0.309 0.508 0.184 271

70 106 170 25.8 0.00050 0.00250 0.00002 0.01250 0.317 0.494 0.189 271

62 103 161 23.8 0.00010 0.00010 0.00010 0.00250 0.170 0.616 0.214 260

67 110 153 24.0 0.00010 0.00250 0.00250 0.00010 0.300 0.493 0.207 279

63 98 157 22.9 0.00010 0.00050 0.00010 0.00050 0.054 0.512 0.434 275

68 102 158 25.0 0.00002 0.00250 0.00250 0.00250 0.240 0.558 0.202 272

86 114 171 31.2* 0.00010 0.00250 0.00250 0.00010 0.413 0.398 0.189 276

74 106 161 29.0 0.00010 0.00010 0.00002 0.00010 0.189 0.465 0.346 255

Positive Mode

412 664 925 28.0 0.00010 0.00250 0.00010 0.00250 0.333 0.438 0.229 1471

402 622 866 28.2 0.00010 0.00050 0.00010 0.00250 0.208 0.483 0.309 1426

406 665 913 29.0 0.00010 0.01250 0.00250 0.00250 0.333 0.438 0.229 1399

395 651 894 27.6 0.00010 0.00250 0.00250 0.00250 0.309 0.503 0.188 1432

387 618 839 27.4 0.00010 0.00250 0.00050 0.00050 0.413 0.398 0.189 1413

408 630 870 28.6 0.00010 0.00050 0.00050 0.00050 0.165 0.584 0.251 1428

432 655 910 30.6* 0.00010 0.01250 0.00250 0.00050 0.378 0.488 0.134 1410

400 642 874 28.2 0.00010 0.00250 0.00250 0.00050 0.210 0.488 0.302 1420

385 613 830 27.7 0.00010 0.00250 0.00010 0.00010 0.266 0.388 0.346 1389

396 638 891 27.7 0.00010 0.00050 0.00050 0.00010 0.165 0.593 0.242 1428

The optimization of the parameters was performed on the training data set with ten different random splits of the MS/MS training spectra to be used for first and second
training phase. Optimizationwas performed separately for positive and negative mode. *Runs with the best results based on the relative correct Top1 rankings (neg: R09, pos:
R07)
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Fig. 4 Boxplots of optimal weight and hyper parameters retrieved in the training phase. The parameters were obtained from the ten training runs
with randomized splits of the training set and the CircularFingerprint. The rankings results show the optimal weight and hyper parameters for
positive and negative mode

parameter sets in the six dimensional parameter space,
and (iii) the complete parameter space evaluated during
training of the parameters. The convex hull over the
ten optimal parameter sets was calculated using the six
degrees of freedom (α, β , αL, βL, ω1, ω2) from the seven
parameters with the Python Numpy package.
Figure 5 shows in yellow the distribution of the Top1

rankings of the CASMI challenge data set for the com-
plete parameter space. Top1 ranking vary from 1 to 12
for the positive and from 4 to 14 for the negative chal-
lenge spectra, where the maximum of the distributions
are six and ten for positive and negative mode, respec-
tively. If parameter sets are restricted to the convex hull
the distribution is clearly shifted to better performance,

where Top1 rankings vary between 8 to 11 for positive
and 10 to 13 for negative mode. This range of Top1 rank-
ings is almost identical to the one resulting from the ten
optimal parameter sets. The only exception are nine Top1
rankings for parameter sets within the convex hull in
negative mode. In positive mode about 76% of the inves-
tigated parameters show worse results than achieved by
the parameters contained in the convex hull. For nega-
tive mode this proportion is reduced to around 15% which
can again be explained by the smaller number of available
training data.
For the subsequent comparison to other methods on the

challenge data set we use the parameter sets resulting in
the best relative Top1 ranking performance in the training

(a) (b)

Fig. 5 Distribution of Top1 rankings on the challenge data set. The collection of barcharts show the Top1 rankings retrieved using the
CircularFingerprint for selected parameter sets. Yellow bars show the normalized Top1 counts for all parameter sets used in the training phase. The
green bars show the normalized rankings for all parameter sets within the convex hull spanned by the ten optimal parameter sets retrieved from the
ten randomized training runs. The violet bars show the normalized counts from these optimal parameter sets. a Positive mode b Negative mode
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phase. The corresponding runs are highlighted in Table 1
and are R07 for positive and R09 in negative mode.

Comparison with MetFrag2.3
Themain goal of the integration of the proposed approach
into MetFrag was to improve the candidate ranking aug-
menting the fragmenter score with statistical scores. The
MetFrag versions 2.3 and 2.4.5 use exactly the same in
silico fragmentation approach. MetFrag2.4.5 scoring was
extendedwith the statistical scoring termswhichmake the
difference in the comparison of both version. The results
of MetFrag version 2.4.5 show a drastic improvement of
the rankings for the CASMI challenge data compared to
its older version 2.3 with regard to all performance mea-
sures as given in the first two columns of Table 2. The
correct Top1 rankings show amore than four fold increase
from 5 to 21 Top1 rankings. The improvement is espe-
cially distinct for positive mode with 9 Top1 rankings
where MetFrag2.3 resulted in one single query correctly
ranked at first position. The number of Top1 hits in neg-
ative mode is also increased three fold from 4 to 12. The
improvement is also illustrated by the reduced mean and
median ranks. Where the mean rank halved to 34.6 the
median rank was even reduced by two third to 5. All three
scores contribute substantially to these improvements and
Top1 rankings vary smoothly with the weight scores (see
Additional file 1: Figure S1).

Comparison with other CASMI participants
The MetFrag2.4.5 results were compared to the results
obtained by all other participants of CASMI 2016,
i.e., CFM_retrain, CSI_IOKR_AR, and CSI:FID_leaveout
(abbreviated by CFM-ID, CSI:IOKR, and CSI:FID), MS-
Finder and MAGMa. Table 2 shows the original data
from Table 7 of [12] with the ranking results for the 87
Challenge MS/MS spectra. The additional MetFrag2.4.5
column summarizes the results achieved using the new
MetFrag statistical scoring terms.
In positive mode, MetFrag2.4.5 obtains nine Top1 rank-

ings and shows a similar performace as CFM-ID (9)

and CSI:IOKR (10). CSI:FID (13) outperforms all other
approaches with regard to Top1 rankings in positive
mode, however did not submit results for negative mode
spectra. Figure 6b shows the overlap of the Top1 ranked
challenges in positive mode forMetFrag2.4.5 and CSI:FID.
There are only five challenges ranked first by both tools
and thus a large degree of divergence between the correct
predictions.
For the negative mode spectra MetFrag2.4.5 consider-

ably outperformed all participants with 12 Top1 rankings.
These are five more queries than MS–Finder could rank
in first position and even twice as many than the other
statistical approaches CFM-ID and CSI:IOKR.
Considering the complete test data set MetFrag2.4.5

outperforms all participants with regard to Top1, Top3,
and Top10 rankings including the declared winner of the
contest CSI:IOKR (Top1: 21, Top3: 38, Top10: 55 vs. Top1:
16, Top3: 26, Top10: 46). The improved results are also
confirmed by the smaller median and mean rankings of 5
and 34.6 compared to 10 and 97.9. We note that consider-
ing the median, CSI:FID shows a better performance than
MetFrag2.4.5, however did only submit results for positive
mode.
Figure 6a shows the overlap of correctly identified

Top1 challenges of the participants which use statistical
approaches. Interestingly, there is a relatively large num-
ber of challenges that are identified by only one of the
approaches. With 10 challenges MetFrag2.4.5 shows the
highest amount of unique queries ranked correctly in first
place, which is predominantly caused by the eight Top1
negative mode challenges.

Discussion
The results obtained by the combination of MetFrag’s
in silico fragmentation approach and statistical fragment
annotation learning have shown an overall improvement
of the ranking results of the relevant CASMI 2016 test set.
Different fingerprint functions have been tested to avoid
the expensive graph isomorphism problem to find match-
ing fragments. The training phase revealed a dependency

Table 2 Results for the 87 MS/MS test spectra from the CASMI 2016 Challenge taken from Table 7 in [12] augmented with the results
of the proposed approach (MetFrag 2.4.5). For the participants of the challenge the best result is given

MetFrag 2.4.5 MetFrag 2.3 CFM-ID CSI:IOKR CSI:FID MS-Finder MAGMa

Top 1 Pos. 9 1 9 10 13 3 2

Top 1 Neg. 12 4 6 6 −∗ 7 4

Top 1 21 5 15 16 13∗ 10 6

Top 3 38 16 24 26 23∗ 25 16

Top 10 55 39 40 46 32∗ 38 35

Mean rank 34.6 68.4 64.1 97.9 41.5∗ 28.7 76.8

Med. rank 5 14.5 12.5 10 3∗ 17.5 23.5

*CSI:FID did not submit results for negative mode spectra
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(a)

(b)

Fig. 6 Overlap of the correctly identified Top1 spectra of the challenge data set for selected participants. The Venn diagram (a) includes the four
tools using statistical approaches (MetFrag2.4.5, CFM-ID, CSI:IOKR, CSI:FID) and shows the overlap of correcly identified challenges out of the 87
spectra (positive and negative mode). The diagram (b) shows the overlap of CSI:FID and MetFrag2.4.5 for the positive mode challenges. The large
numbers indicate the amount of common challenges and the numbers listed underneath their challenge IDs

between the number of correct top hits and the finger-
print used. While MACCS- and especially Lingo- and the
CircularFingerprint showed the best and also comparable
results, the GraphOnlyFingerprint showed a significantly
lower number of correct top rankings on the training set.
We attribute the inferior performance of the GraphOn-
lyFingerprint primarily to the lack of representing bond
orders and hence encoding less chemical information
than all other fingerprint types evaluated. Due to the
best performance in the training phase the CircularFin-
gerprint was selected for further investigation on the
test set.
Ten different hyper and weight parameter sets result-

ing from optimization with ten randomized splits of
the training data were used to investigate the robust-
ness and the distribution of these parameters accross the
different training sets. While the optima of the seven
parameters varied slightly between the different splits, the
parameter sets still showed a clear trend across all ten
runs. Especially the effect of the ScPeak score weight ω2
was predominantly higher compared to ω1 and ω3 for
both positive and negative ion mode. The assumption

that the observed parameter variation is an indication
for a relatively broad and homogenious parameter opti-
mum was confirmed by the investigation of the ranking
results retrieved using parameters located in the con-
vex hull spanned by the ten optima. These distribu-
tions also indicate a high robustness of the performance
with varying parameter sets across these parameter
optima.
An important outcome of this study is the signifi-

cant improvement of the ranking results retrieved adding
the presented Bayesian approach to MetFrag’s native
in silico fragment annotation. While the improvement
gain for the Top3 and Top10 rankings are less pro-
nounced, this comparison impressively demonstrates the
benefit including statistical approaches for MS based
compound identification. This corresponds to the out-
come of CASMI 2016 where a comparison of dif-
ferent statistical and non-statistical approaches was
made [12].
The proposed Bayesian approach follows a different

mechanism than the existing statistical compound iden-
tification methods predicting molecular fingerprints
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(CSI:FingerID, CSI:IOKR) or MS/MS spectra (CFM-ID).
The comparison of the different approaches on the
CASMI 2016 test set used in this study shows on the
one hand that the presented approach compares well to
the existing ones and on the other hand that a rela-
tively large number of challenges are identified by only
one of the approaches (Fig. 6a). From the latter finding
it may be concluded that there are different preferences
for certain types of spectra of the CASMI 2016 contest.
The comparison also revealed that for MetFrag2.4.5 the
performance is comparable between positive and nega-
tive mode (9 vs. 12). CSI:IOKR shows lower performance
ranking result for the negative mode spectra compared
to positive mode (6 vs. 10). We assume the combina-
tion of in silico fragmentation and statistical scoring has
a positive effect in case only limited training data is
available. Only a small fraction of negative mode train-
ing data was available for this contest and resulted in
generally worse results of the statistical approaches in
negative mode.

Conclusions
In this work new statistical scoring terms are intro-
duced to MetFrag. This model assesses the assignments
of m/z fragment peaks/losses to fragment-structures
derived from in silico fragmentation of a candidate and
assumes independence of the individual assignments. The
model parameters are estimated using the mean poste-
rior approach. Hyper parameters of the statistical model
as well as score weights are optimized by a grid search.
The performance is evalutated on a subset of the CASMI
2016 contest challenge spectra for which the spectrum
was not among the training data set of any participant.
The results show that with the integration of the two new
statistical scoring terms MetFrag could be improved four
fold regarding the number of Top1 rankings. In addition
it showed a better performance than the declared win-
ner of the contest CSI:IOKR regarding the number of
correctly ranked Top1, Top3 and Top10 candidates. The
new scoring terms are now available in the command line
tool (version 2.4.5) as AutomatedPeakFingerprintAnno-
tationScore and AutomatedLossFingerprintAnnotation-
Score and also in the web interface (https://msbi.ipb-halle.
de/MetFrag) as “Statistical Scoring” trained on extended
data set than used in this work. The additional scoring
terms complement current scoring terms based on exper-
imental data and can also be combined with additional
meta information if available as described in [3].
We also want to stress that once the method is trained

on spectra in the training phase, it can be applied and
used for annotation on any data set. The data set can vary
whereas the training data set is fixed once the method was
trained, which is similar to all other machine learning and
statistical methods mentioned in this work.
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