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Abstract

Background: Predicting meaningful miRNA-disease associations (MDAs) is costly. Therefore, an increasing number
of researchers are beginning to focus on methods to predict potential MDAs. Thus, prediction methods with
improved accuracy are under development. An efficient computational method is proposed to be crucial for
predicting novel MDAs. For improved experimental productivity, large biological datasets are used by researchers.
Although there are many effective and feasible methods to predict potential MDAs, the possibility remains that
these methods are flawed.

Results: A simple and effective method, known as Nearest Profile-based Collaborative Matrix Factorization (NPCMF),
is proposed to identify novel MDAs. The nearest profile is introduced to our method to achieve the highest AUC
value compared with other advanced methods. For some miRNAs and diseases without any association, we use the
nearest neighbour information to complete the prediction.

Conclusions: To evaluate the performance of our method, five-fold cross-validation is used to calculate the AUC
value. At the same time, three disease cases, gastric neoplasms, rectal neoplasms and colonic neoplasms, are used
to predict novel MDAs on a gold-standard dataset. We predict the vast majority of known MDAs and some novel
MDAs. Finally, the prediction accuracy of our method is determined to be better than that of other existing
methods. Thus, the proposed prediction model can obtain reliable experimental results.

Keywords: MiRNA-disease association prediction, Nearest profile, Gaussian interaction profile, Matrix factorization

Background
MicroRNAs (miRNAs) are small non-coding RNAs whose
length is generally 19 to 25 nt [1, 2]. In general, miRNAs
regulate the expression of mRNA targets through a series
of biological processes. However, the imbalance of miR-
NAs may have a serious impact on humans. Therefore,
identifying novel miRNA-disease associations is important
for treating complex genetic diseases [3, 4]. The first
miRNA, lin-4, was discovered in 1993. It is worth noting
that lin-4 is not the same as a conventional protein-coding
gene; instead, lin-4 encodes a 22-nt regulatory RNA [5, 6].
In 2000, the second miRNA, let-7, was discovered by

researchers [7]. Since then, thousands of miRNAs have
been discovered by biologists through a variety of bio-
logical and medical approaches. More than 2000 human
miRNAs have been detected. Moreover, the latest version
of the miRNA database miRBase contains 38,589 entries.
Recently, many biologists and medical scientists have

found that miRNAs play an important role in different bio-
logical processes. In addition, an increasing number of miR-
NAs have been shown to be associated with cancer and
other human diseases. For example, invasion and migration
of breast cancer cells are inhibited by mir-340 by targeting
the oncoprotein c-Met [8]. In addition, by targeting Cdc42
and Cdk6, mir137 inhibits the proliferation of lung cancer
cells [9]. The progression of head and neck carcinomas is
promoted by miR-211 through the target TGFβR2 [10].
Moreover, in every paediatric brain tumour type, mir-25,
mir-129, and mir-142 are differentially expressed [11]. By
identifying unknown potential miRNA-disease associations,
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the molecular mechanisms and pathogenesis of the disease
can be elucidated.
In recent years, many researchers have employed com-

putational methods associated with biomolecules and dis-
eases [12–15]. In previous studies, an important
assumption is that miRNAs with similar functions are
more likely to be associated with diseases with similar
phenotypes [16]. In other words, miRNAs with similar
functions may be associated with the same disease. In-
creasingly effective methods and models are proposed for
identifying novel miRNA-disease associations (MDAs).
Chen et al. proposed a computational model named
RLSMDA (Regularized Least Squares miRNA-Disease As-
sociation) based on semi-supervised learning [17]. In this
way, the problem of using negative MDAs is overcome.
However, this semi-supervised model is not perfect for the
optimization of some parameters. Importantly, classifiers
from the miRNA space and disease space are difficult to
combine to predict novel MDAs. Chen et al. proposed a
Path-Based MiRNA-Disease Association (PBMDA) pre-
diction model [15]. Specifically, a depth-first search algo-
rithm is used to predict novel MDAs on a heterogeneous
graph consisting of three interlinked sub-graphs. Chen et
al. proposed a computational model named BNPMDA
(Bipartite Network Projection for MiRNA-Disease Associ-
ation) to obtain some valuable and reliable results [18].
The degree of preference between miRNA and disease is
first described, then agglomerative hierarchical clustering
is used, and finally, the BNPMDA method is implemented
to predict potential MDAs. Jiang et al. constructed a
model based on hypergeometric distribution through
miRNA functional similarity, disease similarity and known
MDA networks [19]. Then, these researchers analysed the
actual effect in the prediction model. However, the short-
coming of this model is the excessive dependence on
neighbouring miRNA data [20]. Chen et al. proposed a
computational method to predict novel MDAs by using
Laplacian regularized sparse subspace learning, and the
accuracy of the prediction is improved [21]. Laplacian
regularization is used to preserve the local structures. The
strength of dimensionality reduction makes it easy to ex-
periment with higher-dimensional datasets. Shi et al. pro-
posed a computational method to predict novel MDAs by
performing a random walk algorithm [22]. Protein-protein
interactions (PPIs), miRNA-target interactions and
disease-gene associations were used to discover potential
MDAs. This model is reliable, but there are still some
shortcomings. The model strongly depended on the
miRNA-target interactions. Therefore, the final experimen-
tal results may have a high false positive rate or a high false
negative rate [23]. Considering this disadvantage, Chen et
al. developed a new method to solve this problem. The
Random Walk with Restart for MiRNA-Disease Associ-
ation (RWRMDA) model was used to map all miRNAs to a

miRNA functional similarity network [24]. Mork et al. con-
sidered the protein information and proposed the miRPD
method [25]. The method relies on protein-disease associa-
tions and protein-miRNA associations to predict novel
miRNAs and disease-related proteins. Chen et al. proposed
an effective method, Heterogeneous Graph Inference
MiRNA-Disease Association (HGIMDA), to predict novel
MDAs [26]. In this method, Gaussian interaction profile
(GIP) kernel similarity for diseases and miRNAs are inte-
grated into the computational model. According to the final
experimental results, this method improves the prediction
accuracy. Chen et al. also proposed an effective method,
Matrix Decomposition and Heterogeneous Graph Infer-
ence (MDHGI), to predict novel MDAs [14]. Among these
approaches, the largest contribution is the combination of
matrix decomposition and heterogeneous graph inference
to predict new MDAs. In addition, Chen et al. proposed a
method called inductive matrix completion [13]. The main
measure is to complete the missing miRNA-disease associ-
ation. Xuan et al. proposed an HDMP method based on
weighting k-nearest neighbours [27]. Moreover, the seman-
tic similarity and phenotypic similarity of the diseases were
used to participate in the calculation of the functional simi-
larity matrix of miRNAs. In contrast to previous studies,
miRNAs of the same cluster have higher weights; therefore,
they have the greatest potential to be associated with simi-
lar diseases when calculating the miRNA functional similar-
ity matrix. Based on Xuan et al.’s method, Chen et al.
proposed an improved method called RKNNMDA to iden-
tify potential MDAs [28]. Later, a valuable model named
Matrix Completion for MiRNA-Disease Association predic-
tion (MCMDA) was proposed by Li et al. [29]. However,
this approach has certain limitations for new diseases and
new miRNAs. These limitations lead to inaccuracies in the
prediction results. Chen et al. developed a computational
model named Ensemble Learning and Link Prediction for
MiRNA-Disease Association (ELLPMDA) to identify po-
tential MDAs [30]. Integrated similarity networks and inte-
grated learning were used to predict novel MDAs. At the
same time, this method is one of the more advanced
methods. Chen et al. compiled the most advanced 20 pre-
diction models to illustrate the importance of MDA pre-
diction. Computational models have become an important
means for novel MDA identification. The most import-
ant point is that the review can be inspired by more
researchers [31].
In this paper, a simple but effective Nearest Profile-based

Collaborative Matrix Factorization (NPCMF) method is
proposed. This computational method can identify poten-
tial MDAs based on known MDAs. More importantly, un-
like traditional matrix factorization models, considering
that a new miRNA or a new disease is affected by their
neighbour information when predicted, the nearest profile
(NP) [32] is introduced to the CMF. The benefit of NP is
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that the nearest neighbour information for miRNA and dis-
ease is taken into account. The NP performs prediction
through relatively reliable similarity functions. More pre-
cisely, the association profile of a new miRNA or disease is
predicted using its similarities to other miRNAs or diseases,
respectively; a new miRNA is one that has no known dis-
eases, and similarly, a new disease is one that has no known
interactions with any miRNAs. Notably, the existence of a
large number of missing associations will have a negative
impact on the final predictions. Weighted K Nearest
Known Neighbours (WKNKN) is used as a pre-processing
step to solve this problem [33]. Meanwhile, five-fold cross-
validation is performed to evaluate our experimental re-
sults. In addition, a simulation experiment is conducted to
predict novel MDAs. Finally, the results demonstrate that
our proposed method NPCMF is superior to other ad-
vanced methods.
The rest of this paper is organized as follows. Section

2 is first described, including our final experimental re-
sults and the gold-standard dataset used in this study.
Section 3 contains the corresponding discussion. Section
4 contains conclusions for the full paper. Finally, Section
5 outlines our proposed method, specific solution steps
and iterative processes.

Results
MDA dataset
The datasets used in the experiments were obtained
from the human miRNA-disease database (HMDD), in-
cluding 383 diseases, 495 miRNAs and 5430 human
miRNA-disease associations [20]. The HMDD, which is
a well-known bioinformatics database, has collected
thousands of miRNA-disease association pairs. Table 1
lists the specific information for the dataset.
In addition, the dataset contains three matrices: Y ∈

ℝn ×m, Sm ∈ℝn × n and Sd ∈ℝ
m ×m. The matrix Y is an ad-

jacency matrix that is used to describe the associations
between miRNAs and diseases. There are n miRNAs as
rows and m diseases as columns. If miRNA M(i) is asso-
ciated with disease d(j), the entity Y(M(i), d(j)) is 1;
otherwise, it is 0. Moreover, this dataset is still a gold-
standard dataset. The matrix Y is expressed as follows:

Y M ið Þ;d jð Þð Þ ¼ 1; if miRNA M ið Þ associated with disease d jð Þ;
0; otherwise:

�

ð1Þ

Performance evaluation metrics
To evaluate our approach, five-fold cross-validation is
conducted 100 times for each method. The known MDA
dataset is randomly divided into 5 subsets, 4 of which are
used as training sets, and the remaining subset is used as a
testing set. It is worth noting that in our approach,
WKNKN is used to eliminate unknown missing values. At
the same time, the advantage is that the accuracy of the
prediction can be improved to some extent.
In previous studies, the area under the curve (AUC)

value is a reliable indicator of the evaluation method.
Therefore, the AUC value is also used in this study. The
area under the receiver operating characteristic (ROC)
curve is considered to be the AUC. In general, the value
of this area will not be greater than 1. The AUC values
between 0.5 and 1 are reasonable. If the AUC is less than
0.5, the predicted results will be meaningless. In general,
the ROC curve can be described in terms of true posi-
tive rate (TFR, sensitivity) and false positive rate (FPR,
1-specificity). Thus, sensitivity and specificity (SPEC)
can be expressed as follows:

Sensitivity ¼ TP
TP þ FN

; ð2Þ

Specificity ¼ TN
N

¼ TN
TN þ FP

; ð3Þ

where, according to the classification of the classifier, TP
is the number of positive samples, FN is the number of
false negative samples, and N is the number of negative
samples. Similarly, TN is the number of negative sam-
ples, and FP is the number of false positive samples.
The MDA pairs are randomly removed in the input

matrix Y before performing cross-validation. This method
is called CV-p (Cross-Validation pairs). Moreover, the pur-
pose is to overcome the difficulty of prediction and accur-
ately evaluate our method.

Comparison with other methods
In this study, the NPCMF method was compared with other
advanced methods, CMF [34], HDMP [35], WBSMDA [36],
HAMDA [37], and ELLPMDA [30]. Table 2 lists the experi-
mental results with CV-p. In Table 2, the final experimental
results are expressed as the average of 100 five-fold cross-
validation. It is worth noting that AUC is known to be in-
sensitive to skewed class distributions [38]. Considering that
the dataset used in this paper is highly unbalanced, there
are more negative factors than positive ones. Thus, AUC is
a fair and reasonable evaluation indicator for all methods.
As listed in Table 2, the average AUCs of WBSMDA,

HDMP, CMF, HAMDA, ELLPMDA, and NPCMF on the
gold-standard dataset are 0.8185 ± 0.0009, 0.8342 ±
0.001, 0.8697 ± 0.0011, 0.8965 ± 0.0012, 0.9193 ± 0.0002
and 0.9429 ± 0.0011, respectively. The best value is in

Table 1 MiRNAs, diseases, and associations in Gold Standard
Dataset

Datasets MiRNAs Diseases Associations

Gold Standard Dataset 495 383 5430

Gao et al. BMC Bioinformatics          (2019) 20:353 Page 3 of 10



bold. Standard deviations are given in parentheses. From
the above statistical results, our method achieved the
highest AUC value, which was 12.46, 10.89, 7.34, 4.66,
and 2.36% higher than WBSMDA, HDMP, CMF,
HAMDA, and ELLPMDA, respectively. Compared with
the CMF method, our method NPCMF has the best con-
vergence. Furthermore, as shown in Fig. 1, the conver-
gence analysis of CMF and NPCMF is shown by
performing 100 iterations. Therefore, based on the above
results, our proposed method is better than other exist-
ing advanced methods. Thus, the NPCMF method has
proven to be effective and reliable. As shown in Fig. 2,
in the five-fold cross-validation experiment, the per-
formance of each method can be demonstrated using
the ROC curve.

Sensitivity analysis from WKNKN
Considering that there are some missing unknown
associations in the matrix Y, WKNKN pre-processing
is used to minimize the error. K represents the num-
ber of nearest known neighbours. p represents a
decay term where p ≤ 1. These two parameters will
be fixed to the optimal value before performing our
method NPCMF. The sensitivities regarding K and p
are represented by Figs. 3 and 4, respectively. The
AUC tends to be stable when K = 5 and p = 0.7.

Comprehensive prediction for novel MDAs
A simulation experiment is conducted in this subsection.
The simulation is conducted to obtain the final predic-
tion score matrix. The specific process is divided into
four steps. The first step is to execute our method; then,
the two matrices A and B are obtained. The second step
is to multiply A and B to obtain a predicted score
matrix. The third step is to compare the predicted score
matrix with the original MDAs matrix Y and the associa-
tions whose predicted score changes are filtered and
sorted. The fourth step is to use the existing database to
verify that our predicted associations are confirmed. Our
method is applied to three disease cases, gastric neo-
plasms, rectal neoplasms and colonic neoplasms. These
three diseases are more common among humans. Many

Table 2 AUC results of cross validation experiments

Methods Gold Standard Dataset

WBSMDA 0.8185 (0.0009)

HDMP 0.8342 (0.0010)

CMF 0.8697 (0.0011)

HAMDA 0.8965 (0.0012)

ELLPMDA 0.9193 (0.0002)

NPCMF 0.9429 (0.0011)

Fig. 1 Comparison of convergence about NPCMF and CMF. Compared with the CMF, the NPCMF converges the fastest

Fig. 2 The ROC curve for each method in a 5-fold cross
validation experiment
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miRNAs are closely related to these three diseases. There-
fore, the final prediction results are more universal. In
addition, the novel MDAs are validated by two popular
miRNA disease databases, dbDEMC and miR2Disease.
The first case is gastric neoplasms. Despite a declining

incidence [39], gastric neoplasms are a major cause of
cancer death worldwide. Gonzalez et al. observed that
gastric neoplasms constitute the second most frequent
cancer in the world and the fourth most frequent cancer
in Europe [40]. More information about the disease is
published in http://www.omim.org/entry/613659. In the
dataset used in the experiment, there are five MDAs asso-
ciated with gastric neoplasms. After the simulation experi-
ment is performed, three known associations are
successfully predicted. At the same time, seven novel
MDAs are predicted. More importantly, five of the seven
novel MDAs have been confirmed by dbDEMC or miR2-
Disease. It is worth noting that miR-214 is confirmed by

both databases. For example, in 2011, when Oh et al. iden-
tified the biological validity of oncogenic miRNA micro-
array data for gastric neoplasms, miR-214 in GC-2
miRNAs was observed to be significantly upregulated
[41]. In 2013, Lim et al. also found that miR-214 is overex-
pressed in patients with gastric neoplasms compared with
normal subjects [42]. It is worth noting that although both
miR-30b and miR-296 are not confirmed by these two da-
tabases, they are still strongly associated with gastric neo-
plasms. Table 3 lists the detailed experimental results. The
known associations are in bold.
The second case is rectal neoplasms. Fourteen known

miRNAs were successfully predicted. Because there are
more miRNAs associated with rectal neoplasms, we only
selected the top 20 miRNAs with the highest correlation
with rectal neoplasms. In Table 4, the miRNAs are arranged
in descending order of the association score. Among the
new miRNAs that are predicted, the fifteenth miRNA, miR-
196a, has the highest association score. Regarding miR-
196a, it was confirmed in the previous literature that it is
associated with lymphoma [43]. Other researchers have
found that miR-196a is associated with prostate neoplasms
[44]. Although the predicted novel MDAs are not con-
firmed by dbDEMC or miR2Disease, according to our ex-
perimental results, these MDAs are closely related to rectal
neoplasms. Table 4 lists the detailed experimental results.
The known associations are in bold.
The third case is colonic neoplasms. From the gold-

standard dataset used in the experiment, there are more
than 50 miRNAs related to colonic neoplasms; therefore,
the top 50 are selected as the final prediction results ac-
cording to the association score. Thirty known miRNAs
are successfully predicted, and 20 new miRNAs are pre-
dicted. Of the 20 predicted new miRNAs, 12 are con-
firmed by dbDEMC and 8 are unconfirmed. For
example, in 2009, Sarver et al. found that miR-520 g was
overexpressed in patients with colonic neoplasms com-
pared with normal people according to a reliable bio-
logical experiment [43]. These researchers also found

Fig. 3 Sensitivity analysis for K under CV-p

Fig. 4 Sensitivity analysis for p under CV-p

Table 3 Predicted MiRNAs for Gastric Neoplasms

Rank miRNA Evidence

1 hsa-mir-1 known

2 hsa-mir-23a known

3 hsa-mir-148a known

4 hsa-mir-214 dbDEMC; miR2Disease

5 hsa-mir-30b Unconfirmed

6 hsa-mir-145 dbDEMC

7 hsa-mir-296 Unconfirmed

8 hsa-mir-199a miR2Disease

9 hsa-mir-23b dbDEMC

10 hsa-mir-96 dbDEMC
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that miR-204, miR-206 and miR-215 tend to be nega-
tively expressed in colonic neoplasm patients. In
addition, some unconfirmed miRNAs are sorted in de-
scending order of association scores, including miR-144,
miR-515, miR-211, miR-525, miR-219, miR-339, miR-
124 and miR-340. Table 5 lists the detailed experimental
results. The known associations are in bold.

Discussion
Based on the above experimental results, our proposed
model NPCMF is superior to the most advanced
methods overall. Moreover, although CMF is not as
good as NPCMF, it has also achieved good experimental
results. It is worth noting that our greatest contribution
is to calculate the NP information for each disease and
each miRNA to help predict potential MDAs. The short-
comings of CMF are that for new miRNAs and new dis-
eases, the CMF method is unpredictable. However,
NPCMF can achieve the prediction of new miRNAs and
new diseases by using each miRNA and the nearest
neighbour of the disease. Therefore, it is precisely be-
cause of the introduction of NP information that some
novel MDAs can be predicted. By using NP information,
we can obtain the best AUC value. Of course, this find-
ing does not prove that NPCMF has no defects. One of
the most obvious drawbacks for NPCMF is that

excessive NP information is introduced, which may add
additional noise while reducing prediction accuracy.

Conclusions
In this paper, a novel method based on nearest profile
collaborative matrix factorization is developed for pre-
dicting novel MDAs. When novel MDAs are predicted,
the nearest neighbour information for miRNAs and dis-
eases is fully considered. In addition, incorporating the
Gaussian interaction profile kernels of miRNAs and dis-
eases also contributed to the improvement of prediction
performance. The AUC value is used as a reliable indica-
tor to evaluate our method. In addition, due to technical
limitations, we have not used the latest version of the
dataset, such as HMDD V3.0; therefore, we will attempt
to use the latest dataset for future experiments.
In the future, more effective methods may be used to pre-

dict new MDAs. More differentially expressed miRNAs as-
sociated with the disease will be identified. At the same
time, increasing numbers of valuable datasets are being pub-
lished by online bioinformatics databases. Thus, more

Table 4 Predicted MiRNAs for Rectal Neoplasms

Rank miRNA Evidence

1 hsa-mir-21 known

2 hsa-mir-145 known

3 hsa-mir-125b known

4 hsa-mir-16 known

5 hsa-mir-7 known

6 hsa-mir-153 known

7 hsa-mir-1224 known

8 hsa-mir-137 known

9 hsa-mir-622 known

10 hsa-mir-630 known

11 hsa-mir-720 known

12 hsa-mir-590 known

13 hsa-mir-765 known

14 hsa-mir-1471 known

15 hsa-mir-196a Unconfirmed

16 hsa-mir-203 Unconfirmed

17 hsa-mir-196b Unconfirmed

18 hsa-mir-132 Unconfirmed

19 hsa-mir-375 Unconfirmed

20 hsa-mir-199b Unconfirmed

Table 5 Predicted MiRNAs for Colonic Neoplasms

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-146a known 26 hsa-let-7d known

2 hsa-mir-18a known 27 hsa-mir-30a known

3 hsa-mir-29a known 28 hsa-mir-22 known

4 hsa-mir-106b known 29 hsa-mir-200c known

5 hsa-mir-92a known 30 hsa-mir-191 known

6 hsa-mir-32 known 31 hsa-mir-520 g dbDEMC

7 hsa-mir-200b known 32 hsa-mir-204 dbDEMC

8 hsa-mir-29b known 33 hsa-mir-206 dbDEMC

9 hsa-mir-10b known 34 hsa-mir-215 dbDEMC

10 hsa-mir-15a known 35 hsa-mir-491 dbDEMC

11 hsa-let-7c known 36 hsa-mir-144 Unconfirmed

12 hsa-mir-142 known 37 hsa-mir-515 Unconfirmed

13 hsa-mir-132 known 38 hsa-mir-153 dbDEMC

14 hsa-mir-155 known 39 hsa-mir-211 Unconfirmed

15 hsa-mir-101 known 40 hsa-mir-525 Unconfirmed

16 hsa-mir-19a known 41 hsa-mir-219 Unconfirmed

17 hsa-let-7i known 42 hsa-mir-526b dbDEMC

18 hsa-mir-133b known 43 hsa-mir-507 dbDEMC

19 hsa-mir-16 known 44 hsa-mir-523 dbDEMC

20 hsa-mir-34a known 45 hsa-mir-520f dbDEMC

21 hsa-mir-31 known 46 hsa-mir-520e dbDEMC

22 hsa-mir-125a known 47 hsa-mir-339 Unconfirmed

23 hsa-mir-141 known 48 hsa-mir-124 Unconfirmed

24 hsa-mir-17 known 49 hsa-mir-381 dbDEMC

25 hsa-mir-1 known 50 hsa-mir-340 Unconfirmed
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datasets can be tested by researchers. Importantly, NPCMF
may be helpful for novel MDA prediction and relevant
miRNA research from computational biology.

Methods
Our goal is to develop a matrix factorization method
that can predict novel MDAs based on known MDAs.
First, a matrix factorization model is constructed to rep-
resent the correlation between miRNAs and diseases.
Next, the Gaussian interaction profile kernels of miRNA
and disease are expressed as their network information.
Then, the nearest profile of miRNAs and diseases are
obtained. Finally, a prediction score matrix is obtained
by multiplying two low rank matrices.

MiRNA functional similarity
Wang et al. developed a method named MISIM for calcu-
lating the similarity scores of miRNA functions [45]. More-
over, the dataset that we used is downloaded from the
website http://www.cuilab.cn/files/images/cuilab/misim.zip.
Then, matrix Sm represents the functional similarity matrix
of the miRNAs. Since the self-similarity of a miRNA is 1, in
the matrix Sm, the elements on the diagonal are all 1.

Disease semantic similarity
In previous studies, directed acyclic graphs (DAGs) have
been used by many researchers to describe diseases. From
the National Library of Medicine (http://www.nlm.nih.Gov/),
a variety of disease relationships based on the disease DAG
can be obtained from the MeSH descriptor of Category C.
DAG(DD) = (d,T(DD), E(DD)) is used to describe disease
DD. T(DD) is the node set and E(DD) is the corresponding
link set. The DD in DAG(DD) formula is defined as

DV1 DDð Þ ¼
X

d∈T DDð Þ
D1DD dð Þ; ð4Þ

D1DD dð Þ ¼
1 if d ¼ DD;

max Δ � D1DD d
0� �

d
0
∈children

��� of d
n o

if d≠DD;

(

ð5Þ

where Δ represents the semantic contribution factor. In
this work, based on previous literature [45], the value of
Δ is set to 0.5.
In addition, matrix Sd represents the semantic similar-

ity matrix of the disease. Similarly, in the matrix Sd, the
elements on the diagonal are all 1. It is worth noting that
if the two diseases d(i) and d(j) have a larger common
part of the DAGs, these two diseases will have higher se-
mantic similarity values. The semantic similarity score
between two diseases is defined as follows:

Sd d ið Þ; d jð Þð Þ ¼
P

t∈T d ið Þð Þ∩T d jð Þð Þ D1d ið Þ tð Þ þ D1d jð Þ tð Þ� �
DV1 d ið Þð Þ þ DV1 d jð Þð Þ :

ð6Þ

Gaussian interaction profile kernel similarity
The method is based on the following assumption. The
topological structure of the known MDA network is rep-
resented by Gaussian interaction profile kernel similarity
[46]. M(i) and M(j) are two miRNAs, and d(i) and d(j)
are two diseases. Therefore, the network similarity calcu-
lations can be written as

GIPmiRNA Mi;Mj
� � ¼ exp −γ Y Mið Þ−Y Mj

� ��� ��2� �
;

ð7Þ

GIPdisease di;d j
� � ¼ exp −γ Y dið Þ−Y d j

� ��� ��2� �
; ð8Þ

where γ is expressed as a parameter that adjusts the band-
width of the kernel. In principle, the setting of γ should be
implemented by cross-validation, but according to a previ-
ous study [47], γ is simply set to 1. In addition, the inter-
action profiles of Mi and Mj can be represented as Y(Mi)
and Y(Mj), respectively. Similarly, the interaction profiles
of di and dj can be represented as Y(di) and Y(dj), respect-
ively. Thus, the miRNA network similarity matrix can be
combined by Sm into Km, and the disease network similar-
ity matrix can be combined by Sd into Kd. The calculation
formulas are as follows:

Km¼αSm þ 1−αð ÞGIPm; ð9Þ
Kd ¼ αSd þ 1−αð ÞGIPd; ð10Þ

where α ∈ [0, 1] is an adjustable parameter. We perform
a sensitivity analysis on α. When α = 0.5, the highest
AUC value can be obtained. Figure 5 shows the sensitiv-
ity analysis for α. Km is a miRNA kernel matrix, which
represents a linear combination of the miRNA func-
tional similarity matrix Sm and the miRNA network
similarity matrix GIPm. Similarly, Kd is similar to Km.
Kd is a disease kernel matrix. In each cross-validation,
we recalculate the miRNA Gaussian similarity and dis-
ease Gaussian similarity. Specifically, the miRNA Gauss-
ian similarity matrix and the disease Gaussian similarity
matrix are obtained from a known MDA matrix. There-
fore, we ensure that the Gaussian similarity is recalcu-
lated each time the cross-validation is performed so that
the Gaussian similarity correctly reflects the characteris-
tics of the MDA matrix.

NPCMF for MDA prediction
The traditional CMF is a reliable method for predicting
novel MDAs [34]. Collaborative filtering is introduced to
CMF. The objective function of CMF is defined as
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minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �

þ λd Sm−AAT
�� ��2

F þ λt Sd−BBT
�� ��2

F ; ð11Þ

where ‖⋅‖F is the Frobenius norm, and λl, λd and λt are
non-negative parameters. It is worth noting that the
three parameters are set on the training set by perform-
ing cross-validation. A grid search is used to obtain the
optimal parameters from these values: λl ∈ {2

−2, 2−1, 20,
21}, λd/λl ∈ {0, 10

−4, 10−3, 10−2, 10−1}. The MDA matrix Y
is decomposed into two matrices A and B, where ABT ≈
Y. The NPCMF method uses regularization terms to re-
quest that the potential feature vectors of similar miR-
NAs and similar diseases are similar, and the potential
feature vectors of dissimilar miRNAs and dissimilar dis-
eases are dissimilar, respectively [33]. In this instance,
Sm ≈AAT and Sd ≈ BBT.
However, the CMF method ignores the network infor-

mation of miRNAs and diseases. Therefore, GIP is intro-
duced to the CMF [48]. Therefore, Km and Kd are
substituted into the objective function and written as

minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �

þλd Km−AAT
�� ��2

F þ λt Kd−BBT
�� ��2

F ;
ð12Þ

Then, the objective function is further written as

minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �þ λd}‖}αSm

þ 1−αð ÞGIPm−AATk2F þ λt αSd þ 1−αð ÞGIPd−BBT
�� ��2

F :

ð13Þ
More importantly, when predicting novel MDAs,

the nearest neighbour information will affect the final
results. Therefore, the nearest profile (NP) is intro-
duced to the CMF. For example, the NP for a new
miRNA M(i) is computed as

YNP Mið Þ ¼ Km Mi;Mnearestð Þ � Y Mnearestð Þ; ð14Þ
where Mnearest is the miRNA most similar to Mi, and
YNP(Mi) is the association profile of miRNA Mi. The NP
for a new disease di is computed as

YNP dið Þ ¼ Kd di; dnearestð Þ � Y dnearestð Þ; ð15Þ
where dnearest is the disease most similar to di, and
YNP(di) is the association profile of disease di.
The NP process can be performed in four steps. First,

the self-similarity of the matrices Km and Kd is removed.
Next, the nearest neighbour of each miRNA and disease
is obtained. Then, all miRNA similarities and disease
similarities are reset to 0. Finally, the nearest neighbour
matrix Nm of the Km-based miRNA is obtained. In the
previous study [49], the definition of the nearest neigh-
bour matrix is given. According to Eq. (14), we can ob-
tain Nm = arg maxKm(Mi). Simultaneously, the nearest
neighbour matrix Nd of the Kd-based disease is also ob-
tained. According to Eq. (15), we can obtain Nd = arg
maxKd(di). Based on objective function (11), the object-
ive function of NPCMF can be written as follows:

minA;B ¼ Y−ABT
�� ��2

F þ λl Ak k2F þ Bk k2F
� �

þ λd Nm−AAT
�� ��2

F

þ λt Nd−BBT
�� ��2

F ; ð16Þ

where ‖⋅‖F is the Frobenius norm, and λl, λd and λt are
non-negative parameters. The first term is an approxi-
mate model of the matrix Y. In the second term, the
Tikhonov regularization is used to minimize the norms
of A, B. The last two regularization terms minimize the
squared error between Nm (Nd) and AAT (BBT).

Initialization of A and B
For the input MDAs matrix, A and B are initialized by
the singular value decomposition (SVD) method. The
initialization formula can be written as follows:

U; S;V½ � ¼ SVD Y; kð Þ;A ¼ US1=2k ;B ¼ VS1=2k ; ð17Þ
where Sk is a diagonal matrix, which contains the k lar-
gest singular values.

Optimization
Considering that the least squares method is an effective
way to update A and B, in this paper, the least squares
method is used to update A and B. A and B are updated
until convergence. L is represented as the objection func-
tion of the NPCMF method. Then, A and B are respect-
ively subjected to partial derivatives. ∂L/∂A and ∂L/∂B are
both set to 0. In addition, λl, λd and λt are automatically
determined optimal parameter values by the five-fold
cross-validation. The update rules are as follows:

Fig. 5 Sensitivity analysis for α under CV-p
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A ¼ YBþ λdNmAð Þ BTBþ λlIk þ λdAA
T

� �−1
; ð18Þ

B ¼ YTAþ λtNdB
� �

ATAþ λlIk þ λtBTB
� �−1

: ð19Þ

Therefore, the specific algorithm of NPCMF is as
follows:
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