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Abstract

Background: Diagnosis and treatment decisions in cancer increasingly depend on a detailed analysis of the
mutational status of a patient’s genome. This analysis relies on previously published information regarding the
association of variations to disease progression and possible interventions. Clinicians to a large degree use biomedical
search engines to obtain such information; however, the vast majority of scientific publications focus on basic science
and have no direct clinical impact. We develop the Variant-Information Search Tool (VIST), a search engine designed
for the targeted search of clinically relevant publications given an oncological mutation profile.

Results: VIST indexes all PubMed abstracts and content from ClinicalTrials.gov. It applies advanced text mining to
identify mentions of genes, variants and drugs and uses machine learning based scoring to judge the clinical
relevance of indexed abstracts. Its functionality is available through a fast and intuitive web interface. We perform
several evaluations, showing that VIST’s ranking is superior to that of PubMed or a pure vector space model with
regard to the clinical relevance of a document’s content.

Conclusion: Different user groups search repositories of scientific publications with different intentions. This diversity
is not adequately reflected in the standard search engines, often leading to poor performance in specialized settings.
We develop a search engine for the specific case of finding documents that are clinically relevant in the course of
cancer treatment. We believe that the architecture of our engine, heavily relying on machine learning algorithms, can
also act as a blueprint for search engines in other, equally specific domains. VIST is freely available at https://vist.
informatik.hu-berlin.de/

Keywords: Biomedical information retrieval, Document retrieval, Personalized oncology, Document classification,
Clinical relevance, Document triage

Background
Precision oncology denotes treatment schemes in can-
cer in which medical decisions depend on the indi-
vidual molecular status of a patient [1]. Currently the
most widely used molecular information is the patient’s
genome, or, more precisely, the set of variations (muta-
tions) an individual patient carries. Today, a number
of diagnosis and treatment options already depend on
the (non-)existence of certain variations in a tumor [2].
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When faced with the variant profile of a patient, clinicians
critically depend on accurate, up-to-date and detailed
information regarding clinical implications of the present
variations.
Finding such information is highly laborious and time-

consuming, often taking hours or even longer for a single
patient [3], as it is usually performed by manually sifting
through a large volume of documents (e.g. scientific publi-
cations, clinical trial reports and case studies, among oth-
ers). To find candidate documents, oncologists use search
engines specialized for biomedical applications. The most
popular engine, PubMed, essentially ranks search results
by the date of publication [4]. Tools like GeneView [5],
PubTator [6] or SemeDa [7] pre-annotate documents in
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their index using Named Entity Recognition (NER) to ease
searching important entities like genes or drugs despite
spelling variations and synonyms. They also highlight
recognized entities in matching documents. DigSee [8]
performs keyphrase detection for sentences describing
the relationship between genes and diseases. DeepLife [9]
also performs entity recognition and, in contrast to the
previous tools which all consider only PubMed abstracts,
also indexes certain web sites and social media content.
RefMED [10] facilitates search in PubMed by user rel-
evance feedback. However, none of these tools ranks
search results according to a specific thematic focus of
documents.
There are also a few search tools which are topically

closer to cancer. The Cancer Hallmarks Analytics Tool
[11] classifies literature based on the predefined can-
cer hallmarks taxonomy, but has no notion of clinical
relevancy. DGIdb [12] offers search over a database of
text-mined clinically relevant drug-gene pairs; in con-
trast, we return entire documents and have a much
broader understanding of clinical relevance than just
drug-gene pairs. There also exist specialized databases
with manually curated evidences for variation-therapy
associations, such as OncoKB [13], ClinVar [14], Clini-
cal Interpretation of Variants in Cancer (CIViC) [15], or
the Database of Curated Mutations [16]; however, these
are rather small and grossly incomplete [17]. Overall, we
see a clear lack of intuitive tools supporting the targeted
search for clinically relevant documents in the scientific
literature [18].
In this paper, we present the Variant-Information Search

Tool (VIST), a search engine specifically developed to
aid clinicians in precision oncology in their search for
clinically relevant information for a (set of ) variations
or mutated genes. VIST was designed to support the
inner workings of a molecular tumor board (MTB), dur-
ing which a team of doctors determine the best possible
cancer treatment and care plan for an individual patient.
MTBs therein focus on information of direct clinical
relevance, where the concept “clinical relevance” encom-
passes a range of different types of information, such
as gene-mutation-drug associations, frequencies of vari-
ations within populations, matching clinical trials, mode
of action of drugs, molecular functions and pathways
associated with a variation and reports on treatments of
molecularly similar tumors. Results from basic research or
supported only by pre-clinical evidence is of little, if any,
interest.
Besides encompassing so many different concepts, find-

ing clinically relevant information is further complicated
by the fact that central entities, such as genes, drugs,
variations, or cancer entities lack a widely accepted stan-
dardized nomenclature, leading to numerous problems
regarding synonyms, homonyms, and hyperonyms. To

cope with these issues, VIST combines four different
techniques: it (1) uses a PubMed corpus pre-annotated
with state-of-the-art NER and named entity normaliza-
tion tools to pre-filter documents based on genes, varia-
tions, and drug names, (2) assigns documents to different
cancer entities using a classification approach, (3) mixes
classical keyword search with entity search, and (4) bases
its final ranking on two supervised ML classifiers trained
on a silver-standard corpus obtained from two different
sources. VIST furthermore offers several meta-data filters
(journal, year of publication, cancer type), identifies key
phrases within search results for quicker inspection [19],
highlights genes, variants, drugs, and mentions of query
keywords, and links out to external databases (for genes
and drugs).
VIST is developed in close interaction with medical

experts. We perform a number of different evaluations,
including a user study with four medical experts, to assess
VIST’s ranking performance. In all experiments, VIST
outperforms the ranking of PubMed and of a vanilla vec-
tor space model [20] for the task of finding clinically
relevant documents.

Methods
Architecture
VIST is a document retrieval system which ranks PubMed
abstracts according to their clinical relevance for a (set
of ) variations and/or genes and a cancer entity, and also
searches for relevant content in ClinicalTrials.org (CT)
(which we assume as clinically relevant by default). Its
architecture, presented in Fig. 1, is divided into three main
components:

1 Document Preprocessing Pipeline: PubMed abstracts
are first annotated with genes, variants, and drugs
they contain. Next, pre-trained ML classification
models are used to obtain query-independent
relevance scores. Further classification models are
used to detect key sentences with regard to
oncological and clinical relevance in each individual
abstract.

2 Document Index Storage: Built on top of Solr1, the
document index store is used for storing annotated
PubMed abstracts and CT data, and for retrieving
and ranking indexed content given a user query.

3 Web application: The front-end user interface allows
for the creation of new queries and modification of
the current query. It presents matching documents
ranked by clinical relevance and displays
syntax-highlighted views on individual search results.
The back-end of the web application parses user
queries, communicates with both the Document
Index Storage and the front-end, and retrieves
ranked documents.
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Fig. 1 VIST System Architecture. Left: VIST backend with indexed and preprocessed documents. Right: VIST web interface for query processing and
result presentation

Document preprocessing and entity annotation
PubMed documents are processed in XML-format while
CT data is downloaded from the Variant Information
System (VIS) for precision oncology, described in [21].
Prior to being stored in the Document Index Stor-
age, documents undergo a comprehensive preprocess-
ing pipeline, including textual preprocessing, meta-data
extraction, document annotation, and document classifi-
cation; details are described below. VIST is automatically
periodically updated. This ensures that the system is pop-
ulated with new content from both PubMed and CT. See
Table 1 for statistics on the current VIST index (as of end
of December 2018).
For annotating PubMed abstracts2, we first parse

their XML representation using pubmed_parser3 [22] to
extract meta-data and text (title and abstract). We then
obtain entity annotation from the PubTator4 web ser-
vice. This service detects and normalizes genes with
GNormPlus [23], variations using tmVar[24], and chem-
icals using tmChem[25]. All three tools achieve state-of-
the-art results for their respective entity types (see, for
instance, [26, 27]).

Document pre-classification
The ranking of VIST mostly depends on three query-
independent scores per indexed document. These scores

Table 1 VIST Index Summary

Property Count

Indexed documents 29,711,223

Classified as related to cancer 630,512

Classified as clinically relevant 5,375,192

Clinically relevant & cancer 349,351

Distinct variations 433,882

Documents with >0 variations 323,722

Total number of variations 1,018,321

are obtained by classifying each document regarding a) its
cancer relatedness (CancerScore), b) its clinical relevance
(ClinicalScore), and c) the cancer type being discussed
(TypeScore). The models used during these classifications
are obtained by training three different classifiers on the
CIViC dataset. CIViC is a cancer-oriented database of
associations between human genetic variations and can-
cer phenotypes manually curated by medical experts.
Since CIViC mostly contains documents that are related
to cancer and that are clinically relevant, we added an
additional negative corpus by randomly sampling 20,000
abstracts from PubMed that do not entail cancer-related
terms in their title and abstract. Specifically, we used the
following corpora.
CancerScore (a): Although the vast majority of docu-

ments in CIViC are related to cancer, there are also some
which are not (n = 68). We considered all documents
with a disease annotation outside cancer as not relevant
for cancer and add them to the negative corpus sampled
from PubMed, treating all other documents mentioned in
CIViC as positive class.
ClinicalScore (b): We consider each document in

CIViC to be related to clinical implications of molecu-
lar lesions (n ≈ 1400) and use the randomly sampled
abstracts from PubMed as negative class.
TypeScore (c): CIViC associates cancer types with its

indexed documents. We use this information to train a
multi-class classifier for the most frequent cancer types,
which are melanoma, head and neck cancer, and colorec-
tal cancer. All other cancer types are subsumed into a
single class “General cancer”.
Clearly, our construction of the negative class intro-

duces a bias into our classifiers. First, the set of negative
samples and of positive samples of the first two classifiers
are largely identical; only the 68 documents not related
to cancer but contained in CIViC are different. Second,
the ClinicalScore classifier actually will learn to discern
“clinically relevant cancer document” from “non-cancer
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document”, instead of the more desirable “clinically rele-
vant cancer document” from “clinically irrelevant cancer
document”. However, we are not aware of any sufficiently
large corpus representing the latter class. Furthermore,
although the training samples are mostly identical, we
observed that the models trained for the two classifiers
nevertheless lead to notably different results (see Fig. 4).
For evaluating the performance of different models for

the three tasks, we randomly split each data set into a
training (85% of documents) and a test set (15% of docu-
ments). Statistics on the three data sets for the three clas-
sifier models are shown in Table 2. We test different clas-
sification algorithms, both neural (NN) and non-neural
(non-NN) ones:
1) For the non-NN based models, we evaluate Support

Vector Machine (SVM) with a linear kernel and Random
Forest (RF) models, using a word n-gram representation
with tf-idf weighting and chi2 for feature selection. We
use the implementations available in the scikit-learn [28]
package. Models are optimized by using randomized grid
search for hyper-parameter optimization in a 5-fold cross-
validation on the training set.We report results on the test
set.
2) For NN-based models, we use two distinct

approaches. First, we apply Hierarchical Attention Net-
works [31] (HATT), a very recent neural architecture for
document classification. Additionally, we use Multi-Task
Learning [29, 30] (MTL), a method which simultaneously
learns different models for different yet related tasks. The
novelty of this approach is that, although it eventually
predicts as many results as there are tasks, it can consider
correlations between these results during learning. We
use HATT as the task architecture for the MTL models.
In both cases, we use the pre-trained BioWordVec5
[31] embeddings for token representation. Most hyper
parameter were left at default values. The only change we
explored was the size and number of hidden layers; best
results (on the training data) were obtained with 3 hidden
layers of size 100 (GRU layer), 100 (Attention layer) and
50 (Dense) respectively. The architecture is the same for
each of the three tasks. Classifiers are trained once on the
entire training data, and we report results on the test sets.

Document ranking
In VIST, a user query consists of a (set of ) variant(s) (from
a patient’s mutation profile), a (set of ) gene(s), a (set of )

Table 2 Document counts of corpora used for document
classification

Corpus Size Cancer+ Cancer- Relevant+ Relevant-

CiVIC 1,414 1,346 68 1,414 0

PubMed 20,017 0 20,017 0 20,017

arbitrary keyword(s), and a cancer type. Of the first three
types of information, any but one may be missing; the
cancer type is also optional. Queries are evaluated in the
following manner. First, if a cancer type is specified, only
documents classified as this type are considered. Next, if
a set of variants and / or a set of genes and / or a set of
keywords is specified, only documents which contain at
least one of these variants or genes or keywords are con-
sidered further. All remaining documents are scored with
their query-unspecific ClinicalScore and CancerScore, a
query-specific KeywordScore, and the publication date.
The KeywordScore is computed using a vanilla VSM as
implemented in Solr. Prior to ranking, ClinicalScore and
CancerScore are normalized to the interval [0;1] and mul-
tiplied to form the RankScore. The publication date is
turned into a number of typecasting the year into an
integer.
As for any search engine, the core of VIST is its rank-

ing function - documents matching the query that are
clinically relevant and recent should be ranked high,
whereas matching documents which are of lower clini-
cal relevance or which are older should be ranked lower.
To find an appropriate ranking function, we experiment
with different combinations of RankScore, CancerScore,
ClinicalScore, publication date and KeywordScore as sort
order, focusing on single attributes and pair-wise prod-
ucts. Each combination is evaluated by using the CIViC
corpus as gold standard, where our hypothesis is that,
for a given gene, documents in CIViC associated to this
gene should be ranked high by a VIST query for this
gene. To evaluate this measure, we extract all 290 genes
mentioned in CIViC and extend each gene symbol with
known synonyms. For each gene, we then retrieve all
PubMed abstracts mentioning this gene, rank them by the
score under study, and compute Mean Average Precision
(MAP), Mean Reciprocal Rank (MRR) and Normalized
Discounted Cumulative Gain (nDCG) of all CIViC docu-
ments in the ranked list.

Independent evaluation sets
All evaluation data sets mentioned so far should not be
considered as reliable gold standards, as they were built
for tasks different from ranking by clinical relevance. We
use them as silver standard corpora to fine-tune and select
the classification models and ranking functions of our
search engine. For assessing the performance of our final
ranking function, we design three additional evaluation
setups which will also be used to compare to other ranking
methods or biomedical search engines. Note that none of
the following data sets was used for training at any stage
within our system. An overview of these corpora is given
in Table 3.
User study. To obtain a set of certainly clinically

(ir)relevant documents, we performed a user study
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encompassing four medical experts. We gathered a set
of 20 queries each consisting of a gene, of a gene and a
variation within this gene, or of multiple genes, as these
are the typical cases occurring in recent real treatment
situations at the Charité Comprehensive Cancer Center
(CCCC)6. For each query, we used Solr VSM to find
(up to) 10 matching publications. Next, each of the four
experts assessed the clinical relevance (using a 5-point
Likert scale) of each returned document given the query,
resulting in a set of 188 triples <Query, Document, Rel-
evance assessment>. To obtain a robust evaluation set,
we (1) removed all pairs <Query, Document> which were
assessed as “highly relevant” by at least one expert and as
“not relevant at all” by at least one other expert and (2)
obtained final assessments for all other pairs by majority
voting. This results in a list of 101 <Query, Document, Rel-
evance assessment> triples, consisting of 45 relevant and
56 irrelevant pairs, across 14 queries. The queries them-
selves are of the <Gene(s), Mutation(s)> format. We name
this dataset UserStudy; it is available as Additional file 1
(AF1).
TREC Precision Medicine. Additionally, we use the

TREC Precision Medicine 2017 dataset (TREC PM 2017)
[32]. The collection consist of 27 queries, with 1,724 rele-
vant and 17,560 irrelevant documents. It allows us to gen-
erate queries of format <Gene(s), Mutation(s)>, with both
relevant and irrelevant documents included.We name this
dataset TREC PM 2017. However, we note that the inten-
tion of VIST is not identical to that of the TREC PM task.
In particular, TREC PM evaluators also used demographic
information of patients to judge relevancy, information
not available within VIST. Furthermore, TREC judgments
are based only on a single person, while all assessments of
the UserStudy set are based on four medical experts.
Real patient cases. Finally, we use a real-life data set

generated by oncologists working at the CCCC during
meetings of theMolecular Tumor Board. For each patient,

Table 3 Overview of corpora used for evaluation

Corpus Property / Corpus User Study TREC PM 2017 Tumorboard

Queries 14 27 261

Documents 101 19,284 471

Unique Documents 96 16,359 325

Documents/Query 5.94 714.22 1.80

Relevant Documents 45 1,724 471

Relevant Unique Documents 44 1,681 325

Relevant/Query 3.21 63.85 1.80

Irrelevant Documents 56 17,560 -

Irrelevant Unique Documents 53 14,980 -

Irrelevant/Query 3.29 650.37 -

Properties are expressed as number of occurrences

these experts curated a list of relevant genes mutated in
this patient and publications describing clinical implica-
tions of this variation. The data set contains 471 clinically
relevant PubMed documents for 261 genes, resulting from
113 patients. It allows us to generate queries of format
<Gene(s), Mutation(s)>. We name this dataset Tumor-
board.

Results
Wedevelop VIST, an intuitive web search engine for preci-
sion oncology that aims to help oncologists to quickly find
clinically relevant information given a set of variants or
mutated genes of a patient. VIST is extensively evaluated
to assess and optimize its performance. In the follow-
ing, we first present the VIST user interface and shortly
describe its functionality. Next, we present the results of
a comprehensive evaluation (1) of the different models
VIST uses for ranking and (2) of the performance of dif-
ferent ranking functions. Finally, we compare the ranking
performance of VIST with that of Solr and the ranking
function implemented by PubMed.

Web interface
VIST’s web interface allows users to define search queries
and to inspect matching documents. Additionally, it offers
entity highlighting, various document filters, and a help
page. The query shown in Fig. 2 is taken from the eval-
uation queries. It is also available in the user interface as
an example query. The interface follows the principles of
responsive web design.

Starting a new search
The initial query is of the format Q: [Gene(s), Variant(s),
Keyword(s)]. At least one of the three items has to be
specified. Keywords, genes and/or variants are used as a
filter, discarding all documents which do not match the
requirements. Entered gene(s) are normalized to NCBI
Gene ID, with all synonyms being added to the gene query
term(s). Matching abstracts are presented in a descending
order based on the clinical relevance, as captured with the
RankScore. For each document, its title, PMID, publica-
tion year and VIST’s RankScore are displayed. The basic
interface is shown in Fig. 2. Filtering and highlighting
options are enabled as soon as a search yields a non-empty
result. VIST allows narrowing returned results by (a) jour-
nals, (b) year of publication, and (c) cancer type. Note that
VIST presents ranked PubMed abstracts and ranked CT
reports in separate tabs, as the nature of documents in
these two repositories is very different, making a uniform
ranking highly challenging.

Viewing document details
Details of a matching document can be inspected by click-
ing its title. Document information is provided in two
tabs, ABSTRACT and STATISTICS. In the ABSTRACT
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Fig. 2 VIST web interface: Top: Search bar for entering queries. Left: Filter options (by keywords, genes, journals, cancer type, and year of publication.
Main pane: List of matching documents, ranked by score according to clinical relevance. Matching clinical trials are available as a second tab

tab, key sentences and annotated entities are visually
highlighted (see Fig. 3). Key sentences are represented
with yellow background with varying transparency lev-
els corresponding to confidence of the detection method
[19]. The STATISTICS tab shows the precomputed Clin-
icalScore, TypeScore, annotated variants, genes and drugs
as well asMeSH keywords. It also links to the original pub-
lication. Genes and drugs are linked to relevant databases
(NCBI Genes and DrugBank, respectively).

Query-independent classification scores
Our ranking function relies on two query-independent
scores for a given document, namely its CancerScore (is
this document concerned with cancer?) and its Clini-
calScore (is this document concern with clinically relevant

information?). In contrast, the TypeScore (which cancer
entity is discussed?) is used to enable topical document
filtering.
We train different classifiers for each of these tasks and

compare their performance using a mixed data set of doc-
uments from CIViC and randomly sampled documents
from PubMed as negative class (see Table 2). We compare
both non-NN, traditional classification models and more
recent, NN approaches. We do not expect the latter to
clearly outperform the former, as our data sets are small
compared to those where recent neural network-based
methods excel [33].
P, R and F1 scores for the four types of developed clas-

sification models are shown in Fig. 4. Results for the
relatively similar CancerScore and ClinicalScore are very

Fig. 3 Detailed view on matching document in VIST. Entities (genes, drugs, variations) as recognized by VIST’s NER modules are highlighted.
Sentences are colored according to the propbability of carrying the main message of the abstract (key phrases)
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similar among all methods, whereas the multi-class task
of classifying a document by its cancer type yields more
diverse and overall worse results. In the former two tasks,
the MTL model is marginally better in F1-score than
the second best approach, an SVM, whereas the SVM
approach clearly beats MTL in the Cancer Type task.
HATT performs worse than MTL for Cancer Related-
ness and for Clinical Relevance, but outperforms the other
methods for CancerType classification. Overall, we con-
clude that all four methods perform comparable, and that
a definite winner cannot be identified given the deficien-
cies of our evaluation data, in particular the random sam-
pling for obtaining negative documents in all three tasks.
We therefore decided to further on perform experiments
with only one non-NN-based model and one NN-based
model. For the former, we chose SVMs as they outper-
form RF in all three tasks. For the latter, we chose MTL,
because it performed better than HATT in two of the
three tasks in Fig. 4, because MTL incorporated HATT as
base classifier into its multi-task learning framework, and
because the recent literature has several examples where
MTL-approaches outperform other NN-models both in
text-based tasks [34] and in non-text tasks [35].

Selection of ranking function
We next evaluate different combinations of CancerScore,
ClinicalScore, KeywordScore, and publication date to
rank documents by their clinical relevance. To this end,
we execute one query to VIST for each gene mentioned in
CIViC and measure the recall of documents mentioned in
CIViC for this gene among all documents indexed in VIST
mentioning this gene.
Results for the three best combinations and the sim-

ple KeywordScore as baseline are shown in Table 4. The
RankScore, specifically designed to measure clinical rele-
vance for cancer, is included in all top performing ranking
functions. However, one should keep in mind that the
data set used for this evaluation is also used for training
the RankScore components; thus, this result is not a sur-
prise and cannot be considered as strong evidence for the

overall quality of our ranking function; see next section
for an evaluation thereof. The KeywordScore, which is
completely unaware of any notion of clinical relevance but
selects documents simply by the genes they contain (note
that all queries here are sets of synonymous gene names),
is clearly outperformed by all other functions in all evalu-
ationmetrics. Interestingly, in this evaluation the rankings
based on the SVMmodel outperform those based onMTL
in two of the three metrics, probably due to the small size
of the training set we used.

Comparative evaluation
We compare the ranking of VIST with that of PubMed
(using Entrez E-utilities [36], with returned documents
sorted by their relevance to the query [37]) and that
of a plain VSM ranking using Solr (KeywordScore). For
queries containing more than one gene, we combined
the resulting keywords with a logical OR in all systems.
We used the three evaluation data sets UserStudy, TREC
PM17, and Tumorboard which all are disjoint from the
data sets used for training our models. Again, we primar-
ily use the standard information retrieval metrics MAP,
MRR, and nDCG. However, we also introduce a fourth
metric to acknowledge the fact that VIST filters results
based on variant / gene / cancer types. One could argue
that this gives an undue advantage to VIST compared to
its two competitors which do not apply such filtering, as
the ranks of relevant documents will be generally lower
due to the filtering effect. To normalize such effects, we
report the Rel VS IrRel metric, which measures the ratio
of the average position of relevant documents to the aver-
age position of irrelevant documents. For instance, if one
method ranks relevant documents at positions 1, 5, and
10 and irrelevant documents at positions 3, 6, 12, then the
average rank of the relevant documents would be 16/3 =
5.33, the average rank of the irrelevant documents would
be 21/3 = 7, and the ratio would be 5, 33/7 = 0.76.
This would be considered a worse ranking than that of a
method ranking relevant documents at positions 55, 103,
and 116 (average 91.33) and irrelevant ones at 44, 201, 240

Fig. 4 Precision (P),Recall (R) and F1 scores of three evaluated classification tasks, i.e., classification by relatedness to cancer, by clinical relevance, and
by cancer type. MTL: Multi-Task Learning; HATT: Hierarchical Attention Network; SVM: Support Vector Machine; RF: Random Forest
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Table 4 Best performing ranking functions

Models SVM MTL

Rank by: Recall MAP MRR nDCG Recall MAP MRR nDCG

RankScoreˆ 0.636 0.113 0.173 0.307 0.570 0.088 0.119 0.260

PubDate * RankScore 0.634 0.113 0.168 0.306 0.560 0.083 0.109 0.254

CancerScore 0.618 0.092 0.115 0.274 0.569 0.091 0.121 0.263

KeywordScore 0.291 0.018 0.025 0.125 0.294 0.018 0.025 0.125

All elements of a ranking function are sorted descending. The KeywordScore, completely neglecting cancer relatedness and clinical relevance of documents, is included as
baseline. ^ used in production version of VIST

(average 161.66). A lower value for this metric thus means
that relevant documents are ranked considerably better
(higher) than irrelevant documents.
Results are shown in Table 5. VIST SVM outperforms

its competitors on TREC PM 2017 and Tumorboard in
three out of four metrics and in all metrics on UserStudy.
MAP, MRR, and Rel vs IrRel scores are always better that
that of the PubMed ranking, MTL-based ranking, and the
baseline KeywordScore. Its nDCG score is slightly worse
than PubMed in Tumorboard and clearly worse in TREC
PM 2017. VIST SVM is always better than VIST MTL,
consistent with the results shown in Table 4. A detailed
breakdown of the results for the different queries of the
UserStudy data set reveals that VIST SVM performs best
in 9 out of the 14 queries and very close to the best in
the remaining five queries. VIST MTL ranks worse than
the PubMed ranking for the traditional evaluation mea-
suresMAP,MRR, nDGC, but hasmore wins when looking
at the average ranking of relevant versus irrelevant doc-
uments. Figure 5 shows average Precision@k (P@k) and
Recall@k (R@k) for the three ranking approaches VIST
SVM, KeywordScore, and PubMed on the UserStudy set;
therein, k denotes the k’th document in the ranked result
that is also contained in the test set. We chose this varia-
tion of the P@k and R@k metrics because the UserStudy
set is rather small; ranging k over all documents returned
by a method would produce precision and recall values
very close to 0 for all values of k and all methods due
to the construction of this corpus. The important infor-
mation contained in this figure is whether or not the
truly relevant ones are ranked higher than the truly irrel-
evant ones (according to our expert curators). Clearly,
VIST outperforms KeywordScore and PubMed in both
measures.

Discussion
We present VIST, a specialized search engine to sup-
port the retrieval of clinically relevant literature and trial
information for precision oncology, and evaluate its per-
formance in different manners. Although our evaluation
indicates that VIST ranking is superior to that of PubMed
with regard to searching clinically relevant literature
given mutational information, we still see a number of
limitations of our current system.

Firstly, the absolute ranks of the evaluation documents
in the complete result lists are typically not low; for
instance, in UserStudy, the average rank of the first gold
standard document across all queries is ≈ 150, with stan-
dard deviation ≈ 297 (≈ 230 and ≈ 325 for PubMed,
respectively). This could be a problem, as the ranks might
be better than in PubMed, but still not good enough for
the user’s motivation to prefer VIST instead of PubMed.
On the other hand, we did not evaluate the quality of the
documents ranked higher than our first matches; it is very
well possible that these are equally valuable as our gold
standard documents. In future work, we plan to sample
from these results and give them to expert evaluation.
Secondly, the current system will select and rank all

documents mentioning at least one of the entities of a
query, which means that the result set will grow very large
for larger queries. VIST (as PubMed) has no notion of a
clinically-informed prioritization of genes/variants; such a
work has to be done manually prior to query formulation.
Nevertheless, the ranking of VIST should rank highest

Table 5 Evaluation results on several datasets and several metrics

Dataset System MAP MRR nDCG # Best
Rel vs
IrRel

TREC PM 2017 KeywordScore 0.0006 0.066 0.426 2

PubMed 0.0008 0.056 0.585 5

VIST MTL 0.0003 0.051 0.238 20*

VIST SVM 0.0008 0.095 0.458 20*

Tumorboard KeywordScore 0.0082 0.011 0.115 -

PubMed 0.0489 0.070 0.230 -

VIST MTL 0.0242 0.035 0.103 -

VIST SVM 0.0579 0.081 0.220 -

UserStudy KeywordScore 0.0631 0.296 0.645 2

PubMed 0.0847 0.236 0.580 3

VIST MTL 0.0571 0.239 0.407 9*

VIST SVM 0.1874 0.650 0.933 9*

Low values are due to a small number of known PMIDs for individual queries. “#
best Rel vs IrRel”: Number of queries for which the corresponding system has the
best “Rel vs IrRel” score (27 queries for TREC PM 2017, 14 queries for UserStudy).
*VIST SVM and VIST MTL are compared separately with KeywordScore and PubMed.
KeywordScore is the ranking provided in the default settings of Solr
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Fig. 5 Evaluation results based on the UserStudy data set: Precision at k (P@k) and recall at k (R@k) of three different ranking schemes, i.e, PubMed,
KeywordScore, and VIST SVM. Here, k refers to the k’th document in a ranked list that is also contained in the reference list

those documents which contain the most clinically rele-
vant information. Another important option we did not
evaluate is the combination of variant/genes with key-
words. Using such combinations, one can, for instance,
easily boost the ranks of documents describing clinical
trials by adding a keyword like “trial” to a query. The
interplay of such user interventions with our relevance
classification models remains to be studied.
Thirdly, although user feedback indicates that the inte-

gration of CT is an important feature of the system, we yet
have to evaluate VIST’s performance when searching this
data set. We speculate that essentially all reports in CT
are of clinical relevance, thus ranking by clinical relevance
makes little sense; on the other hand, not all reports will
have the same importance, still calling for a proper rank-
ing function. Currently, we only apply the KeywordScore,
as all our relevance models were trained on scientific
abstracts, not trial reports. Ranking within CT is thus an
important topic for future work.
Fourthly, we fully acknowledge that a comprehensive

investigation of variations found in a patient’s tumor must
also consider other data sources, especially those contain-
ing curated information about the clinical relevance of
these variations. Examples of such databases are CIViC
[15], which we used for building our models, OncoKB
[13], or the Precision Medicine Knowledge Base [38].
We thus see it as an important task for the commu-
nity to develop tools that integrate literature search with
search in multiple distributed curated knowledge bases.
We recently described necessary steps into this direction
in [21].

Conclusion
We presented VIST, a novel search engine specifically
designed to support patient-specific clinical investigations

in precision oncology. VIST receives affected genes or
individual variants as queries and produces a list of match-
ing publications ranked according to their clinical rele-
vance. VIST also reports matching clinical trials to help
finding ongoing studies which could be relevant for the
given patient. For future work, we believe that there are
technical means to further improve the ranking for clini-
cal relevance. We see the lack or sparseness of appropriate
training data as the main obstacle to developing better
ranking functions. One way to cope with this problem
could be the usage of pre-trained latent representations
of clinically relevant concepts, or the design of a better
latent document representation space. For such problems,
Variational AutoEncoders [39, 40] and Generative Adver-
sarial Networks [41] recently showed promising results.
Another field where recent technical advances could help
is the current restriction in VIST to four cancer types.
This restriction, again, is imposed by the lack of suffi-
cient training data in CIViC for other types. Here, one
could experiment with semi-supervised models, such as
zero-shot learning [42, 43] or few-shot learning [44].
To address the problem of lacking gold standard cor-

pora, VIST has a preliminary built-in module for regis-
tration of new users and subsequent user login. Note that
the system can also be used without registration in a com-
pletely anonymous form. Registration is encouraged for
medical professionals, as it enables giving relevance feed-
back. The long-term goal of this feature is 1) creation of
a corpus of (ir)relevant <User, Query, PMID, Relevance
assessment> quadruples, 2) creation of a large(r) cor-
pus of clinically (ir)relevant scientific publications, and 3)
creation of a personalized recommendation service.

Endnotes
1 http://lucene.apache.org/solr/

http://lucene.apache.org/solr/
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2 Reports from CT currently are not entity-annotated.
3 using https://github.com/titipata/pubmed_parser
4 https://ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/
5 https://github.com/ncbi-nlp/BioSentVec
6 https://cccc.charite.de/en/
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