Yang et al. BMC Bioinformatics (2019) 20:368
https://doi.org/10.1186/5s12859-019-2962-7

BMC Bioinformatics

METHODOLOGY ARTICLE Open Access

MassComp, a lossless compressor for
mass spectrometry data

Ruochen Yang', Xi Chen? and Idoia Ochoa?”

Check for
updates

Abstract

Background: Mass Spectrometry (MS) is a widely used technique in biology research, and has become key in
proteomics and metabolomics analyses. As a result, the amount of MS data has significantly increased in recent years.
For example, the MS repository MassIVE contains more than 123TB of data. Somehow surprisingly, these data are
stored uncompressed, hence incurring a significant storage cost. Efficient representation of these data is therefore
paramount to lessen the burden of storage and facilitate its dissemination.

Results: We present MassComp, a lossless compressor optimized for the numerical (m/z)-intensity pairs that account
for most of the MS data. We tested MassComp on several MS data and show that it delivers on average a 46% reduction
on the size of the numerical data, and up to 89%. These results correspond to an average improvement of more than
27% when compared to the general compressor gzip and of 40% when compared to the state-of-the-art numerical
compressor FPC. When tested on entire files retrieved from the MassIVE repository, MassComp achieves on average a

facilitate the exchange and dissemination of omics data.

59% size reduction. MassComp is written in C++ and freely available at https://github.com/iochoa/MassComp.

Conclusions: The compression performance of MassComp demonstrates its potential to significantly reduce the
footprint of MS data, and shows the benefits of designing specialized compression algorithms tailored to MS data.
MassComp is an addition to the family of omics compression algorithms designed to lessen the storage burden and

Keywords: Mass spectrometry, Lossless compression, Storage

Background

High-resolution mass spectrometry (MS) is a powerful
technique used to identify and quantify molecules in
simple and complex mixtures by separating molecular
ions on the basis of their mass and charge [1]. MS has
become invaluable in the field of proteomics, which stud-
ies dynamic protein products and their interactions [2].
Similarly, the field of metabolomics, which aims at the
comprehensive and quantitative analysis of wide arrays
of metabolites in biological samples, is developing thanks
to the advancements in MS technology [3]. These fields
are rapidly growing, as they contribute towards a better
understanding of the dynamic processes involved in dis-
ease, with direct applications in prediction, diagnosis and
prognosis [4—6].

*Correspondence: idoia@illinois.edu

’Electrical and Computer Engineering Department, University of lllinois at
Urbana-Champaign, IL, Urbana, USA

Full list of author information is available at the end of the article

As a result of this growth, the amount and size of MS
data produced as part of proteomics and metabolomics
studies has increased by several orders of magnitude [7].
To facilitate the exchange and dissemination of these data,
several centralized data repositories have been created
that make the data and results accessible to researchers
and biologists alike. Examples of such repositories include
GPMDB (Global Proteome Machine Database) [8], Pep-
tideAtlas/PASSEL [9, 10], PRIDE [11, 12] and MassIVE
(Mass Spectrometry Interactive Virtual Environment)
[13]. In particular, MassIVE contains more than 2 million
files worth 123TB of storage, and PRIDE contains around
7000 projects and 74,000 assays.

MS data are mainly composed of the mass to charge
ratios (m/z) and corresponding ion counts, and are
referred to as the (m/z)-intensity pairs. These data are
generally stored in the open XML (eXtensible Markup
Language) formats mzXML [14] and mzML [15], after
conversion from the raw vendor formats (which may vary

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

K BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2962-7&domain=pdf
http://orcid.org/0000-0003-1864-7868
https://github.com/iochoa/MassComp
mailto: idoia@illinois.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Yang et al. BMC Bioinformatics (2019) 20:368

across technologies/instruments). These formats facilitate
exchange and vendor neutral analysis of mass spectrome-
try data, but tend to be much larger than the raw data [16],
as they include extensive additional metadata (e.g., type
of instrument employed). In addition, the mzXML and
mzML files contain plain text mixed with binary base64
encoded (m/z)-intensity pairs. In particular, the mzXML
format generally contains data from several thousands of
scans corresponding to a given experiment. Within each
scan, the (m/z)-intensity pairs are stored in the element
“peaks’; and encoded in base64. The pairs can represent
either single or double precision values, and this is spec-
ified in the “peaks precision” The MS data can be stored
in centroid or profile mode, the later containing generally
more (m/z)-intensity pairs. As such, the number of pairs
available for each scan varies, and it ranges from just a
few to thousands of them. See Fig. 1 for a snapshot of an
mzXML file.

In addition of not being optimized for space saving
due to the inherit characteristics of the XML format, MS
files are submitted and stored in the public repositories
uncompressed, which incurs a significant storage cost.
Note that even though individual files may be small (e.g.,
less than 100MBs in some cases), the combined total size
of all submitted files can reach the order of TBs. Still, lit-
tle effort has been made to compress MS data. This is in

Page 2 of 10

contrast to other omics disciplines, such as genomics, that
have experienced an increasing effort in designing special-
ized compression schemes to lessen the storage burden
[17-19].

A family of numerical compression algorithms called
MS-Numpress was presented in [16]. These algorithms are
optimized for the compression of the floating point values
corresponding to the (m/z)-intensity pairs that charac-
terize MS data. However, the proposed algorithms are
lossy and exhibit precision loss in the case where the
m/z-intensity pairs represent double-precision values. For
example, the proposed compression algorithm numSlof
for ion count data takes the natural logarithm of values,
multiplies by a scaling factor and then rounds to the near-
est integer. Similarly, the proposed compression algorithm
numlLin for (m/z) data multiplies the values by a scal-
ing factor and then rounds to the nearest integer. Further
compression is then achieved by the use of a linear pre-
dictor. Although not specifically designed to compress MS
data, general numerical compressors such as the state-of-
the-art algorithm FPC [20] could be used for this purpose,
given that MS data are mainly composed of numerical
data. In particular, FPC is a fast lossless compressor opti-
mized for linear streams of floating-point data. It uses
predictors in the form of hash tables to predict the next
values in the sequence. The predicted values are then

<?xml version="1.0" encoding="1S0-8859-1"?>

<msRun scanCount="2535" startTime="PT0.09556S5" endTime="PT359.981S5">

fileType="RAWData"
fileSha1="f88f42711b213c6a4c6f08bb2d5a9f69d77a3341"/>
<mslnstrument msinstrumentiD="1">
<msManufacturer category="msManufacturer" value="Thermo Scientific"/>
<msModel category="msModel" value="Q Exactive"/>
<mslonisation category="mslonisation" value="electrospray ionization"/>
<msMassAnalyzer category="msMassAnalyzer" value="quadrupole"/>
<msDetector category="msDetector" value="inductive detector"/>
<software type="acquisition" name="Xcalibur" version="2.5-204201/2.5.0.2042" />
</mslnstrument>
<dataProcessing centroided="1">
<software type="conversion" name="ProteoWizard software" version="3.0.9935"/>
<processingOperation name="Conversion to mzML"/>
<software type="processing" name="ProteoWizard software" version="3.0.9935"/>
<comment>Thermo/Xcalibur peak picking</comment>
</dataProcessing>

<mzXML xmIns="http://sashimi.sourceforge.net/schema_revision/mzXML_3.2" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://sashimi.sourceforge.net/schema_revision/mzXML_3.2 http://sashimi.sourceforge.net/schema_revision/mzXML_3.2/mzXML_idx_3.2.xsd">

<parentFile fileName="file:///C:\Users\Admin\Desktop\EMP\Raw\Plate2/LC_Blank_10.raw"

General metadata

<scan num="1" scanType="Full” centroided="1" msLevel="1" peaksCount="287" polarity="+" retentionTime="PT0.09556S” lowMz="117.054522Acanaax
highMz="1288.755493164063" basePeakMz="239.148808" basePeakintensity="1.8577049e06"” totlonCurrent="2.262194e07"> ‘
<peaks compressionType="none” compressedLen="0" precision="32" byteOrder="network” contentType="m/z-int">

Scan information

ORgDNHOMFFfJHggQoQwUZ8EWvO6IDBXxDAReqOEUMHFEXHO

tC1pG2FYtQy4TfEayaKFDLW86RpaHWEMVGKIIR6WnQy/2HUXQlipD!

Qu0b8U26629C8Bx3erkjkLOKZBHhsprvVWiUX8mitC9ih7R4Jﬁ?8VG DJMaQugsgEdfzg9C+gv1RtBnNkL6HN5FtE0JQVATIEE)+DIDAWiIGRWEQkkMDEfXHO0sxQwQOMEXpADADBBC

MVBfZHAJHUQxXUPTkbPoz1DFRUURdbv1UMVPkJFy1PUQXYTgOYL59R m/z-intensity pairs information,
IhO2RawKLkMiFdhGPGhvQyIZIEYGQQFDIwIoR3FWIOMIGLXGS+Vbay| followed by the pairs in base64

DEQy6R72y1kMSFL1GG3zJQxNdQOWxalVDFAoERbKj2U
Q4QyAPbEYGTIVDIQtqRs9YKOMhFQVIa+rpQyEYIUc740)D

BDJxtARgsSXkMpDLpGr+VxQyoOrOXQA2BDKyYxR4Gb8UM

Pxs/RaonakNDEKVF8srWQOMfZkm1zbRDRB4oRjdCEKNEI

ENHZmBlQOUanXttaxDRSCIRrXtIONFJ2VF502+QOcrNEXIc92DRy3vRJf3UONJE1hFOIZLQOvakXOqOZDShIVRsVVVUNLGOBGumNWQOWWPEbr+J9DTRIngNy/UNNG2]HbNIIQO8WBkY|zu
IDTx9nRIQNPENPI3N/Q60ZuUk++b2Q8+geOkem+ZDOCDrRIOgHOPQoQ9GzWM6EQ9GoWEa4yOpD1J5SRhC7nEPVM8ZIASexQ9YcCkbbMHBD26B7RIEhIOPcnZdGs27/Q92fy0jHKTtD3iB
AR6WKJUPej2BHL04iQ96gjUZPA4ND3w8IRjIAPkPfrDhGE7RsQ+ShtkYmbddD5SIoRidlYkPlo8plsaFCQ+YkPkenZidDSqRWRg2E9kPrnxxHh7nvQ+wfNOYHr51D7bTsRk4hjkPyoSpGUMAQQ
/OJEOhwaJD9CO4R1FK20P6pRFGPOV]Q/unHOgBdch/CdTRthkaSdeGCsGMRADRchLISBEAREyRezYOUQE009HWQIVRAUT|UYySSNEBtoSvaeAOQIlU1G90uvRAvSSUYYJHBEKc
VJRFE]6OROyclFzg8HRHrlyOXUcTBEORgtRAc/KQ==</peaks> Information related to the first scan, including the m/z-intensity pairs

Fig. 1 Example of the first lines of an mzXML file. After initial general information of the format and instrument, the first scan is presented, in this
case in single-precision (32 bits)

Yang et al. BMC Bioinformatics (2019) 20:368

XORed with the true values, and the resulting number of
leading zero bytes and the residual bytes are written as
the output. However, general numerical compressors are
not tailored to MS data and thus better results (in com-
pression ratio) are to be expected from MS specialized
COMPIressors.

Here we introduce MassComp, a new specialized loss-
less compressor for MS data. MassComp is optimized
for the compression of the mass to charge ratio (m/z)-
intensity pairs that characterize mass spectrometry (MS)
data. However, for ease of use, MassComp works on
mzXML files. Briefly, MassComp extracts the (m/z)-
intensity pairs from the mzXML file, and compresses
them effectively. Due to the different nature of the mass
to charge (m/z) ratios and the ion count (intensity) val-
ues, MassComp uses different compression strategies for
each of them. The remaining data from the mzXML file
is extracted and compressed with the general purpose
compression algorithm gzip. MassComp is then able to
reconstruct the original mzXML file from the compressed
data. gzip has been chosen for being the most common
general compressor available, and because several cur-
rent MS computational tools can directly work with gzip
compressed files (e.g., peptide identification [21]).

We tested MassComp on several mzXML datasets from
the MassIVE repository, and showed that it is able to
reduce the file sizes by almost 60% on average. Compar-
isons with gzip and FPC on the numerical data show the
benefit of designing specialized compressors tailored to
MS data. In particular, MassComp achieves an improve-
ment of up to 51% and 85% in compression ratio when
compared to gzip and FPC, respectively. MS-Numpress
on double-precision MS data can obtain better compres-
sion than MassComp but with the price of not restoring
the data with 100% accuracy, i.e., with the price of lossy
data restoration.

Results

MS files are stored uncompressed (i.e., there is no default
compressor for MS data), and hence we compare the per-
formance of MassComp to that of the general lossless
compressor gzip, the state-of-the-art numerical compres-
sor FPC [20], and the family of numerical compressors
MS-Numpress [16]. gzip was chosen for baseline perfor-
mance over other general lossless compressors as it is used
in practice as the de-facto compressor for other omics
data, such as genomics (e.g., for compression of FASTQ
files [22] in public repositories and as the building block
in the widely used BAM format [23]). Results for FPC are
shown for default “level” parameter 20 (simulation with
other values produced similar results). MS-Numpress
was run with the built-in MS-Numpress compression
option of the MSConvert GUI [24]. We selected the algo-
rithms numLin and numPic for the m/z and intensities,

Page 30f 10

respectively, as well as the z/ib option, as they were found
to offer the best compression performance.

All experiments were run in a machine running CentOS
Linux version 7, with an Intel(R) Xeon(R) CPU E5-2698 v4
@ 2.20GHz and 512GB of RAM, except for FPC and MS-
Numpress, which were run in a ThinkPad T460s laptop
running Windows with 64 bit operating system, Intel Core
i7-6600U CPU @ 2.60GHz, and 8GB memoryl.

For the analysis, we randomly selected three exper-
iments from the MassIVE repository, and consid-
ered all mzXML files within them. The correspond-
ing MassIVE IDs are MSV000080896, MSV000080905
and MSV000081123, and they can be retrieved from
ftp://massive.ucsd.edu/ followed by the ID. These exper-
iments contain, respectively, 600MB, 4GB, and 400MB
worth of mzXML files. All selected files contain single-
precision (m/z)-intensity pairs, and hence we also selected
the raw files 110620 _fract_scxB0S, 121213 Phospho-
MRM_TiO2_discovery, and ADH_100126_mix used in
[16], in which the m/z-intensity pairs represent double-
precision values. Hereafter we refer to them as 110, 121
and ADH. Their corresponding raw size is 16.63MB,
508.63MB, and 538MB, respectively. Conversion from
mzXML to mzML format, as well as conversion of the
raw files to either mzXML or mzML format, was done
with MSConvert [24]. Finally, the selected data from the
MassIVE repository contain centroid data, double preci-
sion files 121 and ADH contain profile data, and file 110
contains both types.

Since FPC only works on numerical data, we first com-
pared the performance of MassComp to that of gzip and
FPC when applied only to the (m/z)-intensity pairs. MS-
Numpress is omitted in this experiment as we were unable
to run it solely on the numerical data. Table 1 shows the
results for 3 randomly selected files from each of the Mas-
sIVE experiments and the raw data after conversion to
the mzXML format (all presented sizes are expressed in
MBs). FPC only works on plain little-endian numerical
files, and hence the (m/z)-intensity pairs extracted from
the mzXML files were converted into the little-endian for-
mat prior to compression with FPC. No conversion is
made prior to compression with gzip and MassComp. The
results show that MassComp achieves the smallest com-
pressed size on the numerical data, offering space savings
ranging from 29% to 89%. This corresponds to an aver-
age improvement in compression ratio of 27% and 40%
when compared to gzip and FPC, respectively. Also, note
that FPC is outweighted by gzip in all tested data. This
may be due to the small number of pair elements found in
some of the scans, which may worsen the prediction per-
formed by FPC. For example, note that FPC obtains the
best compression ratio on double precision files 121 and
ADH, which both contain scans with tens of thousands
of pair elements, whereas the selected single precision

ftp://massive.ucsd.edu/

Yang et al. BMC Bioinformatics

(2019) 20:368

Page 4 of 10

Table 1 Results for FPC, gzip and MassComp when tested on the m/z-intensity pairs of some of the considered files, both in single and

double precision

mzXML Pairs FPC CR. gzip CR. MassComp CR. Gain gzip Gain FPC
MSV000080896 (single-precision)
9122 25 18 17.71 1.61 12 3333 9.4 47.78 21.67 46.92
9123 25 18 17.68 1.78 12 3333 9.4 47.78 21.67 46.83
9124 25 18 17.97 0.17 13 27.78 9.5 47.22 26.92 4713
MSV000080905 (single-precision)
54 7.1 4 3.84 4.00 37 7.50 2.8 30.00 2432 27.08
05 7.7 44 3.71 15.68 4.1 6.82 3.1 29.55 24.39 16.44
07 9 4.7 448 4.68 43 851 3.2 3191 25.58 28.57
MSV000081123 (single-precision)
neg42 1 5.1 491 3.73 45 11.76 3.5 31.37 2222 28.72
pos75 6.7 3.6 343 4.72 32 1.1 25 30.56 21.88 27.11
tag71 39 1.7 1.51 11.18 15 11.76 1.1 35.29 2667 27.15
Raw Data (double-precision)
110 69 50 41.56 16.88 21 58 1 78 47.62 73.53
121 2,500 1,900 1,257 33.84 986 48.11 856 54.95 13.18 31.90
ADH 1,900 1,500 1,082 27.85 320 78.67 154 89.73 51.88 85.77
Average single-precision
5.28 16.88 36.83 23.92 32.89
Average double-precision
26.19 61.59 74.23 37.56 63.73
Average all
10.51 28.06 46.18 2733 40.60

All sizes are expressed in MBs. Column mzXML denotes the size of the mzXML file, whereas Pairs contains the size of only the numerical data (including possible padding bits).
Best results are highlighted in bold. C.R. denotes compression ratio, computed as 100 — compressed size * 100/size of pairs. The gain of MassComp is computed as

1 — MassComp size/other size.

files contain generally scans with less than a thousand ele-
ments, leading to worse compression ratios. Recall also
that files 121 and ADH contain profile data, and hence are
more likely to have similar values in a consecutive order.
Similarly, note that MassComp also achieves the highest
compression ratios on the files containing profile data.

To further assess the benefits of MassComp, Table 2
shows the results of MassComp and gzip when applied
to the entire collection of files from the selected Mas-
sIVE experiments, and when considering the entire
files (i.e., not only the numerical data). MS-Numpress
is not included in this analysis as it only works on

Table 2 Results for gzip and MassComp when tested on whole mzXML

Num. Files Average mzxXML gzip CR. [std] MassComp CR. [std] Gain gzip
MSV000080896 9 34 299 168 43.81[0.39] 113 62.21[0.94] 32.74
MSV000080905 514 8 4,100 2,500 39.02 [1.62] 1,800 56.10 [0.81] 28.00
Platel 123 7.96 979 591 39.63 [1.33] 455 53.52[0.74] 23.01
Plate2 132 833 1,100 633 4245 [1.59] 486 55.82[0.73] 23.22
Plate3 135 8.15 1,100 690 37.27 [1.61] 528 52.00[0.84] 2348
Plate4 124 8.06 999 608 4[1.79] 467 53.25[0.88] 23.19
MSV000081123 54 8 406 218 46.31[3.01] 165 59.36 [1.90] 24.31
Average 43.05[2.95] 59.22 [2.22] 2835

Results show the total size of the compressed files when considering all mzXML files within each MassIVE experiment, as well as the compression ratio (denoted by C.R.). We
also included the standard deviation, denoted by std. The compression ratio and the gain of MassComp with respect to gzip is computed as in Table 1. Results for experiment
MSV000080905 are split into different Plates, as provided in the MassIVE repository, in addition to the overall performance. All sizes are expressed in MBs.

Yang et al. BMC Bioinformatics (2019) 20:368

mzML files. The mzXML files of MassIVE experiment
MSV000080905 are organized in 4 different folders,
namely Platel, Plate2, Plate3 and Plate4, and hence we
also show the results for each of them individually. For
each experiment we also specify the number of files and
the average size of each of them (columns Num. Files and
Average, respectively). All sizes are expressed in MBs, and
the best results are highlighted in bold. We also specify the
compression ratio of each algorithm, as well as the gain of
MassComp with respect to gzip (these metrics are com-
puted in the same way as in Table 1). We observe that
MassComp consistently outperforms gzip on the tested
files, with compression gains ranging from 24 to 32%. The
performance of MassComp is also more consistent across
files of a given experiment, as indicated by the standard
deviation (only for experiment MSV000080896 this is not
the case, which corresponds to the one with the least
amount of files). In addition, MassComp offers on aver-
age space savings of almost 60%. For example, the space
needed to store MS data for experiment MSV000080905
is decreased from 4.1GB to 1.8GB, showing the potential
of MassComp to significantly reduce the footprint of MS
data.

Table 3 shows the compression and decompression
times of both gzip and MassComp when applied to
all mzXML files of the selected MassIVE experiments,
as well as to the double-precision data. As it can be
observed, the compression time of gzip and MassComp
is comparable. However, gzip is faster at decompres-
sion, since MassComp needs to reassemble the mzXML
files from the compressed data. For example, for exper-
iment 80896, MassComp and gzip employ 33 and 23
s for compression, respectively, whereas they employ 6
min and 4 s for decompression. In addition to the time
needed to reassemble the file, a significant amount of

Table 3 Compression and decompression times of gzip and
MassComp when applied to all mzXML files of the selected
MassIVE experiments, as well as the double-precision data

CT.gzip D.T.gzip CT MassComp D.T.MassComp

MSV000080896 23 4 33 360
MSV000080905 241 47 359 3,980
Platel 59 11 85 930
Plate2 59 12 90 990
Plate3 65 13 97 1,100
Plate4 58 11 87 960
MSV000081123 24 4 34 320
110 37 0.6 3.4 31
ADH 68 24 61 1670
121 132 27 101 1080

All times are expressed in seconds. Best performance is highlighted in bold

Page 50f 10

time (up to 50%) is spent in the arithmetic decoder
(see Methods section), and hence further optimization
of this step? could greatly improve the decompression
speed. For reference, compression and decompression of
the numerical data with FPC takes less than 30 s, for
all tested files. Finally, the memory usage of MassComp
is less than 4GB in all cases, for both compression and
decompression.

Finally, in Table 4 we show the comparison of Mass-
Comp to MS-Numpress when applied to the same ran-
domly selected files of the MassIVE experiments shown
in Table 1, as well as to the double-precision data. Note
that a fair comparison is difficult to make, as MassComp
works on mzXML files, whereas MS-Numpress can only
be applied to mzML files. For this reason, we refrain
from highlighting the smallest sizes in bold. Neverthe-
less, for the double-precision data both the mzXML and
mzML files occupy a similar space, and hence we can
conclude that MS-Numpress provides better compression
performance in this case. For example, file ADH occupies
1.90GB in mzXML format and 1.96GB in mzML format,
and the compressed size of MassComp and MS-Numpress
is 469MB versus 145MB, respectively. However, note that
MS-Numpress is lossy in this case, and hence the exact
numerical values can not be recovered.

Discussion

The above results demonstrate the benefits of designing
specialized compressor schemes tailored to the specific
data, in this case Mass Spectrometry data. In particular,
we have presented MassComp, a lossless compressor opti-
mized for the m/z-intensity values that characterize MS
data. MassComp is able to reduce the sizes of the m/z-
intensity pairs by 37% and 74% on average, on single and
double precision data, respectively. In contrast, the gen-
eral compressor gzip achieves on average 28% reduction
in size, whereas the numerical compressor FPC attains on
average only 10% reduction. Note that even though single
MS files may be small, a single experiment generally pro-
duces several files, which can account for several tens of
GBs. Efficient compressed representations can therefore
alleviate storage requirements for MS data.

For ease of use, MassComp accepts mzXML files, and
compresses the remaining data (i.e., everything but the
pairs) using the general compressor gzip. One of the
drawbacks of MassComp in its current form is the decom-
pression times, which are higher than those of gzip. The
reasons are mainly the need of reassembling the mzXML
file and the use of a multi-symbol arithmetic encoder.
However, the running time could be greatly improved
by compressing and decompressing the m/z-intensity
pairs of each scan in parallel, as well as the metadata.
Other improvements in decompression times could come
from using a binary arithmetic encoder rather than a

Yang et al. BMC Bioinformatics (2019) 20:368

Page 6 of 10

Table 4 Compression performance of MassComp and MS-Numpress, the latter run with numLin, numPic and zIib as it was found to

offer the best performance

File ID mzXML MassComp CR. mzML MS-Numpress CR.
MSV000080896

9122 25 11.64 5344 53.85 21.84 59.44
9123 25 11.58 53.68 53.77 2181 5944
9124 25 11.72 53.12 5453 22.07 59.53
MSV000080905

54 7.1 4.74 3324 2091 14.75 29.46
05 7.7 5.05 3442 2217 15.05 3212
07 9 523 41.89 2292 15.25 3346
MSV000081123

neg42 11 7.045 35.95 34.46 2573 2533
pos75 6.7 4.568 31.82 20.34 14.21 30.14
TAG71 39 2.782 2867 1336 10.52 21.26
110 69 27.08 60.75 80.92 2542* 68.59
121 2,500 1,104.93 55.80 2,587.45 307.07* 88.13
ADH 1,900 469.51 7529 1,965.63 145.25* 9261

“Lossy compression

Since MassComp works on mzXML files and MS-Numpress on mzML files, an exact comparison is not possible, and hence we refrain from highlighting the smallest

compressed sizes in bold. All sizes are expressed in MBs

multi-symbol one. This can be achieved by first bina-
rizing the symbols to be compressed, as done in video
coding standards by means of CABAC [25], for example
(note however that some loss in compression ratio may be
expected in this case). Another improvement could come
from incorporating the compression method of Mass-
Comp for the m/z-intensity pairs directly into the current
formats for storing MS data, that is, mzXML and mzML
files. Note that this would reduce the files by 46% on aver-
age (see Table 1). Then, downstream applications that use
the MS data could decompress each scan as needed.

Finally, note that MassComp is completely lossless,
in contrast to MS-Numpress that is lossy for double-
precision data. Future extensions of MassComp could
consider lossy options for these data. However, such an
extension should be accompanied by an exhaustive analy-
sis on how the loss in precision may affect the downstream
applications that use MS data in practice (see [16] for
some preliminary results on this regard). This analysis
should include several data sets and applications, as done
for the case of lossy compression of quality scores present
in genomic data [26]. Further work could also include sup-
port for random access of the pairs corresponding to the
different scans.

Conclusions

As a key technique for proteomics and metabolomics
analyses, mass spectrometry (MS) is widely used in biol-
ogy research. As a result, the amount of MS data has

significantly increased in recent years. For example, the
MS repository MassIVE contains more than 123TB of
data. Somehow surprisingly, these data are stored uncom-
pressed, hence incurring a significant storage cost. Effi-
cient representation of these data is therefore paramount
to lessen the burden of storage and facilitate its dissem-
ination. This has been the case in other omics datasets,
such as genomics, where there has been a growing interest
in designing specialized compressors for raw and aligned
genomic data (see [17] and references therein).

We have presented MassComp, a specialized lossless
compressor for MS data. MS data is mainly composed
of mass to charge ratio (m/z)-intensity pairs stored in
base64 format. These pairs correspond to floating-point
numerical data, which are generally difficult to compress.
Due to the different nature of m/z and intensity values,
MassComp employs different compression strategies for
each of them. We tested the performance of the pro-
posed algorithm on several datasets retrieved from the
MassIVE repository, as well as on some of the datasets
used in [16]. When tested only on the numerical pairs, we
show that MassComp outperforms both the general loss-
less compressor gzip and the numerical compressor FPC
in compression ratio. In particular, MassComp exhibits
up to 51 and 85% improvement when compared to gzip
and FPC, respectively. In addition, MassComp is able to
reduce the size of the pairs by 46% on average, in con-
trast to gzip and FPC, which on average reduce the sizes
by 28% and 10%, respectively. When tested on the whole

Yang et al. BMC Bioinformatics (2019) 20:368

mzXML files, MassComp showed a 28% improvement
with respect to gzip, and an average compression ratio
of 59%. Finally, MS-Numpress offers better compression
results for double-precision data, however the algorithm
is lossy, whereas MassComp is lossless, in that the data can
be recovered exactly.

These results demonstrate the potential of MassComp
to significantly reduce the footprint of MS data, and show
the benefits of designing specialized compression algo-
rithms tailored to MS data. MassComp is an addition to
the family of omics compression algorithms designed to
lessen the storage burden and facilitate the exchange and
dissemination of omics data.

Methods

MassComp is a specialized lossless compressor for MS
data. In particular, MassComp is optimized to compress
the (m/z)-intensity pairs, and applies the general lossless
compressor gzip to the remaining data. In its current for-
mat, MassComp accepts as input mzXML files. However,
note that various conversion software are available to con-
vert between the mzML and mzXML formats [24, 27],
and hence the proposed algorithm MassComp can be
potentially applied to mzML files as well. Furthermore, the
(m/z)-intensity pairs data is equivalent in both formats,
and hence the proposed compression method could be
applied seamlessly after extraction of these pairs.

Due to the different nature of the mass to charge (m/z)
ratios and the ion count (intensity) values, MassComp
uses different compression strategies for each of them.
Thus MassComp first extracts the (m/z)-intensity pairs
from the available scans, and after decoding the base64
data, separates the pairs into m/z and intensity, and
encodes each category individually. In the following we
describe each of the strategies employed by the proposed
algorithm MassComp in more detail.

Base64 decoding

MassComp decodes the base64 symbols of the (m/z)-
intensity pairs and expresses each value in the IEEE 754
standard for single- or double-precision floating-point
format. For each file, MassComp automatically detects the
adequate precision, specified in the peaks precision.

Page 7 of 10

For single-precision, each symbol in the IEEE 754 stan-
dard occupies 4 bytes (32 bits) in computer memory, and
it is able to represent a wide dynamic range of values by
using a floating point, with 6 to 9 significant decimal dig-
its precision. Specifically, the first bit is a sign bit, followed
by an exponent width of 8 bits and a significand precision
(fraction) of 23 bits. See Fig. 2 for an example. For double-
precision, the format occupies 8 bytes (64 bits) instead,
with 1 bit for the sign, 11 bits for the exponent, and 52 for
the fraction.

The compression of the mass-to-charge ratios and ion
counts (intensities) differ slightly for single and double
precision. In the following we first focus on single preci-
sion, and then show how the methods are extended for
double precision.

Mass-to-charge ratio (m/z) compression

Single-precision: In most cases, ion scan is sequential,
leading to m/z values that are smooth and confined,
and always monotonically increasing. MassComp takes
advantage of this and implements a variation of delta
encoding for them. In particular, MassComp first converts
each IEEE 754 standard single-precision floating-point
value into its equivalent hexadecimal representation (cor-
responding to 8 hexadecimal symbols). Differences of
adjacent values are then calculated for each digit. Derived
from the smoothness of mass-to-charge ratio values, the
computed differences contain many zeros at front. The
length of the front zeros is encoded by means of an
arithmetic encoder. The output of the arithmetic encoder
together with the remaining non-zero parts of the differ-
ence are written to the output. Due to the uniformity of
the non-zero parts no further compression is applied to
them. This process is depicted in Fig. 3.

The number of (m/z)-intensity pairs varies greatly from
scan to scan, ranging from a few pairs to several thou-
sands of them. To account for those scans with fewer
pairs, the employed arithmetic encoder is not adaptive
and hence the symbol frequencies are first computed
and stored in the output. Note that an adaptive scheme
needs to compress several values before it can learn the
statistics of the data, and thus it may perform poorly in
these cases.

sign exponent fraction
(1 bits) (8 bits) (23 bits)
001111100 | 01000000000000000000000 | =0.15625
31 30 23 22 (bit index) 0
Fig. 2 Example for representing value 0.15625 in the [EEE 754 standard. The value can be computed from the binary representation as:
=001 (14 28, bys-27) 27127, with e = Yo b2’

Yang et al. BMC Bioinformatics (2019) 20:368 Page 8 of 10
m/z in hexadecimal
2 4 8 f e e
4 2 f 1 2
2 4 3 d 3 a e

difference in hexadecimal

3 4
0 0 4 9 c
reshaped difference
front-zero lengths non-zero differences
3 51 .| . f 5 0 3 4 |14 1|9 C

arithmetic encoding

m/z compression output

front-zero lengths

non-zero differences

Fig. 3 Schematic of the encoding performed by the proposed algorithm MassComp for the compression of the mass-to-charge (m/z) ratio values

The decompressor interprets encoded mass-to-charge
ratios by zero-padding the front zeros of its differ-
ences and adding the previous decompressed hexadecimal
values.

Double-precision: The method used to compress the
m/z values in double-precision format is very similar to
the single precision case. However, some modifications
are needed, as in the double-precision format the corre-
sponding hexadecimal representation occupies 16 sym-
bols instead. We observe that in this case, when taking the
difference between adjancent values, several zeros appear
in the last positions. Hence in addition to the front-zeros,
we also encode the number of back-zeros with an arith-
metic encoder. The remaining of the method remains the
same.

Intensity (ion count) compression

Single-precision: Unlike the mass to charge ratio values,
intensity values are not smooth and increasing, mak-
ing them more difficult to compress efficiently. However,
these data are generated by mass spectrometers, which
have a limitation of range. As discussed above, the first
9 bits in the single-precision IEEE 754 floating-point for-
mat correspond to the sign and exponent, and thus they

are very likely to be the same across different intensity
values. Furthermore, due to the finite precision of the
mass spectrometer, bits from last positions (i.e., bits corre-
sponding to the fraction) sometimes also share similarity
with previous values.

Hence, we developed a compression method based on
“match” compression for the single-precision floating-
point intensity values. Briefly, MassComp first looks for
a perfect match of several predefined bits of the cur-
rent value with previously compressed ones. If a match
is found, a pointer indicating the position to the previous
value is stored, together with the residual (i.e., the non-
matching bits). If a match is not found, the pointer is set
to zero and the unmatched data is stored.

Initially, MassComp inspects the first 50 intensity val-
ues and decides searching a perfect match for the first
8 bits only, or the first 8 bits together with the last 16.
This decision is done adaptively for each scan, and it is
based on the number of matches found for each case (i.e.,
the one with more matches is selected). Hence, for each
scan, once the selection is made, it is applied to all inten-
sity values belonging to that scan. Note, however, that the
decision may vary from scan to scan. Though the first 9
bits are the sign bit and the exponent, MassComp only

Yang et al. BMC Bioinformatics (2019) 20:368

searches for a match in the first 8 bits to achieve a bal-
ance between compression ratio and speed. The base64
intensity values are first converted to hexadecimal, and
thus it is more efficient to implement the searching algo-
rithm in an integer number of hexadecimal symbols (and
hence multiple of 4 bits). In addition, working and oper-
ating with bytes is more efficient. The match is sought
within the last 15 compressed intensity values, and thus
the pointer can take values in {0, 1, ..., 15}. Recall that 0
is reserved to indicate no match. To summarize, inten-
sity values are encoded in three blocks: pointers, residuals,
and unmatched data. The pointers are further compressed
with an arithmetic encoder. Figure 4 shows an example
of the described method to compress the intensity values.
All experimental designed choices, such as inspecting the
first 50 intensity values, deciding on a match for the first
8 bits or also the last 16, as well as looking for a match to
only the previous 15 values, were decided based on sim-
ulations, as these were found to offer the best trade-off
between compression performance and speed.

Decompression works as follows. MassComp first reads
the pointer, which indicates whether a matched to a
previous value was found or not. If the pointer is zero,
the decompressor extracts 32 bits from the unmatched
binary block. If the pointer is non-zero, the correspond-
ing previously decoded value is found and the matched
bits extracted. These bits are then combined with the
residual bits (i.e., the non matching bits extracted from
the residual block) to reconstruct the intensity value.

Page 9 0of 10

Double-precision: Recall that each intensity values
in double-precision is expressed with 16 hexadecimal
symbols. The method employed to compress these values
is similar to that of the single-precision format. However,
in this case we look for a match of either the first 8 bits or
the first 8 bits together with the last 32 bits. The pointers,
residuals, and unmatched data are then encoded in the
same way as in the single precision version.

Implementation details:

MassComp is implemented in C++, and works in Win-
dows and Linux. The code is freely available for download
at https://github.com/iochoa/MassComp. The input file
to MassComp is an mzXML file, but we also provide
scripts to facilitate the compression and decompression of
several mzXML files within a directory.

To parse the original mzXML file and reconstruct it
from the compressed data, MassComp uses the C++ XML
parser TinyXML-2 [28]. After parsing the file, the m/z-
intensity pairs are effectively compressed and the output
stored in a binary file. The remaining metadata is stored in
another file, and the two files are then further compressed
with the general lossless compressor algorithm gzip. At
the time of decompression these two files are extracted,
and after decoding of the m/z-intensity pairs from the
binary file, the original mzXML file is reconstructed. Both
the encoder and decoder detect the precision of the m/z-
intensity pairs automatically, and use the single or double
precision method described above accordingly.

intensity in hexadecimal

4 4 8 4 2 0 0 0
4 4 1 a 4 0 0 0
4 4 7 a 4 0 0 0
4 3 c 2 0 0 0 0
4 4 2 5 4 0 (0] 0
Searching perfect match for value
44254000 in bits 31~24 and 15~0
pointer residual unmatched data
I R 5 |
arithmetic encoding
intensity compression output
| pointer | residual | unmatched data

Fig. 4 Schematic of the method employed by MassComp to compress the intensity values

https://github.com/iochoa/MassComp

Yang et al. BMC Bioinformatics (2019) 20:368

Availability and Requirements

Project name: MassComp

Project home page: https://github.com/iochoa/MassComp
Operating system(s): Linux and Windows

Programming language: C++

Other requirements: no

License: none

Any restrictions to use by non-academics: no

Endnotes

1 MSConvert GUI only supports Windows, and running
FPC on Linux produced the same results.

2This is out of the scope of this paper but will be
considered in future versions of the algorithm. See the
Discussion section for details.

Abbreviations
m/z: Mass to charge ratio; MS: Mass spectrometry; XML: eXtensible markup
language

Acknowledgements
The authors would like to thank Hosein Mohimani for initial motivation for this
work.

Authors’ contributions

|0 proposed the project idea, RY and XC developed the compression method
and conducted the experiments, and RY, XC, and IO evaluated and interpreted
the results. All authors have read and approved the final manuscript.

Funding

Publication of this article was sponsored by the UORTSP of Tsinghua
University, grant number 2018-182799 from the Chan Zuckerberg Initiative
DAF, an advised fund SVCF, and an SRI grant from UIUC. The funding bodies
did not play any roles in the design of the study and collection, analysis, and
interpretation of data and in writing the manuscript.

Availability of data and materials

All data used in the manuscript is available online. MassComp is written in
C++ and freely available for download at https://github.com/iochoa/
MassComp, together with instructions to install and run the software.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

!Electrical Engineering Department, University of Southern California, CA, Los
Angeles, USA . 2Electrical and Computer Engineering Department, University
of lllinois at Urbana-Champaign, IL, Urbana, USA .

Received: 6 February 2019 Accepted: 20 June 2019
Published online: 01 July 2019

References

1. Marshall AG, et al. Fourier transform ion cyclotron resonance mass
spectrometry: a primer. Mass Spectrom Rev. 1998;17(1):1-35.

2. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature.
2003;422(6928):198-207.

3. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based
metabolomics. Mass Spectrom Rev. 2007;26(1):51-78.

Page 10 of 10

4. Oppermann FS, Gnad F, et al. Large-scale proteomics analysis of the
human kinome. Mol Cel Proteomics. 2009;8(7):1751-64.

Bakar M, et al. Metabolomics—the complementary field in systems biology:
a review on obesity and type 2 diabetes. Mol BioSyst. 2015;11(7):1742-74.

6. Duarte TT, Spencer CT. Personalized proteomics: the future of precision
medicine. Proteomes. 2016;4(4):29.

7. Csordas A, Ovelleiro D, et al. Pride: quality control in a proteomics data
repository. Database. 2012;2012:D1063-D1069.

8. CraigR, et al. Open source system for analyzing, validating, and storing
protein identification data. J Proteome Res. 2004;3(6):1234-42.

9. Desiere F, Deutsch EW, et al. The peptideatlas project. Nucleic Acids Res.
2006;34(suppl_1):655-8.

10. Farrah T, Deutsch EW, et al. Passel: the peptideatlas srmexperiment
library. Proteomics. 2012;12(8):1170-5.

11. Martens L, Hermjakob H, Jones P, et al. Pride: the proteomics
identifications database. Proteomics. 2005;5(13):3537-45.

12. Jones P, Coté RG, et al. Pride: a public repository of protein and peptide
identifications for the proteomics community. Nucleic Acids Res.
2006;34(suppl_1):659-63.

13. massIVE. Mass Spectrometry Interactive Virtual Environment. https://
massive.ucsd.edu/ProteoSAFe/static/massive jsp. Accessed: Aug 2017.

14. Pedrioli PG, Eng JK, et al. Acommon open representation of mass
spectrometry data and its application to proteomics research. Nat
Biotechnol. 2004;22(11):1459-66.

15. Hermjakob H. The hupo proteomics standards initiative-overcoming the
fragmentation of proteomics data. Proteomics. 2006;6(52):34-8.

16. Teleman J, et al. Numerical compression schemes for proteomics mass
spectrometry data. Mol Cel Proteomics. 2014;13(6):1537-42.

17. Numanagic |, et al. Comparison of high-throughput sequencing data
compression tools. Nat Methods. 2016;13(12):1005.

18. Roguskit, et al. FaStore: a space-saving solution for raw sequencing data.
Bioinformatics. 2018;34.16:2748-56.

19. Malysa G, Hernaez M, et al. Qvz: lossy compression of quality values.
Bioinformatics. 2015;31(19):3122-9.

20. Burtscher M, Ratanaworabhan P. Fpc: A high-speed compressor for
double-precision floating-point data. IEEE Trans Comput. 2009;58(1):
18-31.

21. Edwards NJ. Peparml: A meta-search peptide identification platform for
tandem mass spectra. Curr Protoc Bioinforma. 2013;44(1):13-23.

22. Metzker ML. Sequencing technologies—the next generation. Nat Rev
Genet. 2010;11(1):31.

23. LiH, Handsaker B, et al. The sequence alignment/map format and
samtools. Bioinformatics. 2009;25(16):2078-9.

24. MSconverter. Data Conversion to GNPS Compatible Formats - .mzXML
and .mzML. https://bix-lab.ucsd.edu/display/Public/Data+Conversion+
to+GNPS+Compatible+Formats+-+.mzXML+and+.mzML. Accessed: Aug
2017.

25. Marpe D, Schwarz H, Wiegand T. Context-based adaptive binary
arithmetic coding in the h. 264/avc video compression standard. IEEE
Trans Circ Syst Video Technol. 2003;13(7):620-36.

26. Ochoal, Hernaez M, Goldfeder R, Weissman T, Ashley E. Effect of lossy
compression of quality scores on variant calling. Brief Bioinforma.
2016;18(2):183-94.

27. FileConverter. FileConverter — Converts between different MS file formats.
http://ftp.mifu-berlin.de/pub/OpenMS/release1.9-documentation/html/
TOPPFileConverter.html. Accessed: Aug 2017.

28. TinyXML-2. http://www.grinninglizard.com/tinyxml2/. Accessed: Aug
2017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://github.com/iochoa/MassComp
https://github.com/iochoa/MassComp
https://github.com/iochoa/MassComp
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
https://bix-lab.ucsd.edu/display/Public/Data+Conversion+to+GNPS+Compatibl e+Formats+-+.mzXML+and+.mzML
https://bix-lab.ucsd.edu/display/Public/Data+Conversion+to+GNPS+Compatibl e+Formats+-+.mzXML+and+.mzML
http://ftp.mi.fu-berlin.de/pub/OpenMS/release1.9-documentation/html/TOPPFileConverter.html
http://ftp.mi.fu-berlin.de/pub/OpenMS/release1.9-documentation/html/TOPPFileConverter.html
http://www.grinninglizard.com/tinyxml2/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	Discussion
	Conclusions
	Methods
	Base64 decoding
	Mass-to-charge ratio (m/z) compression
	Intensity (ion count) compression

	Availability and Requirements
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

