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Abstract

Background: Alkaloids, a class of organic compounds that contain nitrogen bases, are mainly synthesized as
secondary metabolites in plants and fungi, and they have a wide range of bioactivities. Although there are thousands
of compounds in this class, few of their biosynthesis pathways are fully identified. In this study, we constructed a
model to predict their precursors based on a novel kind of neural network called the molecular graph convolutional
neural network. Molecular similarity is a crucial metric in the analysis of qualitative structure-activity relationships.
However, it is sometimes difficult for current fingerprint representations to emphasize specific features for the target
problems efficiently. It is advantageous to allow the model to select the appropriate features according to data-driven
decisions for extracting more useful information, which influences a classification or regression problem substantially.

Results: In this study, we applied a neural network architecture for undirected graph representation of molecules. By
encoding a molecule as an abstract graph and applying "convolution" on the graph and training the weight of the
neural network framework, the neural network can optimize feature selection for the training problem. By
incorporating the effects from adjacent atoms recursively, graph convolutional neural networks can extract the
features of latent atoms that represent chemical features of a molecule efficiently. In order to investigate alkaloid
biosynthesis, we trained the network to distinguish the precursors of 566 alkaloids, which are almost all of the
alkaloids whose biosynthesis pathways are known, and showed that the model could predict starting substances with
an averaged accuracy of 97.5%.

Conclusion: We have showed that our model can predict more accurately compared to the random forest and
general neural network when the variables and fingerprints are not selected, while the performance is comparable
when we carefully select 507 variables from 18000 dimensions of descriptors. The prediction of pathways contributes
to understanding of alkaloid synthesis mechanisms and the application of graph based neural network models to
similar problems in bioinformatics would therefore be beneficial. We applied our model to evaluate the precursors of
biosynthesis of 12000 alkaloids found in various organisms and found power-low-like distribution.
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Background
The term “alkaloid” was introduced by German phar-
macist Wilhelm Meissner and traditional definitions of
alkaloids emphasized their bitter taste, basicity, plant ori-
gin, and physiological actions. The presence of at least
one nitrogen atom is a general chemical feature of the
alkaloids [1]. Alkaloids have extremely divergent chem-
ical structures including heterocyclic ring systems and
they encompass more than 20,000 different molecules in
organisms [2]. To facilitate a systematic understanding
of the alkaloids, the species—metabolite relation database
(KNApSAcK Core DB [3]) has been established. To date,
KNApSACcK Core DB includes 12,243 alkaloid compounds
[4-6]. Alkaloids can be classified according to the start-
ing substances of their biosynthetic pathways, such as the
amino acids that provide nitrogen atoms and part of their
skeleton including terpenoids and purines [7]. Thus, iden-
tification of starting substances that synthesize a variety
of alkaloids is one of the most important keys for the
classification of natural alkaloid compounds. Chemical
structures of alkaloids are very diverse and the extrac-
tion of features of chemical compounds from molecular
structures is crucial for the classification of alkaloid com-
pounds. Although several chemical fingerprinting meth-
ods have been developed for prediction of the chemical
and biological activities of alkaloids, the disadvantages
of these methods lie in the fact that these kinds of fin-
gerprints have some redundancy in their representation,
and therefore do not perform well in analysis of compli-
cated chemical ring systems [8-10]. For example, in the
path-based fingerprint “FP2” implemented in Open Babel
[11], chemical structures are represented by a bit string of
length 1024 or longer, which represents all linear and ring
substructures ranging from one to seven atoms, exclud-
ing the single-atom substructures of C and N. The circular
fingerprint “ECFP” (extended-connectivity fingerprint) is
a 1024-bit code mapped by a hashing procedure from cir-
cular neighboring atoms in a given diameter [12]. More-
over, there are projects to provide comprehensive sets
of chemical descriptors, for example, PaDEL descriptor
generator provides 1875 descriptors and and 12 types of
fingerprints (total 16092 bits) [13]. However, those vari-
ables are not always important or relevant with the tar-
get features so that feature selection and optimization is
indispensable. In the classification of alkaloids, these tech-
niques to extract features from chemical structures were
insufficient because of the diverged heterocyclic nitroge-
nous structures; ie., 2546 types of ring skeleton were
detected in 12,243 alkaloids accumulated in KNApSAcK
Core DB [6]. Here, the ring skeleton means the ring sys-
tem in a chemical compound detected in a simple graph
representation of a chemical.

Thousands of physical and chemical parameters have
been proposed to describe chemical features of organic
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compounds, and the evaluation of selections from those
feature variables based on the optimized regression or
on the classification for target variables is complex. In
this study, we propose a classification system of alkaloids
according to their starting substances based on a graph
convolutional neural network (GCNN), which is a model
that generalizes convolution operation for abstract graph
structures, instead of the operations on 1D or 2D grids of
variables that are commonly used in convolutional neu-
ral networks (CNN) [14, 15]. GCNN can be applied to
arbitrary network structures, and molecular graph con-
volutional neural networks (MGCNN) are a classification
and regression system that can extract molecular features
from their structure [16—19]. This model focuses on the
combination of atoms and their neighbors, and regards
their molecular structures as a graph. Chemical descrip-
tors for physicochemical features of compounds have long
been discussed in research on chemoinformatics. Such
descriptors are mainly used as inputs of machine learn-
ing or statistical analysis, in which various models and
thousands of features including the number of bases and
substructures, electric atmosphere, and so on have been
proposed [20]. However, the significance of these features
should depend on the specific problem and the selection
of optimal features is required; otherwise, most of the
variables would become a source of noise for statistical
analysis.

The advantage of applying GCNN to the chemical struc-
ture is automatic optimization of the structural features;
in other words, various combinations of local groups of
atoms in some ranges can be considered through the
weights of neural networks. In each convolution step, the
weighted sum of feature vectors only in the adjacent atoms
will be taken into account. By applying the convolution
filters multiple times, we can gather information of neigh-
boring atoms recursively, so an MGCNN can extract local
molecular structures such as circular fingerprints. More-
over, during the training stages, the weights on the feature
filters will be optimized for the target task. Therefore, we
do not need to count unimportant or uncorrelated finger-
prints and can focus on the features within appropriate
ranges.

In this study, we applied the MGCNN model for classi-
fication of alkaloids, to understand their biosynthetic pro-
cesses. Given that the biosynthesis pathways of alkaloid
families as secondary metabolites in plants, microorgan-
isms, and animals are so diverse and complex, it is worth
computing to estimate “the starting substances” of each
alkaloid from its molecular structures. By using alkaloids
for which biosynthesis pathways are known as a training
data set, the MGCNN model is trained to classify them
into the categories defined by the starting compounds,
e.g., amino acids, isopentenyl pyrophosphate, etc. Note
that when an alkaloid is synthesized by combining several
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precursors, it will be classified into multiples categories.
We further applied the trained model for the remaining
alkaloids whose biosynthesis pathways are not clear, to
predict the starting compounds of their synthesis.

Methods

Fingerprints

We verified the performance of our model with two
descriptor sets using two machine learning models.
The descriptors were Extended-Connectivity Fingerprint
(ECFP) and PaDEL-Descriptor [13]. For ECFP, we com-
posed 1024-bit fingerprint with diameter 2. For PaDEL
descriptor, we generated 1D, 2D descriptors and all finger-
prints obtaining 17968 variables in total. We first removed
all non-informative variables, whose values are identi-
cal for all samples. Next, we computed the correlation
matrix and constructed networks connecting highly cor-
related (r > 0.6) variables. We found that the links
of the correlated variables composed of 507 connected
components. Then we randomly selected one variables
from each connected component of the correlation net-
work. We applied Random Forest (RF), Neural Networks
(NN), and also kernel Support Vector Machine (SVM)
by optimizing hyperparamters based on grid-search using
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these selected variables using “caret” packages in R
software [21].

Molecular graph convolution
Figure 1 shows a schematic diagram of MGCNN, which
consists of convolution, pooling, and gathering. Convolu-
tion and pooling operations are repeated for three times to
cover local molecular substructures. In MGCNN, molec-
ular structures are described as abstract graphs, i.e., ver-
tices as atoms and edges as chemical bonds, respectively.
As the initial input, atoms are represented by one-
hot vectors that represent atom types. For example, if
all molecules are composed of atoms {C,H,N,O}, one-hot
vectors for the corresponding atoms can be represented
by C =[1000]7,H=[0100]",N =[0010]7, and
o=[0001]7, respectively (Fig. 1a). Then, stages of con-
volution and pooling layers are applied to extract feature
vectors (Fig. 1b). The feature vectors of all atoms are gath-
ered in a single vector and applied for the classification of
alkaloids according to their starting substances.

Convolution and Pooling
As shown in Fig. 2, in MGCNN, convolution and pooling
layers are coupled to gather information from neighboring
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atoms. A convolutional filter in MGCNN (Fig. 2b) is
defined by Eq. (1):

> Wedys |, (1)

icAdj(i)

c+1
Vi =fReLLI

where vf is the vector of ith vertex as the input from
the cth layer, W.(d) is the weight of the cth convolution
layer, which depends on the distance d between the ith
and jth vertices, Adj(i) gives a set of adjacent vertices of
ith vertex (including the ith vertex itself), and freris is
the activation function known as the rectified linear unit
(ReLU) function [22]. Unlike convolution in regular grids,
the number of adjacent vertices depends on the molecu-
lar structures. Thus, the output vector of the convolution
layer (fo) is determined by taking into consideration the
relationships between neighboring atoms. In the pooling
layers (Fig. 2b), updating of feature vectors for atoms is

performed by comparing values Vf“ for each row of the

neighbors of the vertex i. In the present study, we chose
the maximum values for each row called max pooling in
Fig. 2b, where the red box represents the maximum value
of each element. We evaluated several different numbers
of convolution stages, i.e., pairs of convolution and pool-
ing layers changing from one to six stages. The length of
the feature vector in the last convolution layer is set to 128.
Furthermore, dropout [23] of 80% is applied for the input
layer, and 20% after each pooling layer to avoid overfitting.

Gather and classification

A gather layer is applied after the series of convolution
stages. In the gather layer, the final vector of the com-
pound is represented as the sum of the feature vectors
from all atoms. Then the molecular feature vector is
passed as the input for the networks for classification.
Note that some alkaloids are synthesized from com-
binations of several starting substances. Therefore, the
output of the classification is represented as pairs of
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(Px (positive) and Ny (negative)) nodes for each category k
corresponding to the kth starting substance. Correspond-
ing training labels are given by a binary vector y; =
(Jkps kn)- In the output layer, the set of output vector {yx}
is applied with a softmax function [24] and converted
into a probability value independently for each category,
respectively, so that one compound can be classified into
multiple (or no) categories. The loss function L({yx}, {¥x})
of the whole network is defined as the sum of cross
entropy of predictions for all starting substances [25],
as bellow,

K
LUyih (96D = = Y {up 10g k) + Fin log k) } -
k=1

(2)

We trained the weights in the convolution layers by opti-
mizing the weight parameters [26]. The goal of learning
in the MGCNN model is to optimize the loss function L
by updating the weights in the convolution layer [27, 28].
In the present study, the Adam (adaptive moment esti-
mation) [29] method was used for updating because it
works well in practice and compares favorably to other
stochastic optimization methods. We evaluated the per-
formance of the model by five fold cross-validation (CV5)
and leave-one-out cross-validation (LOOCYV). Since the
loss function converged after around 100 epochs in almost
all training data set, we fixed the number of epochs in
every validation to 300.

Data set

The training data used in this study are alkaloids for
which chemical structures and secondary metabolic
pathways are known. Secondary metabolic pathways of
alkaloids were constructed based on the scientific liter-
ature and KEGG [30, 31], and are open to the public
online at the KNApSAcK Database Portal as Cob-
Web Database ([32]). In this study, we used a total
of 849 training samples corresponding to 566 alka-
loids, which belong to 15 starting substances (Table 1);
i.e., nine amino acids, L-alanine (abbreviated by L-Ala),
L-arginine (L-Arg), L-aspartate (L-Asp), L-histidine (L-
His), L-lysine (L-Lys), L-phenylalanine (L-Phe), L-proline
(L-Pro), L-tryptophan (L-Trp), and L-tyrosine (L-Tyr);
one aromatic acid, anthranilate; and four terpenoids,
secologanin, isopentenyl diphosphate (IPP), geranylger-
anyl diphosphate (GGPP), cholesterol; and the other,
indole-3-glycerol phosphate (IGP). It should be noted
that, in the training samples, 316 alkaloids are pro-
duced by single starting substances (ID = 1, 10, 12,
14, 15, 20, 24, 26, 28 in Table 1) and the remaining
533 training samples are produced by multiple starting
substances.
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Results

Single classification in the MGCNN model

We evaluated the accuracy of the prediction of starting
substances by changing the network size, i.e., the number
of convolution stages, from one to six (Fig. 3). The best
accuracy was obtained by the three-stage networks. Con-
sidering this result, we fixed the number of convolution
stages to three in the following analysis.

To examine the effectiveness of MGCNN, we com-
pared the prediction accuracy of MGCNN with a random
forest [33] using a chemical fingerprint, namely 1024-
bit ECFP (extended-connectivity fingerprint) [12], since a
random forest is a commonly used method for classifica-
tion and regression [34]. We also compared our method
with a neural network with the same chemical fingerprint
[35, 36] to evaluate the advantages of the graph represen-
tation. Figure 4 shows the accuracy of the classification for
each of the 15 starting substances and their global aver-
age (Av) using the three methods evaluated by LOOCV.
The global averages were 95.2% for MGCNN, 65.6% using
the neural network model with ECFP, and 70.4% with
the random forest. Notably, the performance of the ran-
dom forest with ECFP varied widely among the starting
substances, implying that the importance of the informa-
tion depends greatly on the target problem. In contrast,
MGCNN could classify alkaloids better compared with
the random forest and the neural network with molecular
fingerprint for all starting substances. We confirmed the
prediction of MGCNN by CV5 and the accuracy for each
starting substances were in the range 94.7% 99.6% and the
average was 97.5%.

We also compared the performance of the network with
using the selected PaDEL descriptors and fingerprints.
Though the PaDEL descriptors and fingerprints com-
posed of around eighteen thousands variables, most of
them were non-informative for our alkaloid datasets, or,
highly correlated with each other. We chose 507 variables
by removing those non-informative variables beforehand
(detail procedure is explained in “Fingerprints” section
and applied RF, NN and SVM. The results showed very
high accuracy (96.2%, 93.4%, and 96.5% respectively) but
still significantly lower than that of MGCNN (p < 0.001)
. This result implies that feature selection is quite effec-
tive for improvement of prediction accuracy of pathway
classification and it is reasonable because the structures
of molecular skeletons depend on mainly difference of
biosynthesis processes and it can be described by choos-
ing corresponding fingerprint variables.

Multiclassification in the MGCNN model

The model was trained as a multilabel classifier; i.e., it was
trained for each label independently. In the biosynthetic
process of alkaloids, several compounds are biosynthe-
sized from multiple starting substances; e.g., nicotine is
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Fig. 3 Accuracy for the number of layers

synthesized from multiple starting substances, L-Asp and
L-Arg. In practical applications using prediction of start-
ing substances, it is important to evaluate the difference
in the number of starting substances between training and
predicted alkaloid compounds. Over 44% of the alkaloids
were biosynthesized from multiple starting substances
(average, 1.49), which is comparable with the results of
the present model (average, 1.70). In fact, relationships
between the predicted (pr) and original numbers (no) of
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starting substances can be regarded as pr = no with
95% confidence interval (the correlation coefficient r
0.97, —48.4 < intercept < 87.8,0.43 < slope < 1.21).

Multilabeled classification by MGCNN was precise, and
alkaloid compounds in most of the categories of starting
substances (ID = 3-8, 14, 19, 20, 22, 24-26 in Fig. 5) were
correctly classified. Here, the range of the histogram is set
between 0 and 1, and classification rates are represented
by red bars and misclassification rates by blue bars.

L-Arg and L-Pro are the starting substances for alka-
loids of category 10, and L-Asp is the starting sub-
stance for alkaloids of category 11. In most cases, our
approach correctly predicted starting substances for these
two categories of alkaloids. However, in some cases, we
observed the trend that L-Asp and L-Arg were predicted
as starting substances of alkaloids of categories 10 and
11, respectively. It is well known that L-Pro, L-Asp, and
L-Arg are highly associated in the secondary biosyn-
thetic pathways; i.e., pyridine alkaloids [37], tropane alka-
loids [38], and cocaine alkaloids [39] are biosynthesized
from L-Pro, L-Asp, and L-Arg. The biosynthetic path-
ways from L-Pro, L-Asp, and L-Arg are displayed in alka-
loid biosynthetic pathways in the KNApSAcK CobWeb.
The numbers of alkaloids starting from L-Arg, L-Asp,
and L-Pro and those from L-Tyr, L-Phe, and anthrani-
late in the training data are shown in Fig. 6. In total,
46% of alkaloids involving starting substances L-Arg, L-
Asp, and L-Pro are synthesized from multiple substances
(Fig. 6a).
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In the case of category 18, most alkaloids were cor-
rectly assigned to L-Tyr and L-Phe as starting substances
but tended to be misclassified as anthranilate. Otherwise,
in the case of category 17, some alkaloids were cor-
rectly assigned to L-Phe and anthranilate, but some were

wrongly assigned to L-Tyr. Three starting substances,
L-Phe, L-Tyr, and anthranilate are commonly biosynthe-
sized from chorismate [40], and those chemical structures
are very similar to each other [41]. Only 3% of alkaloids
were biosynthesized from a combination of those three
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starting substances (Fig. 6b) and a priority of classifica-
tion of L-Tyr to L-Phe was observed in the MGCNN
model because the chemical graph of L-Tyr includes that
of L-Phe.

Discussion

Diversity of natural alkaloids based on starting substances
predicted by the MGCNN model

Estimation by MGCNN of the starting substances of alka-
loid biosynthesis is a remarkable topic with respect to
examining chemical diversity because, generally, although
the chemical structures of alkaloids are known, their
metabolic pathways are not. KNApSAcK Core DB [4, 5]
has stored 116,315 metabolite—species pairs and 51,179
different metabolites. Of them, 12,460 metabolites belong
to alkaloid compounds, which is comparable with the
estimation of the number of different plant-produced
alkaloids (approximately 12,000 alkaloids) [42]. An eval-
uation of the numbers of alkaloids linked to different
starting substances leads to information on the origin of
the creation and evolution of alkaloid diversity. To this
end, we applied the MGCNN model to 12,460 compounds
in the KNApSAcK DB. Figure 7 shows the number of
metabolites in KNApSAcK DB (test data) associated with
specific starting substances based on predicted results
by MGCNN against the corresponding number calcu-
lated based on metabolites with known pathways (train-
ing data). A large number of alkaloids originating from
starting substances L-Tyr and L-Trp are included in the
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Fig. 7 Relationship of the number of metabolites assigned to starting
substances between pathway-known metabolites (training data) and
metabolites in KNApSAcK Core DB. Amino acids, terpenoids, and
others are represented in red, blue, and green, respectively
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training data, and a large number of alkaloids are also
assigned to L-Tyr (3589 alkaloids) and L-Trp (2589 alka-
loids) by the MGCNN model. Otherwise, a relatively
small number of alkaloids are known to originate from
the starting substances L-Arg, L-Pro, L-Lys, and L-Asp
according to the training data, but a large number of
alkaloids were predicted to be associated with starting
substances L-Arg (4139 alkaloids), L-Pro (3145 alkaloids),
L-Lys (2901 alkaloids), and L-Asp (2625 alkaloids). It
should be emphasized that these six starting substances
that have been assigned to most of the KNApSAcK
DB metabolites fundamentally contribute to creating
chemically diverged alkaloids. Other starting substances,
four amino acids, L-Ala, L-Phe, L-His, anthranilate; and
four terpenoids, GGPP, IPP, cholesterol, and secolo-
ganin, play auxiliary roles to create chemically diverged
alkaloids.

In general, most alkaloids were predicted to be biosyn-
thesized by multiple starting substances, which is consis-
tent with the training data, in which 62% of alkaloids are
biosynthesized by multiple starting substances. The com-
binations of predicted starting substances for the reported
alkaloid data set can provide information about how to
create chemical diversity. We evaluated the predicted
starting substances of 12,460 alkaloids of KNApSAcK
Core DB and observed 231 categories of combinations
designated as starting groups. The MGCNN model did
not assign any starting substances to just 263 alkaloids (2%
of all alkaloids in the DB). Thus, the MGCNN model can
provide important and useful information on starting sub-
stances. The relationship between the number of starting
groups (y-axis) and the number of alkaloids in individ-
ual starting groups (x-axis) follows the power law (Fig. 8;
r = —0.80).

Figure 9 shows the 10 highest-frequency starting groups
(combinations of starting substances) associated with
each of the six major starting substances. Generally,
L-Tyr is the starting substance to produce benzylisoquino-
line alkaloids [42], spiroalkaloid alkaloids [43], catechol
amines [44], and betalains [45]. Approximately 2500 eluci-
dated chemical structures of benzylisoquinoline alkaloids
have been reported and are known to have potent phar-
macological properties [42, 46]. L-Tyr and anthranilate
are associated with the tetrahydroisoquinoline monoter-
pene skeleton in alkaloids, including ipecac alkaloids [47].
The number of alkaloids biosynthesized by only L-Tyr as
a starting substance is the largest (2135 alkaloids) (Fig. 9)
and the number of alkaloids originating from a combina-
tion of L-Tyr and anthranilate ranked third (634 alkaloids).
Thus, a large number of alkaloids are expected to be pro-
duced by L-Tyr and by a combination of L-Tyr and other
chemical substances.

Nonribosomal peptide synthesis (NRPS) is a key mecha-
nism responsible for the biosynthesis of diverged alkaloids
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in bacteria and fungi [48, 49]. The pairs of L-Trp and
anthranilate, and of L-Trp and L-Pro are the starting sub-
stances in alkaloids that are produced by NRPS associated
with fungal indole alkaloids [50]. L-Trp and secologanin
are starting substances for producing monoterpenoid
indole alkaloids, of which approximately 2000 compounds
are widely used in medicine [42]. Among L-Trp-related
groups (Fig. 9, L-Trp), the combination of L-Trp and
secologanin produces the largest number of alkaloids
(707 alkaloids), which is consistent with the diversity of
monoterpenoid indole alkaloids [42]. The pairs of L-Trp
and anthranilate, and of L-Trp and L-Pro also lead to
diverged alkaloids (634 and 108 alkaloids, respectively)
as reported in KNApSAcK Core DB. Only 244 alkaloids
that are mainly associated with beta-carboline alkaloids
[51] were classified to have a single L-Trp molecule as
a starting substance. In the case of L-Trp, combina-
tions of multiple starting substances tend to contribute
to diverged alkaloid production, whereas in the case of
L-Trp, it tends to serve as a starting substance by itself.
Combinations of the three starting substances, L-Asp, L-
Pro, and L-Arg, enable the biosynthesis of a very diverged
array of alkaloids such as pyrrolizidine alkaloids [52], pyri-
dine alkaloids, tropane alkaloids [53], and loline alkaloids
[54], and combinations of these three starting substances
and cholesterol also contribute to steroidal alkaloids. L-
Lys combined with other amino acids including L-Ala,
L-Arg, and L-Pro as starting substances biosynthesize
diverged alkaloids. Furthermore, L-Lys alone is the start-
ing substance to produce diverged alkaloids including
quinolizidine, indolizidine, lycopodium, and piperidine
alkaloids [55].

From the results obtained by MGCNN, we could eval-
uate and better understand the chemical diversity of
alkaloid synthesis according to starting substances based
on natural products and the species—metabolite relation
database KNApSAcK.

Comparison between MGCNN and fingerprint-based
methods

According to the comparison shown in Fig. 4, classifica-
tion results by the random forest was more accurate for
larger molecules, e.g., cholesterol, while the neural net-
work outperformed for smaller compounds such as amino
acids. This implies that fingerprints provide information
for larger molecules, but neural network can optimize
weights to evaluate features even for smaller molecules.
In many cases, the selection of relevant features and opti-
mization of weight can greatly improve the performance
of machine learning based on molecular fingerprints
[56, 57]. Moreover, it has been shown that CNN on graphs
can be trained to activate important fragments corre-
sponding to different tasks such as solubility and toxicity
prediction [58].
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Kearnes and others have also compared machine learn-
ing and GCNN models [59] using public datasets such
as PubChem BioAssay, Tox21 Challenge, and so on. The
authors demonstrated that GCNN is less sensitive for
the model parameters compared with fingerprint-based
methods. Flexibility and adaptability are general advan-
tages of the GCNN-based model. By changing the number
of convolution layers, almost all possible features of local
molecular structure can be extracted by using GCNN,
and adjustable weights on those feature variables through
the neural network allow the data-driven optimization
of features depending on various target tasks. Although
the present model only considers topological connections
between atoms, further development of GCNN to take
into account detailed 3D molecular structures will provide
more quantitative prediction of molecular features.

Conclusion

We have developed and applied the MGCNN model
for the classification and prediction of the starting sub-
stances used in alkaloid biosynthesis. The model could
predict starting substances of their pathways with an aver-
aged accuracy of 97%; whereas the averaged accuracy of
random forest and neural networks were 70% and 66%,
respectively. On the other hand, when we selected infor-
mative variables from thousands of descriptors and finger-
prints, the accuracy of Random Forest and simple Neural
Networks showed more comparable accuracy. The results
show that the model can classify individual alkaloids into
the starting substance groups very accurately, even though
it is a multilabeled classification problem that is gener-
ally more difficult than single-labeled classification. In
the MGCNN, although we considered only abstract topo-
logical binding between atoms, the information of the
neighboring atoms could be accumulated through feature
extraction using stacked multiple convolution layers and
the coefficient of the convolution filters could optimize
the weights regarding which atoms should be focused on
in each filter. By gathering information from each filter,
the classification network could optimize the weights to
learn the relationship between the extracted features and
the chemical properties of the given molecules.
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