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Abstract

Background: High-throughput experiments can bring to light associations between genes, proteins and/or
metabolites, many of which will be explainable by existing knowledge. Our aim is to speed elucidation of such
explanations and, in some cases, find explanations that scientists might otherwise overlook.

Results: We describe the MultiOmics Explainer, a new tool within the Pathway Tools software suite that leverages
what is known about an organism'’s metabolic and regulatory network to suggest explanations for the results of omics
experiments. Querying a database such as EcoCyc, the MultiOmics Explainer searches the organism’s network of
metabolic reactions, transporters, cofactors, enzyme substrate-level activation and inhibition relationships, and
transcriptional and translational regulation relationships to identify paths of influence among input genes, proteins
and metabolites. Results are presented in a combined metabolic and regulatory diagram. We present several
examples of explanations generated for associations found in the Escherichia coli literature.

Conclusions: The MultiOmics Explainer is a valuable tool that helps researchers understand and interpret the results
of their omics experiments in the context of what is known about an organism'’s metabolic and regulatory network. It
showcases the rich set of computational inferences that can be drawn from a database such as EcoCyc that encodes a

diverse range of biological interactions.
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Background

High-throughput experiments can bring to light associa-
tions between genes, proteins and/or metabolites whose
relationship is not immediately obvious to researchers.
Some of these associations reveal new functions or path-
ways; but in a well-studied organism, such as Escherichia
coli, many of these associations will be explainable by
existing knowledge. However, finding such explanations
can be time consuming for scientists, because, in some
cases, long chains of interactions connect causes with
their effects. Our aim is to speed elucidation of such
explanations, and, in some cases, find explanations that
scientists would otherwise overlook, to aid researchers in
differentiating which effects can and cannot be explained
by existing knowledge.

*Correspondence: paley@ai.sri.com
Bioinformatics Research Group, SRI International, 333 Ravenswood Ave, 94025
Menlo Park, CA, USA

Here we describe the MultiOmics Explainer, a new tool
within the Pathway Tools software suite that leverages
what is known about an organism’s metabolic and reg-
ulatory network to suggest explanations for the results
of omics experiments. The MultiOmics Explainer is
unique in that it synthesizes the wide range of knowledge
contained within a Pathway/Genome Database (PGDB),
including the organism’s metabolic network, transporters,
cofactors, enzyme substrate-level activation and inhibi-
tion, and transcriptional and translational regulation. The
MultiOmics Explainer is also unique in that its inputs can
come from multiple types of omics experiments, including
transcriptomics, proteomics, metabolomics, and combi-
nations thereof. It should be noted that this tool does not
attempt to infer any previously unknown regulatory or
other relationships—it uses strictly what is already known
and encoded in the PGDB. Thus, the failure of the tool to
find a plausible explanatory relationship in any particular
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case is a likely indication of gaps in the metabolic or reg-
ulatory network, and suggests areas for new research or
curation.

For example, suppose an omics experiment found that
knocking out the E. coli sensor histidine kinase gene kdpD
resulted in an increase in the level of 2-oxoglutarate in
the cell (such a relationship has in fact been found [1]),
but it was not immediately obvious to the researcher how
they might be related. The MultiOmics Explainer sug-
gests a likely mechanism based on the interactions found
in EcoCyc (phosphorylated KdpD transfers its phosphate
group to PhoB, which activates expression of transcrip-
tional regulator ArgP, which activates expression of gluta-
mate dehydrogenase gdhA, which catalyzes a reaction that
interconverts glutamate and 2-oxoglutarate), and presents
it as the easy-to-understand diagram shown in Fig. 1.

Pathway Tools [2] is a software environment for gen-
erating, maintaining, analyzing, visualizing, and web-
publishing Pathway/Genome Databases. A PGDB is a
model organism database that combines an organism’s
genomic information with what is known or inferred
about the organism’s metabolic and transport network,
including chemical reactions, metabolites and path-
ways; and what is known about the organism’s regula-
tory network, including operons, transcription factors,

KdpD

{}

KdpD-P"

PhoB-P*"**

ArgP

L-glutamate

glutamate dehydrogenase:-n?gdh.&.

2-oxoglutarate

Fig. 1 A diagram generated by the MultiOmics Explainer suggesting
a path by which E. coli KdpD affects 2-oxoglutarate (both shown in
orange). Green arrows represent activation, and black arrows
represent chemical reactions
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translational regulators, and substrate-level enzyme mod-
ulation. EcoCyc [3] is a PGDB for E. coli K-12 that has
been curated extensively from the biological literature,
integrating information from more than 37,000 publica-
tions. Because EcoCyc is the most complete and most
accurate PGDB in the BioCyc collection [4], with the most
complete set of regulatory interactions of all kinds, it
serves as the optimal database on which to test the Mul-
tiOmics Explainer. Although the tool can be run on any
PGDB within the BioCyc collection, to the extent that
the regulatory network in other PGDBs is less complete
or absent, results may be less useful. Additional file 1:
Table S1 lists the organisms containing the largest regula-
tory networks within BioCyc. All of these regulatory net-
works were captured through literature-based curation by
BioCyc, or imported from DBTBS [5] or RegTransBase [6].

The MultiOmics Explainer can operate in one of two
modes. In directed mode, the user specifies two sets of
target entities, the conditions and effects, where an entity
is any gene, protein, or metabolite of interest. The condi-
tions are a set of one or more entities whose abundance
or activity has been changed as part of the conditions
of the experiment (e.g. knocked-out genes, or metabo-
lites supplied as nutrients). The effects are a set of one
or more entities whose abundance or activity has signif-
icantly changed as a result of the experiment. For every
possible condition-effect pair, the tool will attempt to find
the lowest cost paths through the combined metabolic and
regulatory network that link the condition to the effect.

In undirected mode, the user specifies a single set of
target entities, the effects set. The tool will attempt to find
paths that link the effects together by identifying one or a
small number of entities, influencers, that influence mul-
tiple targets. These influencers may or may not themselves
be members of the effects set.

We treat both modes as network-search problems, using
a weighted breadth-first search approach with a maxi-
mum cutoff to explore the combined metabolic and regu-
latory space. The weighting of a connection depends both
on the connection type (e.g., we use a different formula for
enzymes and substrates of producing or consuming reac-
tions vs. regulators of various kinds) and specificity (e.g.,
an edge to a metabolite that participates in a large num-
ber of reactions or to a transcription factor that regulates
a large number of genes will be assigned a higher cost than
an edge to a metabolite that participates in a small number
of reactions or a more specific transcription factor).

An additional challenge is to present the results of
this analysis in a form that is easily comprehensible to
biologists. This task is complicated by the diversity of
relationship types that need to be communicated to the
user. Our tool presents its results as a combined metabolic
and regulatory network diagram, with mouseovers that
more fully describe the various relationships. If, due to a
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large number of interconnections, this generated diagram
becomes difficult to understand, the user can interactively
select subsets of the original entities to examine different
subsets of relationships, a few at a time.

Finally, we present some examples of the use of the Mul-
tiOmics Explainer to explain the results obtained from
previously published E. coli omics studies.

Related work

Most prior work focuses on analyzing either gene/protein
data and networks or metabolite data and networks, but
not both together.

Typical analysis of transcriptomics data involves statis-
tical methods, such as enrichment analysis, sometimes
combined with topological pathway data, to identify path-
ways or Gene Ontology terms that show significant dif-
ferential expression (reviewed in [7]). CliPPER [8] uses
Gaussian graphical models to select pathways with sig-
nificant differential expression and then to identify the
portions of those pathways most correlated with pheno-
type. Sub-SPIA [9] combines impact analysis [10] with
minimum spanning trees to identify significantly per-
turbed sub-pathways. Note that the pathways used in
these analyses are signaling pathways, not metabolic path-
ways. ScorePAGE [11] uses metabolic pathway topology
to weight enzyme pairs in score calculations by their
metabolic distance. These approaches are significantly
different from ours in that they are not primarily based
around analysis of metabolic or regulatory networks. They
use pathway data primarily as a means of grouping genes
into functionally related bins, as opposed to our approach
which is based on graph traversal. Even those approaches
that incorporate network topology only consider it within
the context of predefined pathways that have already been
identified as differentially expressed. Thus, they identify
already known pathways whose expression changes, and
then use the network to narrow the explanation down to
portions of those pathways, rather than identifying causal
explanations from within a large network. They also offer
no means to explicitly link results to experimental condi-
tions, as in our directed mode.

On the metabolomics side, Acuna et al. [12] have devel-
oped techniques to derive a set of maximal directed
acyclic subgraphs of a metabolic network, which con-
stitute a set of metabolic “stories” explaining how the
metabolites are interconnected. These stories can then
be prioritized on the basis of metabolomics data, and
multiple related stories can be collected into an “anthol-
ogy” [13]. This work is somewhat similar to ours in
that it considers the organism’s entire metabolic network
and generates fully instantiated paths linking entities of
interest. Our approaches to graph construction are quite
different however—their approach is more computation-
ally demanding but results in a complete set of possible
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paths (which then must be prioritized), whereas we use
cutoffs and other heuristics to reduce computation time
and limit the number of paths produced.

Our work differs from all the above techniques in that
it considers multiomics data and draws on a much richer
set of biological relationships, combining the metabolic
network with multiple different types of regulation.

Implementation

The MultiOmics Explainer algorithm is divided into
three phases, which can be roughly categorized as graph
construction, graph search, and network visualization
(although phases 2 and 3 also involve generation of work-
ing graphs). Figure 2 illustrates each of these phases using
a simplified example network.

Algorithm inputs and outputs

The input to the MultiOmics Explainer is either one or
two target sets of genes, proteins, and/or metabolites of
interest. In undirected mode, a single set of entities is
specified—these are the effects observed in the experi-
ment. In directed mode, the user must specify both a
set of condition entities and a set of effect entities. The
total number of supplied entities should be kept fairly
small, both for the analysis to complete in a reasonable
amount of time and for the resulting diagram to be com-
prehensible. The target entities could be those exhibiting
the largest or most significant change over the course
of an experiment, or they could be hand-selected by a
researcher who wants to understand their particular rela-
tionships. Note that it is possible to run the Phase 1 anal-
ysis on a larger set of entities, and then interactively select
smaller subsets for Phases 2 and 3 to view in the diagram,
particularly if the effect entities are genes (gene regulatory
networks tend to be substantially sparser than metabo-
lite networks) or little-used metabolites. The largest input
set on which we have tested the MultiOmics Explainer
consisted of 88 E. coli genes as effect entities and 1 con-
dition entity, which required approximately 7 minutes
to complete on a Linux desktop machine. Of the exam-
ples described in the “Results” section, the directed mode
example shown in Fig. 3 with 9 condition entities and a
single E. coli metabolite as the effect entity took only 11
seconds, and the undirected mode example with 25 E. coli
genes completed in only 51 seconds. However, if the effect
entities include metabolites that appear in large numbers
of reactions, the analysis can take much longer. Analysis of
an input dataset consisting of 55 common E. coli metabo-
lites as effect entities and 1 gene condition entity required
45 min to complete.

For each entity (both conditions and effects), the user
can optionally specify whether its abundance or activ-
ity is increased or decreased. If provided, this infor-
mation will be used to color the resulting display, and
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Fig. 2 A simplified example showing the three phases of the algorithm. In this example, the user has specified a single condition, transcription factor
TFO, and a single effect, metabolite MO, both colored yellow throughout. a A simple metabolic and regulatory network consisting of five
enzyme-catalyzed reactions and three transcription factors. E1 catalyzes the conversion of metabolite MO to metabolite M1. Transcription factor TFO
inhibits expression of transcription factor TF1, and activates expression of enzyme E5. b The graph G1 generated during Phase 1. For this simplified
example, assume all edge weights are 1. In actual operation, the edge weights would be determined by the formulae in Table 1. ¢ In Phase 2, we
search for paths connecting MO and TFO. The shortest path is shown in dark green, but the paths shown in light green are only slightly longer, so all
three are kept. The filtered graph G2 contains only the colored nodes and edges. d In Phase 3, considering only the edges associated with reactions
(colored orange), we divide the graph into connected components, and create two temporary pathways, one consisting of reactions R1, R2 and R3,
and the other consisting of just R5. The remainder of the graph (colored blue) is also divided into connected components. e Each of the
components is laid out individually. We use Pathway Tools" automated pathway layout algorithms for the temporary pathways, suppressing display
of any enzymes or side metabolites that are not part of G2. f The individual components are reassembled and appropriate node and edge styles
assigned to form the Explanation Graph G3

to determine whether a given path is consistent with
the observations or not (for example, if A increases
and B decreases and A directly activates B, then the
increase in A does not explain the decrease in B). Infor-
mation about direction of change of an entity may

also be used during Phase 2, to reduce the number of
included paths.

The output of the MultiOmics Explainer is a dia-
gram such as shown in Fig. 1d that illustrates one or
more possible routes by which the condition entities (in
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Fig. 3 An example of the MultiOmics Explainer operating in directed mode on data from [1], showing genes whose knockouts led to measurement
of increased levels of metabolite cis-aconitate. The control panel to the left of the display enables users to select a subset of entities for display, and
indicates condition-effect pairs for which one or more consistent paths were found. Consistent paths connecting protein Fes to cis-aconitate are

described in the popup window

directed mode) or identified common influencer entities
(in undirected mode) influence the effect entities. The
diagram is interactive, providing additional information
on mouseovers, and links to the relevant entities in the
Pathway Tools Navigator.

Phase 1: generating the complete MetReg graph

The first phase of the algorithm is to build a weighted
MetReg graph G1 of all influences on the set of effect enti-
ties, out to a specified maximum depth or cost Cy,;,. The
maximum cost is a parameter to the algorithm. It does
not correspond to any precise physical meaning but can
be considered an approximate upper limit on the num-
ber of steps in the network connecting condition and
effect. This parameter defaults to 20. Nodes in G1 are
entities (e.g. proteins, metabolites), and edges correspond
to influence types (e.g. produced-from, activated-by) that
are computed from information stored in the PGDB.
Note, however, that no direct one-to-one mapping exists
between the objects and attributes in the PGDB and the

nodes and edges in the MetReg graph. Although they are
represented using different objects in the PGDB, for the
purposes of this algorithm we consider a gene, its prod-
uct, and any homomultimeric complexes of the product to
be a single logical entity, so they are represented by a sin-
gle node (chemically modified forms of an entity, such as
a phosphorylated protein, are considered distinct objects,
however, so different nodes are created for them). A sin-
gle edge in the MetReg graph can combine information
across multiple PGDB objects and attributes. For exam-
ple, we create a single edge linking a metabolite to the
enzyme that catalyzes its production, but to generate that
edge we must draw information from attributes connect-
ing the metabolite to a reaction object, the reaction to its
catalysis object, and the catalysis object to the protein, as
well as the directional information stored for the reaction.

The types of influences on an entity that we consider,
and which map to edge types in the MetReg graph, are
presented in Table 1. If the influencer is one of the input
entities (condition or effect), then the edge weight to that
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Table 1 The types of influences / on an entity X and their edge
costs

TYPE OF INFLUENCER EDGE COST FORMULA

X is a reaction substrate (including
proteins in ligand-binding reactions)®:
Reactant / of reaction producing X T4+ (|Rx=sub| + |Ri=supl) /20
T+ (IRx=subl + Ri=sut) /10
2+ (|Rx=subl + [Ri=sub)/10
1+ |Ri=enz|/20

2+ |Ri=enz1 /20

T+ ‘R/:rransportervzo

Reactant / of reaction consuming X
Product / of reaction consuming X
Enzyme / of reaction producing X
Enzyme / of reaction consuming X
Transporter | of X

Xis a gene, gene product, or protein
complex:

Activator or inhibitor / of enzyme X 1+ |EnzSi=modulator] /20
1+ [ENZSi—cofactor| /20
1+ (IRegsx| + |Gi=regl) /20

1+ (IRegsx| + |Gi=reqgl) /20

Cofactor / of enzyme X
Transcriptional regulator / of X

Translational regulator / of X

Sigma factor / for transcription of X 1+ |Gi=regl/20
Component / of protein complex X 0.1
Transcription unit / of gene X 0

|Rx=sub| should be read as the number of other reactions in which X is a substrate
(reactant or product), and so forth. Other abbreviations: G=genes, Enz=enzyme,
Reg=regulator.

@We use the term substrate to refer to both reactants and products of a reaction. We
exclude certain compounds that appear in very large numbers of reactions, such as
water, ATP, etc. Also, if X is a small molecule, we exclude reactions in which proteins
bind X, on the grounds that such interactions typically affect the quantity or activity
of the protein but not, to any appreciable extent, the small molecule.

SWhile transcription units are not among the classes of entities we handle, are not
added to the queue, and are therefore dead-ends in the graph, these are useful
interactions to add in undirected mode because they explain why two genes might
be correlated.

entity will be 0.1. This will bias the algorithm to favor
connections to the entities of interest. Otherwise, we use
the formula listed in the table for that influence type. Most
edge weights are 1 plus an additional factor that depends
on the type and specificity of influence. This weighting is
necessary to keep the size of the explored space tractable,
but also maps to the biological intuition that action
through global regulators and very common metabolites
are less likely to explain the relationship between two enti-
ties if a more specific relationship can be found. Croes
et al. [14] found that weighting metabolites by the num-
ber of reactions they participate in and using a lightest-
weight-path algorithm led to more biologically significant
routes through metabolic networks than naive shortest-
path algorithms. We hypothesize that similar reasoning
will apply with respect to MetReg networks. We also bias
the weights to favor upstream effects (i.e., those that influ-
ence production of a metabolite, over those that influence
consumption), because doing so produced more plausi-
ble results. The danger of this specificity-based approach
is that it can miss biologically relevant paths of influence
that involve common core metabolites that participate
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in many reactions such as pyruvate, or global regulators,
such as Crp, but this trades off with the danger of having
results be dominated by such paths even when they are
not biologically relevant. The formulae for edge weights
are designed to be fast to compute and have not yet been
highly tuned. It is probable that these formulae could be
further optimized.

We build the MetReg graph in breadth-first order, main-
taining a priority queue Q to choose the next node to pro-
cess. Each node in the graph keeps track of its lowest-cost
path from each root node.

The graph-generation algorithm is as follows. Its inputs
are the effect entities and the PGDB. Its output is a
graph whose nodes correspond to database objects such
as genes, metabolites, protein complexes, etc., and whose
edges are influence relationships with associated costs
stored at each node. Each node N has a cost Cy;, the cost
of the minimum-weight path from N to any root, and
one or more path costs PCy g, the cost of the minimum-
weight path from N to root node R. Each edge N — N’
has an edge cost Cy_, v as determined by the formulae in
Table 1.

1. For each effect entity, create a corresponding root
node R in G1 with path cost PCrr = 0, and add it to
Q with cost Cg = 0.

2. Remove the lowest-cost node N from Q.

3. Query the PGDB to determine the set of metabolic
and regulatory influencers N' of N (see Table 1).

4. Foreach N":

Compute edge cost Cn—n7-
If node N’ does not yet exist in G1 and
Cn + Cn— N < Chax, create node N’ and add
edge N - N'.Set Cny = Cy + Cy—nv- Add N’
to Q.
e Ifnode N’ already exists in G1, add edge
N — N'.Set Cny = min(Cnr, Cn + Cnony).
e For every root R that N has a path to, set
PCrn» = PCrn' + Cy— N7, unless N already
has a lower-cost path to R. If any path lengths
were added or updated, recursively propagate
the updates to all child nodes of N’

5. While there are nodes remaining on Q, go to step 2.

For this phase of MetReg graph construction, except
insofar as they affect edge-weighting, the condition enti-
ties are not treated any differently than other potential
influencers. Figure 2b shows an example graph generated
during this phase from a very simple metabolic and reg-
ulatory network. The cost of building the MetReg graph
depends primarily on the number of effect entities, and
the size and connectivity of the regulatory and metabolic
network in the vicinity of the effect entities.
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Phase 2: generating a filtered graph

In the second phase, we create a new filtered graph G2
that contains a subset of the nodes and edges in G1. In
directed mode this graph only includes paths from effect
entities to condition entities. For every condition entity,
if a node for that entity exists in G1, then a path was
found to it from one or more effect entities, and the
minimum path length will be stored with the node. For
each such effect/condition pair, we traverse G1 to find all
paths between them whose cost is less than the minimum
path length plus some offset. An offset is added because
multiple ways could exist in which one entity influences
another, and since our weighting algorithm is blunt and
imprecise, there is no guarantee that the absolute lowest-
weight path is the most biologically significant. If this
results in too many paths, we can reduce the offset and/or
filter the paths to only include those whose parity is
consistent with the specified directions of change of the
entities (if such information was provided). All nodes and
edges on the selected paths are copied to G2. Figure 2c
illustrates the filtering of the complete graph to the nodes
and edges that comprise the shortest path between con-
dition and effect, plus two additional paths that are just
one step longer. The cost of filtering the graph will be
proportional to the product of the number of effect enti-
ties, the number of condition entities, and the size and
connectivity of the MetReg graph.

In undirected mode, in addition to looking for causal
connections between one entity and another, we are also
interested in finding PGDB entities not in the original tar-
get set that can influence multiple target entities, and so
provide an explanation for why they are correlated. For
each node N in G1 that has paths to two or more tar-
get entities, we compute its influence score as the sum of
the minimum path length to each target, plus a penalty
of 1.5 times the maximum depth limit for every target
that N is not connected to. The penalty ensures that, all
else being equal, entities that influence a greater number
of target entities will have lower influence scores (where
a lower score means greater influence) than entities that
influence fewer target entities. We then sort the nodes in
order of increasing influence score, and generate a sim-
ple covering set of influencers, via the following algorithm:
examine the influencer nodes in order of increasing score.
If an influencer node adds one or more targets to the list
of covered targets, add the influencer node to the cov-
ering set, and its list of influenced targets to the list of
covered targets. Continue until all targets are included
in the covered target set, or until no influencer nodes
remain. Note that this is not a minimal covering set—we
consider it more useful to include the better-scoring influ-
encers, even if that introduces some redundant coverage.
The covering set may or may not include members of the
target set.
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Once we have determined the covering set of influ-
encers, we have reduced the undirected-mode problem
to the directed-mode problem, positing the covering set
influencers as conditions, and can generate the filtered
graph G2 as for directed mode.

Phase 3: displaying the results

Once the filtered MetReg graph has been generated, we
use it to generate a single diagram that combines and
explains all mechanistic influences found by the algo-
rithm. The diagram should be easy to read and intuitive
for biologists to follow, which is a challenge, given the
mixture of different types of interactions (if generating
a single easy-to-read diagram combining all conditions,
effects, and the paths between them is impossible, we
also provide the option to regenerate the diagram for
a subset of condition-effect pairs, as described in the
next section). There is not necessarily a one-to-one cor-
respondence between the set of nodes in the filtered
graph and the set of entities visible in the diagram. For
example, a particular path of influence may include the
impact of an enzyme on a reaction product but not
the reactants of the reaction, whereas in order for the
figure to be comprehensible to biologists, we will want
to show the reaction as a link from reactants to prod-
ucts, and then show the enzyme associated with that
reaction, drawn as if it were part of a typical metabolic
pathway.

Our approach is to lay out the diagram hierarchically.
We divide the nodes in the filtered graph into two groups:
those that are directly associated with metabolic reactions
either as reactants, products, or enzymes; and all others.
Each group is then further divided into its connected com-
ponents, and each component is laid out individually in
a third graphG3 (the Explanation Graph), the only graph
that is visible to the user. For each metabolic connected
component, we assemble the set of associated reactions
into a temporary pathway, and then lay out the pathway
using the automated metabolic pathway layout algorithms
that are an integral part of Pathway Tools software. The
non-metabolic components will have a one-to-one corre-
spondence between the nodes in G2 and the nodes in the
diagram, so each of these sets are copied to G3 and laid out
as a tree (with some strategic temporary hiding or revers-
ing of edges while running the layout algorithm to make
the topology of a graph that is not a tree more tree-like).
Finally, we lay out all components relative to each other
to produce the final diagram. We use different arrowhead
styles to indicate different types of influence, and, for non-
metabolic interactions, edge colors indicate whether an
influence is activating or inhibiting. We also use color to
highlight all entities in the supplied entity sets (including
the covering set entities, if they are not part of the original
target set).
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Figure 2d shows the Explanation Graph G3 generated
from the example filtered graph G2 in Fig. 2c. This graph
was constructed hierarchically from three components:
(1) the metabolic pathway consisting of reactions R1, R2
and R3; (2) the metabolic pathway consisting of reaction
R5; and (3) the connected transcription factors TFO and
TF1. Note that even though M1 and M3 are not present
in G2, they must be included in G3 to show the reactions
catalyzed by E1 and E3.

The user can mouse over any node or edge in the figure
to see more information. Clicking on a node or edge
causes the relevant entity to be displayed in the main
Pathway Tools display window.

Additional GUI operations

In the graphical user interface for the MultiOmics
Explainer, a control panel to the left of the pane containing
the Explanation Graph provides additional information
and options. It lists any entities in the target sets for which
no connections to any other entities were found. It also
provides a checklist of entities for which connections were
found. Users can select a subset of the original set and
regenerate the display to only show connections between
the selected entities. This feature is particularly useful in
cases where the size and interconnectedness of the filtered
graph makes it impossible to generate a display that makes
it easy to visually follow all the connections (in some cases,
this will be due to the limitations of our automated path-
way layout algorithms in handling highly interconnected
reaction networks; in other cases, this will be due simply
to the visual clutter caused by large numbers of edges).
Reducing the number of selected entities can result in a
clearer diagram. When the display is regenerated with a
new entity subset, G2 and G3 are recreated from scratch,
but G1 is unchanged.

In directed mode, if parity information (increase or
decrease in abundance or activity) was supplied for both
conditions and effects, then we can determine which, if
any, of the paths connecting a condition/effect pair are
consistent with their respective parities. When one or
more consistent paths exist in G2 for a pair, that pair
is listed in the control panel. A button will bring up
a textual description of such paths to complement the
diagram. An example is shown in Fig. 3. It should be
noted that when a graph involves one or more reversible
reactions, paths can often be generated to support
either parity.

In undirected mode, the list of all influencers in the
top-scoring covering set are listed, as well as the top ten
influencers in general. These influencers are presented as
a selectable list, as shown in Fig. 6, so you can choose to
regenerate the figure to show connections to influencers
that are not part of the default set. In addition, you can
bring up a menu of all other influencers sorted by score, if
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you wish to see connections to any influencer that is not
in the top ten.

Results

To test the utility of the MultiOmics Explainer, we
searched the E. coli literature for example omics datasets
that produced a relatively small number of interesting
genes and/or metabolites in need of an explanation.

Directed mode examples

Fuhrer et al. [1] have conducted a systematic genome-wide
examination of the response of more than 7000 metabolite
concentrations to more than 3800 E. coli K-12 single-
gene deletions. For every metabolite, they were therefore
able to identify a set of genes whose deletion significantly
impacts that metabolite. We took some of the exam-
ples presented in their paper and attempted to explain
them using the MultiOmics Explainer. In these cases, the
deleted genes are the conditions, and the metabolite is the
effect. Note that their paper speaks of these examples in
the most general terms only, so does not propose specific
paths that we could compare our results to.

The authors found that most significant changes can be
explained by highly local paths within the network, with
knocked-out genes most commonly affecting metabo-
lites fewer than three steps away in the metabolic net-
work. It is no surprise that the MultOmics Explainer is
able to recapitulate these relationships. However, even
at a relatively close metabolic distance, the inclusion
of regulatory relationships enables us to detect paths
of influence that would typically have required human
inspection and inference. An example is the case of
dihydroxy-methylbutanoate, shown in Fig. 4. In addition
to the direct impact on dihydroxy-methylbutanoate lev-
els by IlvD and IIvN, at metabolic distances of 0 and 1,
respectively, the diagram generated by the MultiOmics
Explainer shows how the transporter BrnQ impacts
dihydroxy-methylbutanoate, in that the amino acids it
imports directly inhibit the enzymes that produce aceto-
lactate, and attenuate expression of IlvD. The diagram also
shows how acetolactate promotes its own conversion to
dihydroxy-methylbutanoate by binding to the transcrip-
tion factor IlvY to activate expression of the enzyme for
the conversion, IIvC. These inferences would not have
been possible without a database that encodes each of
these different types of interactions.

However, the authors also point out cases where
the metabolic distance between the genes and affected
metabolites is quite large. In one well-understood case,
the authors make mention of how several genes related to
iron accumulation affect the production of cis-aconitate,
by virtue of an iron-sulfur cluster being a required cofac-
tor of the aconitase enzymes AcnA and AcnB. Figure 3
shows how our tool correctly identifies and illustrates this
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same relationship. It is also interesting to note what was
not found by our tool. No relationship was found between
EntB, an enzyme involved in enterobactin biosynthesis,
and cis-aconitate, which seems counterintuitive given that
the ferric enterobactin complex is clearly present in the
graph. Further inspection revealed that currently EcoCyc
contains no reaction that can convert enterobactin to fer-
ric enterobactin, since this is a spontaneous reaction that
occurs outside of the cell. Thus, this creates an inadver-
tent gap in the metabolic network. The same explanation
likely applies to the failure to find a link to AroB, since cho-
rismate is the precursor to the enterobactin biosynthesis
pathway.

Another case of distal effects cited by the authors is the
impact of the aro and pur genes on malate levels. The
authors state that there are no known regulatory relation-
ships that can explain these relationships, and their cause
is not well understood. Our tool suggests paths through
the metabolic network by which these genes are con-
nected to malate (Additional file 1: Figure S1), but it is

not clear how much biological significance the suggested
paths might have.

Khodursky et al. [15] conducted a series of gene expres-
sion experiments to identify E. coli genes with significantly
changed expression profiles under conditions of excess
tryptophan, tryptophan starvation, and/or disabling of the
trpR repressor gene. To evaluate the quality of the results
generated by our tool, we ran the MultiOmics Explainer
on a total of 120 genes identified by these experiments. In
these cases, the condition was either tryptophan or trpR,
and the effects were the set of significantly changed genes.
For each of the 81 genes in which a possible route between
condition and effect was identified, we asked a biologist
well-versed in E. coli genes and metabolism to estimate
the likely biological significance of the suggested routes.

For 25 genes, the suggested routes were deemed of
likely or probable biological relevance. Ten of these (those
genes directly regulated by tryptophan or TrpR) were
considered “obvious’, but 15 of them were not obvious
and were therefore potentially interesting. Two routes,
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covering several of these genes, are shown in Fig. 5. In par-
ticular, Khodursky et al claim that prior to this study, the
impact of tryptophan starvation on the arginine biosyn-
thetic genes was not anticipated, so the suggestion of a
mechanism by which this occurs would have been valu-
able. For 34 genes, the routes found by the algorithm were
considered unlikely to be biologically relevant. Most of
these were routes that passed through ppGpp, a global
regulator that impacts expression of a large number of
genes under conditions of environmental stress, but the
direction of change of different genes was not consis-
tent with primary regulation via ppGpp. For 22 genes,
the biologist was not able to make a determination of
the likely biological significance of the suggested routes—
these routes were definitely not obvious and some of them
might suggest hypotheses for further investigation. These
results are summarized in Table 2 and in more detail in
Additional file 1: Table S2.

Traditional enrichment analysis (using the enrichment
analysis tool available at BioCyc.org) indicates that this
gene set is over-represented in amino acid biosynthesis
genes, particularly for synthesis of arginine and the aro-
matic amino acids, and, to a lesser extent, cell locomotion
genes, but is unable to suggest specific mechanistic links
to tryptophan. Any of the pathway-based refinements of
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traditional methods depend upon the existence of defined
signaling pathways involving these genes, which do not
exist in EcoCyc. Our tool was highly effective at explaining
the link from tryptophan to the amino acid biosynthesis
genes, without depending on defined pathways (though
of course there is overlap between some of the sug-
gested routes and known metabolic pathways), and the
suggested routes typically include both regulatory and
metabolic steps, something no other tool can do. Our tool
was less successful at identifying plausible routes for the
locomotion-related genes. This evaluation highlights the
challenge of distinguishing between biologically relevant
and non-relevant routes, but also shows the value of the
tool both for identifying known routes and for hypothesis
generation.

Undirected mode example

In Bore et al. [16], E. coli K-12 was incubated with
successively higher doses of benzylalkonium chloride
(BC), a commonly used disinfectant that kills bacterial
cells, to produce three adapted strains. Transcriptional
and proteomic analyses were then conducted on the
adapted strains, to produce a list of 25 genes/proteins that
were significantly differentially expressed in the adapted
strains relative to the control strain. The purpose of the
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Table 2 Summary of an evaluation of the routes predicted by
the MultiOmics Explainer connecting tryptophan to 120 genes
with significantly changed expression levels

Result of evaluation Number of genes

No route found 39
Route was obvious 10
Route was non-obvious and reasonable 15
Plausibility of route could not be determined 22
Route was unlikely to be biologically significant 34
120

Total

experiment was to shed light on the mechanisms by which
BC and related compounds disrupt the cell and by which
resistance is acquired.

Because the mechanistic action of BC is unknown, no
mechanistic link exists between BC and any other entity
in EcoCyc (in fact, BC is not present in EcoCyc at all).
Thus, this study offers a useful example for testing out the
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MultiOmics Explainer in undirected mode. In this case,
the input effects set is the set of 25 genes and proteins
identified by the analysis, and the goal is to identify one or
a small number of genes that can explain the observed set.
Figure 6 shows a result from the MultiOmics Explainer
run on this dataset. Connections were found between
all but one (RpsF) target genes. The top-scoring influ-
encer, SoxS, was also among the target set (in fact, the
authors identify it as the most highly upregulated gene
in their experiments), and can be linked to 20 of the
remaining 24 entities. This matches the conclusion drawn
by the study authors that BC likely results in oxidative
stress that can be ameliorated by the overproduction of
SoxS. Figure 6 shows how SoxS is connected to most of
the other genes in the target set. The authors also men-
tion MarA as a lesser possible contributor. MarA was the
second highest scoring influencer identified by our tool
(MarA is regulated by SoxS, so everything connected to
MarA is also connected to SoxS). Traditional enrichment
analysis also identifies the SoxS and MarA regulons as
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significantly over-represented, but misses the connection
to genes such as wrbA and mdtF, where there are multiple
regulatory intermediates. The few remaining genes that
are not connected to SoxS could represent alternate paths
to BC resistance, or they could be the result of gaps in the
EcoCyc regulatory network.

Conclusions

The MultiOmics Explainer is a valuable tool to help
researchers understand and interpret the results of their
omics experiments in the context of what is known
about an organisms’s metabolic and regulatory network.
In directed mode, the user supplies two sets of entities,
those that are changed as conditions of an experiment,
and those that change as effects of the experiment, and the
tool searches the network to identify paths by which the
conditions influence the effects. This mode is most appro-
priate for experiments whose conditions can be reduced
to changes to one or a few genes or metabolites, such
as a gene-knockout experiment or a nutrient-substitution
experiment. Undirected mode is best suited to experi-
ments that either include conditions that do not map
to specific entities or involve entities whose function is
unknown (and thus are not part of the existing network).
In this case, users specify the set of effect entities, and
the tool identifies a set of potential influencers that can
explain as much of the input set as possible. In both
modes, the tool produces a diagram that summarizes the
paths of influence and provides links back to the PGDB for
more information.

It must be noted that operation of the MultiOmics
Explainer depends upon the rich and extensive set of
metabolic and regulatory relationships encoded within
the EcoCyc database. Running our software on examples
of omics experiments taken from the E. coli literature
demonstrates that paths of influence often involve mul-
tiple types of interactions, combining metabolism; trans-
port; enzyme cofactors and substrate-level regulators;
transcriptional and translational regulation; and protein-
ligand interactions. The MultiOmics Explainer highlights
the value of EcoCyc, not just as a reference but as a basis
for computational inference.

Availability and requirements

The MultiOmics Explainer is a component of the Pathway
Tools desktop application.

Project name: Pathway Tools

Project home page: http://bioinformatics.ai.sri.com/
ptools/

Operating systems: Macintosh, Windows, and Linux
Programming language: Common Lisp

Other requirements: Pathway Tools version 22.5 or later
License: Freely available to academic and government
researchers with signed license agreement. See https://
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BioCyc.org/download.shtml. Source code available upon
request.

Any restrictions to use by non-academics: A license
fee applies to commercial use. See https://BioCyc.org/
download.shtml.

Additional file

[ Additional file 1: Supplementary Material. (PDF 79 kb). }
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