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Abstract

Background: Ordinary differential equation systems are frequently utilized to model biological systems and to infer
knowledge about underlying properties. For instance, the development of drugs requires the knowledge to which
extent malign cells differ from healthy ones to provide a specific treatment with least side effects. As these cell-type
specific properties may stem from any part of biochemical cell processes, systematic quantitative approaches are
necessary to identify the relevant potential drug targets. An �1 regularization for the maximum likelihood parameter
estimation proved to be successful, but falsely predicted cell-type dependent behaviour had to be corrected
manually by using a Profile Likelihood approach.

Results: The choice of extended �1 penalty functions significantly decreased the number of falsely detected cell-type
specific parameters. Thus, the total accuracy of the prediction could be increased. This was tested on a realistic
dynamical benchmark model used for the DREAM6 challenge. Among Elastic Net, Adaptive Lasso and a non-convex
�q penalty, the latter one showed the best predictions whilst also requiring least computation time. All extended
methods include a hyper-parameter in the regularization function. For an Erythropoietin (EPO) induced signalling
pathway, the extended methods �q and Adaptive Lasso revealed an unpublished alternative parsimonious model
when varying the respective hyper-parameters.

Conclusions: Using �q or Adaptive Lasso with an a-priori choice for the hyper-parameter can lead to a more specific
and accurate result than �1. Scanning different hyper-parameters can yield additional pieces of information about the
system.
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Background
Describing processes in biological systems by mathemat-
ical models is a key feature to understand how living
organisms work [1]. This task is frequently approached by
mechanistic modelling via ordinary differential equations
(ODEs). Yet, a severe obstacle to make predictions based
on the models consists in the high-dimensional parameter
spaces that quickly arise in realistic systems. The steadily
growing availability of data and the development of exper-
imental techniques need to be accompanied by statistical
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methods that can efficiently incorporate them intomodels
even for hundreds of parameters to estimate.
If, for example, two cell types are examined with respect

to the same process, additional parameters must be incor-
porated to describe the second cell type. One may how-
ever assume that the cell types of interest differ only
in some aspects. This assumption would allow to assign
some parameters to both cell-types whilst pinpointing the
biological differences between the cell-types. In addition,
reducing the dimension of the parameter space eases cal-
culations. This idea of selecting only those features that
relevantly contribute to the observations can be accom-
plished by various approaches. The most intuitive way
might be to test all possible model configurations itera-
tively [2, 3]. As for n parameters the number of models to
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test is given by 2n, this becomes infeasible even for small
models.
Whenever the general estimation procedure consists of

minimizing an objective function such as the negative log-
likelihood, which is equivalent to maximizing the likeli-
hood, regularizing the objective function can be regarded
as the consequent extension to incorporate equalities
among different cell types. Regularization generally refers
to including additional information, which here means to
amend the objective function by a term which is larger
than zero whenever parameters differ between the two cell
types. Thus the optimization tends to shrink the model
by preferring parameters that are equal among the two
cell types. In the context of minimizing a sum of squares,
it is intuitive to add a squared function to the objec-
tive function that is minimal if the two cell-types behave
equally. This can be scaled by a factor λ. Then, both func-
tions are minimized simultaneously. This idea has been
known as Ridge Regression or Tikhonov Regularization
for many decades now [4–7]. By this method, the mini-
mum of the regularized objective function however only
converges asymptotically to a point where some param-
eters are cell-type independent with increasing penalty
strength. Hence, this method does not provide an effective
model shrinkage.
With Tibshirani’s introduction of the Lasso, i.e. least

absolute shrinkage and selection operator, [8], selecting
features and estimating optimal parameters was estab-
lished for linear regressions. The method relies on the �1
norm of the parameter vector. As this quantity is con-
tinuous, it eases numerical calculations. It is however
not differentiable if one parameter is zero. If the tun-
ing parameter λ is sufficiently large, it enforces a sparse
solution [9]. The original Lasso procedure has been gen-
eralized: Among others, Adaptive Lasso [10] and Elastic
Net [11] have been proposed as they provide better con-
vergence properties or an algorithmic simplification when
compared to the original Lasso. In the framework of linear
regression, also non-convex penalty functions have been
proposed, such as the �q pseudo-norm of the parameter
vector [12].
An adoption, the so-called �1 regularization, has been

used in Systems Biology for non-linear parameter esti-
mation in cellular signalling models [13, 14]. Therefor,
the parameters p[0]i of one cell-type are chosen as ref-
erence. The parameters of the second cell-type p[1]i are
then expressed as the product of fold-changes �

[1]
i and the

reference value p[0]i . The penalty term only acts on the
logarithmic fold-changes. This method finds relevant dif-
ferences between two cell types. These particularities of
one cell-type could serve as targets for drugs that shall
only affect malign cells [13]. However, Steiert et al. [14]
point out that the amount of properties which are falsely

detected as cell-type specific can be decreased by man-
ual supervision of the regularization outcome. Hence, it
is desirable to find a penalization that requires no man-
ual checking to find potential drug targets in a more
robust way.
Onemajor limitation to �1 regularization is the presence

of linearly correlated log-transformed parameters. Con-
sider a reaction that involves the product of two kinetic
rates p1 × p2 or their quotient. A log-transformation
can then lead to a linear functional relation between the
estimated values that minimize the objective function:
log p̂1 = const. ± log p̂2. Both parameters may still be
identifiable if they appear independently in other reac-
tions, too. Thus, the linear correlation does not hamper
the optimization process if only one cell-type is modelled.
When including a second cell-type, the linear relation
however translates to a linear correlation between the
log-fold-change estimates:

log �̂1 = const. ± log �̂2. (1)

Figure 1 shows an example of linearly correlated log-
fold-changes taken from an EPO induced JAK2/STAT5
signalling pathway [13, 15]. The model will be discussed
in detail below. The objective function landscape reveals
a minimum. However, the surrounding confidence region
is aligned to the diagonal subspace log �̂1 = const. −
log �̂2 for the two fold-change parameters belonging to
the CISHRNA turn and delay rates, respectively. If �1
penalization is applied to such parameters, the space of
constant penalty also partially coincides with the diago-
nal subspace. The �1 penalty does not provide additional
degrees of freedom apart from the linear scaling factor λ.
Hence, the co-alignment of penalty and confidence region
cannot be prevented, so �1 can be considered as too rigid
in this case. The linear relation has to be distinguished
from a structural non-identifiability of the model itself
(cf. [16]). Eq. 1 appears within the introduced penalty
term while the model parameters themselves remain
identifiable.
Here, we propose the use of extended �1 methods—

Adaptive Lasso, Elastic Net and the non-convex �q
penalty—to achieve a more flexible regularization tech-
nique. Each of these methods introduces an additional
degree of freedom to make the set of available penalty
functions less rigid than only �1. This deformation degree
of freedom determines, how much the level lines differ
from those of �1. The shapes of the level lines correspond-
ing to these extended penalty functions for exemplary
deformation parameters are depicted in Fig. 1. If the
extended penalty terms are added to the objective func-
tion, the deformation parameter can be tuned by varying
the additional degree of freedom, so the level lines of
the penalty do not coincide any more with the align-
ment of the objective function. Hence, a shrinkage can be
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Fig. 1 Level lines of objective function and penalty terms. Upper panel: Two-dimensional Profile Likelihood for two linearly correlated
log-fold-changes, taken from an EPO-induced JAK2/STAT5 signalling pathway [13, 15]. The dashed lines indicate the level lines of an �1 penalty. The
gray area marks the 95% confidence region. Lower level: Two-dimensional level lines of constant penalty for the �1/Lasso penalty function and the
three extended methods presented in this manuscript: Non-convex �q , Adaptive Lasso and Elastic Net penalty. The extended methods can replace
the �1 penalty in the upper panel, which is analyzed in the “Results” section. The level lines of �1 are aligned to the gray confidence region, where
the extended methods produce a deformation in the level lines that can prevent an alignment

re-established. All methods presented in this manuscript
are available within the MATLAB modelling framework
Data2Dynamics [17, 18]. This paper aims to extend the
possibilities described by Steiert et al. [14] and Merkle
et al. [13]. Thus, an introduction to the already published
idea of �1 regularization and of the optimization routine
are given first. In a second step, the extended meth-
ods, which have not been used in a non-linear dynamic
modelling setting to our knowledge, are introduced and
discussed. The accuracy of the prediction of cell-type
dependent parameters could be significantly increased
when using Adaptive Lasso or �q penalties because these
methods could reduce the number of falsely detected
cell-type specific parameters.

Methods
Parameter estimation
Biological processes in cells can be translated into a
system of coupled ODEs with the concentrations being
time-dependent functions:

ẋ(t) = f (x(t),u(t, pu), px) , x(0) = p0, (2)

where x denotes the system’s intrinsic state, u a possi-
bly existing external input, pu, px a set of parameters, p0
the initial conditions and f a continuous function that is
determined by the biological properties of the system. All
quantities are considered as vector valued.
The internal states x that solve Eq. 2 are usually not

accessible to an experimental observer, so all measurable
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quantities y are mappings from the space of internal states
onto the observer space

y(t) = g
(
x(t), py

) + ε(t) (3)

with some observation parameters py and a measurement
error ε(t) ∼ N

(
0, σ 2(pσ )

)
. The latter will be assumed as

normally distributed although the approach is not limited
to this case. The observation function g depends on the
observational set-up. The states x(t) and y(t) will be con-
sidered as vector-valued. The functions f and g are known
except for the parameter values, so a set of parameters

p = (p0, px, py, pu, pσ ), (4)

which is assumed as constant in time, is necessary to
completely characterize a system as described in Eqs. (2)
and (3).
All equations are assumed to have only positive param-

eters. The parameters will be estimated on a logarithmic
scale, also in order to avoid numerical instabilities among
different orders of magnitude of the parameters. It can be
shown that observables in biological processes are usually
log-normally distributed [19], so the uncertainties of their
log-transform follow a Gaussian distribution.

Maximum likelihood approach Given data points yij =
yi(tj) forM states yi andN time points tj as well as the cor-
responding observation function values g(xi(tj)) resulting
from the ODE system (Eq. 2) and standard deviations σij,
the negative 2-fold log-likelihood
M,N∑

i,j=1

(yij − g(xi(tj))
σij

)2
=const. − 2 logL(p) =: χ2

ML(p) (5)

is minimized. This yields the maximum likelihood param-
eter estimate p̂ML = argminp χ2

ML(p). In cases of
unknown σij, additional terms must be taken into
account [20].
To optimize the likelihood χ2

ML (Eq. 5), it is generally
necessary to apply numerical methods because no analytic
solutions are available.

Profile likelihood The profile likelihood χ2
PL(pi) is

obtained by re-optimizing the objective function for each
value of pi with respect to all remaining parameters pi�=j
[16, 21, 22]:

χ2
PL(pi) = min

pj �=i
χ2
ML(pj). (6)

By calculating the profile likelihood for each parameter,
the confidence interval CI(p̂) around an optimum p̂ can
be determined:

CI(p̂) =
{
p | χ2

ML(p) − χ2
ML

(
p̂
)

< q(m)
α

}
, (7)

where q(m)
α denotes the α-quantile of the χ2 distribution

withm degrees of freedom. For α = 0.95, the threshold is

q(1)
0.95 = 3.84 for determining confidence intervals for one

parameter.

Regularization for two cell-types
Consider two cell-types [0] and [1]. If the model describes
a biological process that both of them may undergo, the
ODE system (Eq. 2) does not require changes, whereas the
parameter values of p can depend on the cell-type. This
section recapitulates the basic denotions as described by
Steiert et al. [14].

Log-fold-changes Subsequently, one cell-type will be
chosen as reference, corresponding to a parameter set p[0].
For the other cell-type, only the fold-changes �[1] with
respect to the type of reference will be considered, which
are defined as

�
[1]
i = p[1]i

p[0]i
⇔ r[1]i := log �

[1]
i = log p[1]i − log p[0]i . (8)

with the log-fold-change vector r := r[1], which will be
used as only the log transformations of parameters p are
considered. Thus, r[1]i is zero if and only if the value of
parameter p[1]i of cell-type [1] is compatible with p[0]i ,
associated with the type of reference [0]. This parameter
may then be called cell-type independent, while the term
cell-type specific refers to the opposite case, r[1]i �= 0.

Penalization If both cell types are likely to share cer-
tain properties, it can be assumed that some fold-change
parameters ri vanish. Hence, the model is supposed to be
sparse with respect to r. To incorporate this prior knowl-
edge, the original objective function χ2

ML is amended by a
penalty term ν(r, r∗):

χ2(p, r, r∗, λ) = χ2
ML(p, r) + λ ν(r, r∗), λ ≥ 0, (9)

where the function ν only depends on fold-change param-
eters and has its global minimum at a target value r∗. For a
sparse two-cell-type model with logarithmic parameters,
r∗ = 0 is chosen. Other values of r∗ might be useful in
cases where assumptions other than model sparsity moti-
vate the usage of regularization. The dimensionless tuning
parameter λ determines the penalization strength. Hence
if λ is chosen large enough, the penalty should enforce
that r = 0 be a solution to the optimization problem.
This approach differs from the original Lasso regulariza-
tion as it only penalizes the fold-changes, i.e. the subset
of all parameters that links cell-type [1] to the cell of
reference [0].

Two-step regularization routine All parameter esti-
mates resulting from the optimization of a penalized
objective function (Eq. 9, λ > 0) must be considered as
possibly biased by the penalty term. To circumvent this
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problem, a two-step estimation routine is implemented in
Data2Dynamics and was used throughout all presented
calculations.

1 Optimize the penalized objective function (Eq. 9) to
obtain the subset of zero log-fold-changes Z(λ) for a
given penalty strength λ > 0.

2 Remove the regularization (λ = 0) and set those
parameters belonging to Z(λ) as fixed to zero. Then
re-optimize the unbiased objective function.

The penalty strength λ essentially determines howmany
parameters are set to zero. Therefore, several orders of
magnitude are scanned for λ, and for each of them
the aforementioned two-step estimation is executed. To
determine the sparsest model that can still be consid-
ered as consistent with the data, which will be referred
to as parsimonious model, information theory based cri-
teria have been developed. The likelihood ratio test (LRT,
[23]), the Akaike information criterion (AIC, [24]) and the
Bayesian information criterion (BIC, [25]) are the most
prominent ones. As AIC generally selects too large mod-
els, it is not a consistent selection criterion. Since BIC is
equivalent to LRT for an adjusted threshold α, only LRT
will be considered here to find the parsimonious model in
order to allow for a comparison to the �1 results found by
[14] when using LRT.
After performing the two-step estimation, the final

objective function value depending on λ is given by

χ2(λ) = χ2
ML(p̂

ML, r̂ML(Z(λ))). (10)

From this, the LRT statistic D(λ) is defined as

D(λ) = χ2(λ) − χ2(0), (11)

quantifying the objective function difference to a not-
regularized model (λ = 0). Given a statistical significance
level α, the model shrinkage induced by a penalty with
strength λ is considered compatible with the data if D(λ)

does not exceed q#Z(λ)
α . This is the α quantile of a χ2 distri-

bution with #Z(λ) degrees of freedom. The parsimonious
model, which has least cell-type specific features among
all models that agree with data up to the α level, is found
at the optimal penalty strength

λ∗ = max
{
λ > 0 | Z(λ) = ∅ or D(λ) < q#Z(λ)

α

}
. (12)

The first condition in Eq. (12) is necessary to include
also those penalty strengths which do not lead to
shrinkage.

Extended penalty functions for regularization
The original log-likelihood is a sum over squares, so defin-
ing ν(r, r∗ = 0) = ∑

i r2i would be a consequent approach.
The smoothness of ν in r∗ = 0 however leads to only
asymptotic optimality of the sum of objective function and

penalty term in r = 0 for λ → ∞ [9]. If the sum over
absolute values is chosen, ν(r) = ∑

i |ri|, the model can be
shrunk even for finite λ, i.e. ri = 0 for some i in the opti-
mum of χ2, see Fig. 2. This is due to the non-differentiable
point of ν whenever ri = 0 for some i. The effect of this
so-called �1 penalty was studied both, for simulated [14]
and experimental data [13].
Choosing a penalty

ν(r) =
∑

i
|ri|q, (13)

with 0 < q < 1 still implies a non-differentiability of ν

if ri = 0 for any i. Moreover, this function is not con-
vex in the case q < 1. Although [9] postulated that this
would cause severe problems for the optimization routine,
[12] showed that non-convex penalty functions can lead
to better results compared to �2 or �1 in linear cases.
The gradient of the �q penalty function (Eq. 13) reads

∇ν(r)i = q |ri|q−1 sign(ri) (14)

if ri �= 0. This term diverges for ri → 0, with a right-side
limit of +∞ and a left-side limit of −∞. Hence there is
always an (at least local) optimum of the total objective
function in ri = 0, see Fig. 2, right panel. This is inde-
pendent of the underlying objective function and can be
considered as an artefact. To avoid that the optimizer is
constrained to this point even if it is not the global opti-
mum, a small ε ≈ 10−10 is chosen. The optimizer then
considers all ri with |ri| ≤ ε as effectively zero, while the
gradient is fixed to

∇ν(r)i = q εq−1 sign(ri) for all i, (15)

representing the gradient value of the limiting case |ri| = ε

and hence remaining finite.
Two other penalty functions, which had been developed

for linear problems, were tested as well. The Elastic Net

ν(r) = (1 − α)
∑

i
|ri| + α

∑

i
r2i , (16)

∇ν(r)i = (1 − α) sign(ri) + 2αri, (17)

was introduced by [11] to reduce the bias of predictions
for elasticities 0 ≤ α ≤ 1. This penalty function is strictly
convex for α > 0, but singular for ri = 0 for α < 1. It
includes the special cases of �1 and �2 penalties for α = 0
or α = 1, respectively.
The Adaptive Lasso:

ν(r) =
∑

i
|ri| × ∣

∣r̂ML
i

∣
∣−γ , (18)

∇ν(r)i = sign(ri)
∣
∣r̂ML
i

∣
∣−γ , (19)

was introduced by [10] given maximum likelihood esti-
mates r̂ML

i and adaptivities γ > 0. This approach was
proved to asymptotically provide unbiased estimates in
the linear setting, keeping a convex penalty function.
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Fig. 2 Non-smooth penalties shift the objective function minimum to zero. Shift of the objective function minimum towards zero for increasing
penalty strength. The horizontal positions of the diamond tips mark the global minimum of the regularized objective function with the penalty
strength denoted inside. The black curves represent an unpenalized objective function χ2

ML. Dark-gray curves depict the sum of χ2
ML and a penalty

with strength λ = 1. The filled diamonds in zero represent penalty strengths λZ which cause the minimum to be exactly in zero. The objective
function penalized with λZ is drawn in light grey. Finite λZ = 2 is sufficient to shift the minimum to zero. While the convex absolute-value penalty
only admits one minimum, the non-convex �q penalty can lead to multiple local minima as depicted for λ = 1 on the right hand panel. For most
optimizations described in this manuscript, an �0.8 penalty was used. In this figure, the case of q = 0.5 is depicted to show the multiple minima
more clearly. They arise, however, for any 0 < q < 1

The three methods defined above all contain one addi-
tional deformation parameter d ∈ {1 − q, γ ,α}. This
terminology refers to the effect that they determine how
much the level lines of the penalty functions are deformed
with respect to the rigid diamond of �1, see Fig. 1. The
limit d → 0 always yields the original �1.
All gradients are not defined if ri = 0, but sub-

differentials can be obtained by defining sign(0) =[−1, 1]
[26]. This leads to set-valued gradient components in sin-
gular points. The method is applicable only to convex
functions, so for the �q penalty, this approach holds only
within the small ε neighbourhood around zero. There, the
gradient modulus is constant, making the penalty effec-
tively behave like the modulus function, hence it becomes
convex.
To determine the optimal estimate (p̂, r̂) for the objec-

tive function χ2(p, r, r∗ = 0, λ) (Eq. 9) for given λ, the
following criteria must be fulfilled [14]:

∇pχ
2(p̂, r̂) = 0, and for each i either (20)

∇rχ
2(p̂, r̂)i = 0, for |ri| > 0, or (21)

∇rχ
2
ML(p̂, r̂)i ∈ λ∇ν(r̂)i, for ri = 0. (22)

The first and second criterion (Eqs. 20 and 21) represent
the requirement of vanishing gradients in all non-singular
cases. The first and third criterion (Eqs. 20 and 22) are
fulfilled if the parameters p̂ are optimal and the penalty
term dominates the maximum likelihood contributions.
According to subdifferential calculus, this is sufficient to
obtain an optimal point [26].

Implementation
All calculations to optimize the objective functions (Eqs. 5
and 9) are performed within the MATLAB framework
Data2Dynamics [17, 18]. This is a freely available, state-
of-the-art software package that has been used for vari-
ous system biology applications [13, 27, 28], performing
parameter estimation, uncertainty analysis and predic-
tion calculation. It also contains a toolbox for regularizing
models by �1 or �2 penalties. Elastic Net, Adaptive Lasso
and �q penalties for arbitrary q > 0 have been inte-
grated, keeping the already existing structure as described
by [14]. The regularization routines can be applied to
all models and data types that Data2Dynamics supports.
They do not pose any restrictions such as normaliza-
tion or an absolute scale on the experimental data that is
used for modelling. Yet, the complexity of the underlying
mathematical model should be tailored to the informa-
tion available in the data, c.f. [29]. Further details on
the usage of the new methods are given in the main
regularization routine arRegularize, which can be found
at the directory arFramework3/L1/arRegularize.m within
Data2Dynamics.

Results
Application on simulated data
In a first step, a simulation study is employed to investi-
gate in how far Elastic Net, Adaptive Lasso or non-convex
�q penalties can lead to an improved estimation com-
pared to the already established �1 approach. The M1
model from the sixth Dialogue for Reverse Engineering
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Assessment and Methods challenge (DREAM6, [30]) was
used because it provides comparability with the results of
pure �1 regularization obtained by [14].

Model description Themodel system is composed of six
genes, for which the concentrations of protein and mRNA
were incorporated. The translation rate for the synthesis
of proteins was considered as proportional to the con-
centration of mRNA and the strengths of the ribosomal
binding sites. The transcription rates were assumed to fol-
low Hill kinetics. Since simulated data was used for this
model, no units for time and concentrations were speci-
fied. For the challenge, all mRNA degradation rates were
assumed to be equal to 1 inverse time unit. This results in
a total number of 29 kinetic parameters with six riboso-
mal and six protein synthesis strengths, one degradation
parameter, eight Km values and eight Hill coefficients [14,
30]. The full description of the model and the parame-
ter values is available from the DREAM6 organizers under
www.synapse.org/#!Synapse:syn2841366/wiki/71372. It is
also included as an example in the Data2Dynamics frame-
work.
The model was simulated 150 times for two cell-types.

The first cell-type, which was used as reference for the
fold-changes of the second, corresponded to the gold stan-
dard parameter set of the DREAM6 challenge in the first
place. The Hill coefficients range from one to four which
represents the number of ribosomal binding sites. For the
second cell-type, fold-change parameters were introduced
to relate the parameter values of both cell-types. For each
simulation run independently, approximately one third
of the 29 dynamic parameters were chosen as cell-type
specific. The respective fold-changes were then drawn
randomly from the set � ∈ {1/10, 1/5, 1/2, 2, 5, 10} for
the non-Hill parameters. Fold-changes for Hill parame-
ters were randomly selected as � ∈ {1/4, 1/2, 2, 4} such
that the parameter values of both cell-types are within the
interval [ 1, 4].
By additionally introducing perturbations to the kinetic

rates of one gene, in total experimental 18 set-ups
were available: First, each gene could be knocked out,
so it would not be produced at all. Second, a mRNA
degradation rate could be increased by a factor of five
for one gene. Third, the mRNA synthesis rate of one
gene could be doubled. For each run, it was randomly
selected whether each of these additional set-ups was
observed.
It was assumed that either mRNA or proteins were

observed to account for only partial observability in real-
world models. The mRNA observation had a probability
to be selected of one third. In this case, 21 data points
of each mRNA would be observed. In the remaining two
thirds of the cases, two selected proteins were measured
with 41 data points each. Thus it was random whether the

perturbation occurred in the variables that were observed
or not.
In total, the resulting 150 simulation runs differed ran-

domly with respect to the cell-type specific parameters,
the magnitude of the corresponding fold-change, the
available experimental set-ups and the observable quanti-
ties. For a more detailed set-up description, the reader is
referred to [14]. When applying the regularization tech-
niques as described above, the goal was to test in how far
the algorithm would be able to find the cell-type specific
features of each of the 150 models that were used as input.

Results of �1 regularization For 150 repetitions of the
above mentioned randommodel and observation calcula-
tions, the parsimonious model was calculated by applying
�1 regularization to all fold-change parameters. Therefore,
the penalty strengths were scanned from λ = 10−4 to
λ = 106. The parsimonious model was determined by
virtue of Eq. (12). Then, the regularization result whether
a fold-change was non-zero (called positive prediction)
was compared to the true parameter values used to sim-
ulate the data. An overall accuracy (correct over total
classifications) of (71 ± 13)% was obtained, which is in
accordance with the overall result of 78% and also with
the accuracies sorted by parameter type, published by
[14]. A receiver operating characteristics (ROC) plot is
depicted in Fig. 3a. The average sensitivity (correct over
total positive classifications) of (74 ± 17)% and the aver-
age specificity (correct over total negative classifications)
of (70 ± 19)% also match with the previously published
values of 74% and 80%, respectively.

Results of extended penalty functions Non-convex �0.8
penalty, Adaptive Lasso (with deformation d = 0.2) and
Elastic Net (d = 0.08) were applied to the same settings as
�1. The corresponding ROC curves are shown in Fig. 3b–d
together with the �1 result, visualizing that for many runs,
the false positive rate was decreased to a large extent
(mostly horizontal dotted lines). The point-wise absolute
change � was calculated for sensitivity, specificity and
accuracy to compare all extended methods with �1 and
Adaptive Lasso with �q in addition. Box plot diagrams of�
are depicted in Fig. 3e–g. The mean values �̄ are given in
Table 1. A t-test has been performed with the null hypoth-
esis of �̄ = 0. Only changes |�| > 0.1 will be considered
as relevant.
The sensitivity could not be increased significantly by

any of the new methods compared to �1. In turn, both,
Adaptive Lasso and �q were able to significantly increase
the specificity. The mean improvements of 0.16 and 0.21,
respectively, are also relevant as they reduce the false pos-
itive rate from initially 30% to only 9% and 14%, shrinking
the number of falsely detected cell-type dependencies to a
third or at least one half compared to �1.
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C D

E G
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Fig. 3 ROC data and accuracies for DREAM6, Model 1. a–d: ROC data for the four penalty functions applied: �1, Adaptive Lasso, �0.8 and Elastic net.
The diagonal, black dashed line represents the characteristic that can be expected from a random classifier. The upper left corner of each ROC curve
represents the optimal classification. The thin dotted lines show the changes with respect to the same run penalized by �1. Mean curves were
omitted to focus on the differences between �1 and the extended methods. Both, Adaptive Lasso and �0.8 lead to mostly horizontal changes
compared to �1, which corresponds to an increased specificity and a constant sensitivity. e–g: Absolute run-wise changes for extended methods vs.
�1 and Adaptive Lasso against �q . Boxplot whiskers extend to twice the interquartile range at most. The boxplots emphasize the gain in specificity
and consequently in accuracy

The total accuracy is hence increased significantly by all
methods, with Adaptive Lasso and �q providing the largest
improvements. The �q penalty provides more accurate
results than Adaptive Lasso, yet the improvement is con-
sidered as minor.

The influence of the deformation parameter The �1
penalty function has no degree of freedom, so it cannot

Table 1 Differences in sensitivity, specificity and accuracy
between the presented penalty functions

Methods �̄ Sensitivity �̄ Specificity �̄ Accuracy

�1 → AL N.S. +0.16 (***) +0.11 (***)

�1 → �q N.S. +0.21 (***) +0.13 (***)

AL→ �q −0.025 (**) +0.052 (***) +0.026 (*)

�1 → EN N.S. +0.032 (**) +0.020 (**)

Mean absolute point-wise changes �̄ of sensitivity, specificity and accuracy for the
presented methods. The total significance level of 5% has been corrected by the
Bonferroni method to 5%/12 = 0.42%
(*):p < 0.42%
(**):p < 0.042%
(***):p < 0.0042%
N.S.: not significantly different from zero

be adjusted when finding likelihoods aligned along the
penalty level lines. To circumvent this, a deformation
parameter d was used in �q, Adaptive Lasso and Elastic
Net penalties. As d does not carry a biological meaning,
the choice of d can be regarded as arbitrary. Therefore, dif-
ferent values were tested for one configuration containing
seven cell-type specific features: the protein degradation
rate, two protein and one ribosomal synthesis strengths,
two Hill exponents and one Kd value. As deformations,
adaptivities γ ∈ [ 0, 2], exponents q ∈ (0, 1] and elas-
ticities α ∈ [ 0, 1] were applied. The results are depicted
in Fig. 4. The specificity of the �1 regularization was
19/22 = 86.4%. Interestingly, �q penalties yield a unique
result independent of q < 1 with a specificity of 100%.
Hence, �1 should not be considered as a strict mathemat-
ical limiting case for q → 1, but rather a different class of
penalty function. This might be related to the fact that the
penalty term becomes convex for q = 1. Adaptive Lasso
in turn shows varying shrinkage. Especially for adaptivi-
ties γ > 1, the false positive detection increases although
the final estimates have small absolute values. For elastici-
ties α > 0.5, the Elastic Net provides hardly any shrinkage.
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Fig. 4 Parsimonious models for some choices of deformation parameters. Upper row: Parsimonious models by scanning over penalty strengths λ

for a fixed deformation parameter. Only the log-fold-change parameters are shown. Filled circles depict the value of those log-fold-changes that are
non-zero after regularization. Squares denote the �1 penalty at zero deformation, while circles represent the extended functions. Kinetic rates in
bold face were chosen as cell-type specific for data simulation. The colours of circles after these kinetic rate names encode the corresponding value.
For �q , the parsimonious model was independent of the choice of q. Elastic Net did not induce an effective model shrinkage for α > 0.5. Lower row:
The total effective run times of the regularization routines as function of the deformation. These account for the entire two-step regularization
routines to find the parsimonious models. All runs were executed on a 20-core server

This demonstrates that the penalty is then closer to Ridge
Regression than to Lasso, hence sparsity is only reached
asymptotically.
Some parameters were estimated to be cell-type specific

for almost all deformations d (protein degradation rate,
synthesis strengths of protein 2 and 3, and Hill kinetic
exponent 8), all of which are true positive classifications.
This shows that the flexibility introduced by the defor-
mation d encourages an additional scan over a range of
possible values to find stronger evidence for true cell-type
specific properties. However, it is not necessary to scan
over all admissible deformations to achieve model shrink-
age. A regularized optimization can be performed with an
a priori choice of for example an �q penalty with q = 0.8.
This avoids possible numerical instabilities for too small q,
whereas it is sufficiently different from �1, too, to exhibit
the advantageous features of non-convexity.

None of the applied regularization functions was able
to detect the cell-type specific behaviour related to Hill
coefficient 1 and KD parameter 4 except for those Elas-
tic Net configurations that could not effectively shrink the
model size. This coincides with previous findings that Hill
and KD coefficients are less frequently detected as cell-
type specific compared to the remaining parameters. This
occurs because the identifiability of those parameters is
limited if the corresponding regulator concentration does
not lie around KD, and because they are easily concealed
by measurement uncertainties [14].
The lower row of Fig. 4 indicates the effective time that

was necessary to detect the parsimonious model for a
given deformation. It displays that all scans with extended
penalty function were faster than the original �1 except
for four deformation values. This holds even for �q, which
was considered as hampering the optimizer due to its non-
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convexity [9]. A precise assessment of the efficiency is
postponed to further research.

The influence of the �q cut-off threshold The �q regu-
larization requires a threshold parameter ε to cut off the
unbounded gradients for zero log-fold-changes. Setting
ε = 0 can hamper the simulation if some log-fold-changes
are initialized as zero when finding the parsimonious
model because these parameters remain zero indepen-
dent of the scanned penalty strengths. This behaviour
that matches the expectations from theory disappeared
for all tested positive values of ε, even for ε ∼ 10−16. To
avoid numerical problems with rounding, the threshold
was fixed to ε = 10−10.

Application on biological data
The �1 penalty function has previously been applied to
an EPO induced JAK2/STAT5 signalling pathway [13] to
find cell-type specific behaviour between healthy CFU-E
cells and non-small cell lung cancer cells of type H838.
This model contains two feedback loops related to the
proteins CISH (see Fig. 5) and SOCS3, both induced by
nuclear pSTAT5. 1141 data points are available. For a
detailed description, the reader is referred to [13]. By
applying an �1 penalty to the published data, 10 out of
26 kinetic parameters were found to be cell-type specific.
Three of these could be removed manually as they were
compatible with zero within the confidence interval. The
remaining seven cell-type specific properties reproduce
the published results.
Scanning over deformations d reveals a setting differ-

ent from the �1 result for the CISH feedback loop as
Fig. 5 reveals. According to the �1 prediction, only the
turnover rate CISHRNAturn is cell-type specific, which is
the rate constant for the nuclear pSTAT5 induced synthe-
sis of CISH mRNA. Especially �q for q ∈ [ 0.2, 0.35] pin-
points an alternative that considers CISHRNAbasal and
CISHRNAdelay as cell-type specific. This corresponds to
a basal, not npSTAT5 induced synthesis rate of CISH
mRNA and to the delay chain parameter that is applica-
ble to both types of synthesis. The Adaptive Lasso yielded
the same classification for some adaptivities. The objec-
tive function values of −1197.14 for the turn parameter
and −1196.73 for the basal and delay parameters as cell-
type specific are almost equal. The profile likelihood of the
turn fold-changes, which was presented in the introduc-
tion (see Fig. 1), underlines that it would be in accordance
with the available data to set this value to zero. Both
CISH parameter choices are parsimonious in the sense of
Eq. 12. However, the option that considers both, the basal
and the delay rate as cell-type specific yields a less sparse
result as there remains one parameter more to be esti-
mated. Additional informative data would be required to
find better evidence for the cell-type specific properties of

the CISH feedback loop. Elastic Net regularization can-
not provide informative results that go beyond �1. Even
for low elasticities the shrinking capacity is low.

Discussion
Systems biology utilizes mathematical models to under-
stand biological processes. Frequently, mechanistic mod-
els are built up from ordinary differential equations
requiring the estimation of model parameters and a sta-
tistical test of the obtained results. A model of biological
systems with two cell types can be regularized to force
some of the model parameters to be equal amongst the
cell types. This induces a sparse system with a reduced
number of parameters to estimate.
Three penalty functions for regularization were pre-

sented to extend the pre-existing �1 penalty: The Adaptive
Lasso, the Elastic Net and the non-convex �q penalty. All
of them include one additional parameter which can be
called deformation d. The limit case d = 0 represents the
�1 method that has already been applied to the Systems
Biology settings. When utilizing Adaptive Lasso or �q,
both, specificity and accuracy of the classification of cell-
type specific parameters could be significantly increased
for a realistic toy model involving Hill kinetics. The sensi-
tivity remained unchanged in more than 50% of all runs.
The Elastic Net did not show relevant improvements
while being sensitive with respect to the deformation d.
The difference between �q and Adaptive Lasso is signif-
icantly in favour of the former, whereas the total gain in
accuracy is minor.
In theory, the dependence on d has to be assessed for

each model individually. The results indicate that �q is the
most robust method with respect to the predicted cell-
type specific properties. Scanning over a range of admis-
sible deformations allows to find alternative parsimonious
models and to check the proposed models for multiple
deformation types and strengths. Especially for �q it does
however not seem necessary to scan over all deformations
to simply regularize a model. A choice of, for instance,
q = 0.8 seemed viable for all models examined so far. The
final parsimonious model is mostly non-unique among
different deformations. Scanning all deformations can be
regarded as an additional possibility to find hidden alter-
natives. Further statistical criteria such as the Bayesian
Information Criterion might be employed to evaluate the
most common final results.
The �q penalty function yielded the most reliable pre-

dictions for the simulated data. It has to be taken into
account nevertheless that this method encounters issues
with multiple minima whenever the penalty strength is
sufficiently strong. Theoretically, the penalized objective
function always has a (local) optimum if any fold-change is
zero. Our method to circumvent this problem is twofold:
First, the diverging derivatives are cut off at a small
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Fig. 5 Two parsimonious models for the EPO induced JAK2/STAT5 signalling pathway. Upper panel: Part of the EPO induced JAK2/STAT5 signalling
pathway related to the synthesis of CISH mRNA [13]. Dash-dotted arrows denote a transcription, solid arrows a state transition. Boxes represent the
kinetic rates associated to a reaction. The delay chain τ is modelled with five intermediate steps. The turquoise rate is cell-type specific according to
�1, purple rates are cell-type specific according to some �q and Adaptive Lasso regularizations. Lower panel: Scan over deformations for the
JAK2/STAT5 signalling pathway with CFU-E and H838 cells. Parsimonious Model parameters related to the CISH feedback loop are depicted only.
Dot colours represent the final unpenalized estimates. The numbers in the upper row indicate the total number of log-fold-changes not estimated
to zero, also including those that are not depicted here. Squares denote the results obtained by the original �1 penalty. Circles indicate the
extended methods. Two possible parsimonious models were found when scanning the deformation strengths: either CISHRNA basal and delay
rates were cell-type specific or the corresponding turn rate

threshold. This implies that the penalty is made convex
around zero, so the additional minimum at zero disap-
pears for sufficiently strong objective function gradients.
Parsimonious models can be found without this cut-off,
but it renders the procedure more robust against log-
fold-changes initialized as zero or set to zero erroneously
while scanning the penalty strengths. Second, the range of
penalty strengths λ that is scanned over to find the parsi-
monious model is started at small λ. Then, the optimizer
can neglect the optimum in zero if it is not global. When
increasing λ, the optimizer stays in the previously found
optimum without being trapped in zero. It is hence nec-
essary to initialize subsequent penalized optimizations at
the values estimated before. The methods implemented
in Data2Dynamics regularize a system accordingly. In

further research the effects of concave penalty functions
with a bounded gradient at zero could be of interest.
The increased specificity induced by deforming �1

penalties can be explained by symmetry breaking effects.
Especially in the case of linear correlations, which fre-
quently occur in biological models, e.g. due to linked
phosphorylation and dephosphorylation rates, the addi-
tional deformation degree of freedom allows to have
penalty level lines that are not aligned along the correla-
tion. Then, the penalization can act in a way that is less
influenced by the objective function to shrink the model.
If no log-transformation was applied to parameters, no
linear correlation would arise and �1 would not encounter
problems. However, several benchmarking assessments
have found log-transformations to be advantageous
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[31–33]. Thus, they should be kept and linear correlations
should be handled by methods like those presented in our
manuscript.
If the original objective function exhibits non-

identifiabilities for fold-changes that are linearly
correlated, the �1 penalty terms are aligned to a subspace
of constant objective-function, so the sum of objective
function and penalty is constant on some interval, too.
Then, any point inside this interval could be selected
during the optimization. Symmetry breaking effects
might then lead to a random selection of either end-point
of the interval. This, however, is not a pitfall of the
extended regularization, but of the model or the avail-
able data for structural or practical non-identifiablities,
respectively. The extended methods can hence not cure
non-identifiabilities. In this case, a model reformulation
or additional, informative data are required to achieve
sensitivity improvements.
None of the methods presented in this paper was able

to increase the sensitivity of its predictions on cell-type
specific properties. It could hence be doubted whether
any new penalty approach that extends �1 is able to pre-
dict more true positives than original �1 and all methods
described above.
Here, we focused on the comparison of two cell types,

whereas the approach could easily be extended to incor-
porate any number of cell-types undergoing the same
biochemical process. The implementation provided in
Data2Dynamics can be used for this purpose. Therefore,
one cell-type of reference has to be selected and fold-
changes must be defined relating the reference-type to all
remaining cell-types. Parameters can also be grouped as
described in the Group Lasso technique [34]. The num-
ber of parameters then grows linearly with the number
of cell-types. However, recent benchmarking results show
that the performance depends polynomially on the num-
ber of parameters [33]. It should be examined in how far
the choice of the reference cell-type affects the outcome
since non-reference cells cannot be compared among each
other, but only with the reference type. An examination of
multiple cell-type models should be the subject of further
studies.
The presented methods can also be generalized to

any other field of Lasso usage which allows for a pri-
ori assumptions on some parameter values, such as zero
log-fold-changes in our case. Yet, they are most valu-
able in parameter estimation problems of non-linear sys-
tems, and where collinearity may arise. This comprises
descriptions of chemical reactions, e.g. for biochemical
rate-equations, as well as deep-learning networks.

Conclusion
In summary, we demonstrated that using extended �1
methods can lead to a more specific and accurate

classification of cell-type differences. The non-convex �q
penalty, e.g. for q = 0.8, provided best and fast predictions
albeit it leads to non-convex objective functions. In par-
ticular, the application to the JAK2/STAT5 model showed
that scanning the additional deformation parameter of the
newmethods facilitates the detection of differences in cell
kinetics between a healthy and malignant cells, which go
beyond what was published before based on �1. Extended
�1 methods as described in this manuscript could play
a role in unraveling fundamental features that charac-
terize for instance cancer cells, possibly leading to new
therapeutic entities and treatments.
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