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Abstract

Background: Tandem mass spectrometry (MS/MS)-based database searching is a widely acknowledged and widely
used method for peptide identification in shotgun proteomics. However, due to the rapid growth of spectra data
produced by advanced mass spectrometry and the greatly increased number of modified and digested peptides
identified in recent years, the current methods for peptide database searching cannot rapidly and thoroughly process
large MS/MS spectra datasets. A breakthrough in efficient database search algorithms is crucial for peptide
identification in computational proteomics.

Results: This paper presents MCtandem, an efficient tool for large-scale peptide identification on Intel Many
Integrated Core (MIC) architecture. To support big data processing capability, a novel parallel match scoring
algorithm, named MIC-SDP (spectrum dot product), and its two-level parallelization are presented in MCtandem’s
design. In addition, a series of optimization strategies on both the host CPU side and the MIC side, which includes
pre-fetching, optimized communication overlapping scheme, multithreading and hyper-threading, are exploited to
improve the execution performance.

Conclusions: For fair comparisons, we first set up experiments and verified the 28 fold times speedup on a single
MIC against the original CPU-based implementation. We then execute the MCtandem for a very large dataset on an
MIC cluster (a component of the Tianhe-2 supercomputer) and achieved much higher scalability than in a benchmark
MapReduce-based programs, MR-Tandem. MCtandem is an open-source software tool implemented in C++. The
source code and the parameter settings are available at https://github.com/LogicZY/MCtandem.

Keywords: Peptide identification, Tandemmass spectrometry (MS/MS), Database searching, High performance
computing, Many Integrated Core (MIC)

Background
In the proteomics era, mass spectrometry has become a
leading technology for proteomic analysis, including the
high-throughput analysis of proteins and determination
of their primary structures. Database search-based pep-
tide identification, which aims to retrieve all candidate
sequences from a specified protein sequence database for
each tandem mass spectrometry (MS/MS) spectrum, is
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widely used for protein analysis. It can process the peptide
sequence and post-translational modifications (PTMs)
with high accuracy, sensitivity, and throughput. X!Tandem
[1], SEQUEST [2], Mascot [3], pFind [4, 5] and OMSSA
[6] are examples of excellent peptide identification tools in
proteomics.
However, existing peptide database search tools still suf-

fer from low computational efficiency due to a number of
limitations. First, modern mass spectrometers can gener-
ate millions of MS/MS spectra in each experiment, which
makes matching of these fragmentation spectra to pep-
tides a bottleneck in proteomics research [7] (e.g., entire
human proteome identification). Second, the database
search criteria have become increasingly demanding, e.g.,
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in semi-unconstrained enzyme searches and/or when
considering multiple variable PTMs [8]. Finally, the inte-
gration of acquired sequence data into central databases
such as Liverwiki [9] typically requires the updating and
depositing of a large amount of spectra data files.
Without the development of more powerful and effi-

cient peptide database searching methods, we can expect
computational bottlenecks to limit the scope of dis-
coveries to small-scale MS/MS spectra data. Therefore,
a breakthrough in efficient database search algorithms
is crucial for large-scale peptide identification, espe-
cially entire human proteome analysis, in computational
proteomics.
Fortunately, various high performance computing

(HPC) frameworks and hardware techniques, such
as Message Passing Interface (MPI) [10], MapRe-
duce [11], field programmable gate arrays (FPGAs)
[12], Intel Many Integrated Core Architecture (MIC)
[13], and graphics processing units (GPUs) [14], have
recently been developed to improve the computa-
tional efficiency in information science [15]. In recent
years, the MIC architecture, which is a coprocessor
designed for highly parallel multithreaded applica-
tions with high memory requirements, has become a
widely-used HPC technology in computational biol-
ogy research [16]. In this paper, we have developed
a new peptide database search tool, MCtandem, that
parallelizes X!Tandem based on the MIC architecture
(the main accelerator of the Tianhe-2 supercom-
puter), via the widely adopted MPI/OpenMP protocol.
MCtandem has significant advantages over previous
methods that are particularly prominent when analysing
large-scale datasets. The highlights are as follows:

• We design and implement an SDP-based parallel
scoring algorithm using a two-level parallelization
mechanism. To the best of our knowledge, MIC-SDP
is the first parallel scoring algorithm for peptide
identification on MIC architecture and exhibits the
best execution performance.

• We adopt the MIC coprocessor for peptide database
searching that uses the MIC-SDP algorithm. In
design realization, we also employ asynchronous task
transfer and propose a series of effective optimization
strategies to decrease the communication costs
between the host CPU and accelerator MIC and to
balance the workload on each MIC coprocessor. The
optimization strategies we use may provide insight
into similar work on other database search
applications.

• We also show the scalability of MCtandem by scaling
the size of datasets and the number of MIC
coprocessors. We obtain an ideal speedup on a multi-
node cluster containing three MIC coprocessors with

a total of 183 cores. The experimental results show
that MCtandem has excellent scalability performance
without sacrificing accuracy and correctness in the
peptide database searching results.

In the following part, we first introduce the Intel
MIC architecture and peptide database search method
and then present the existing parallel works in peptide
database searching.

Intel MIC architecture
Intel Many Integrated Core (MIC) architecture is a many-
core coprocessor (Intel Xeon Phi coprocessor) used for
highly parallel multithreaded applications that require
high memory bandwidth [17]. MIC is based on an X86
Pentium core architecture but contains 512-bit-wide vec-
tor units, and each coprocessor features 61 cores clocked
at 1 GHz or more, supporting 64-bit x86 instructions. The
theoretical peak performance of a Xeon Phi coprocessor is
up to 1 TFLOP/s in double precision. These in-order cores
support four ways of hyper-threading, resulting in more
than 240 logical cores [18]. In principle, one great ben-
efit of using Intel MIC technology, compared with other
accelerators and coprocessors, is the simplicity of the
development. Developers do not have to learn a new pro-
gramming language but may compile their source codes
specifying MIC as the target architecture [19].
Typically, MIC supports three kinds of programming

models that can be used to design and implement par-
allel applications on MIC-based heterogeneous systems,
as shown in Fig. 1. In its Native model, applications usu-
ally run entirely on the Intel Xeon Phi coprocessor. In
its Offload model, the application starts execution on the
host CPU. When an offload region is encountered, the
host CPU will transfer the corresponding data to the MIC
coprocessor and let the coprocessor work on it. In its Sym-
metric model, the host CPU and theMIC coprocessor run
in parallel [18, 20]. In our work, we have used the offload
model to design and implement MCtandem algorithms
that can make full use of the computing resources of both
the multi-core CPU and the Xeon Phi coprocessors.

Database search-based peptide identification
Peptide database searching is the most commonly used
peptide and protein identification method and is depen-
dent on the presence peptide sequences in a database.
Essentially, all peptide sequences in the database can be
scored against the experimental spectrum, and the best
scoring sequence is the accepted source of the MS/MS
spectrum. Sequest [2], Mascot [3] and X!Tandem [1] are
some excellent algorithms in the field of peptide database
searching.
The core of any protein and peptide identification

method is the scoring function. In database searching,
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Fig. 1 Programming models on Many Integrated Core (MIC) Architecture. a Native Model b Offload Model c Symmetric Model

the scoring function calculates the similarity between
a hypothetical spectrum and an experimental spectrum
that is generated after the in-silicon digestion of protein
sequences from a database, and it is the most time con-
suming and computationally intensive step (more than
sixty percent of the total time in X!Tandem [1, 21, 22] and
pFind [4]) in the flow of protein identification. Explana-
tions are reflected in Table 1. Note that there are scoring
calculations in both the model computing and model
refinement steps.
The scoring function is used to quantify how well a

candidate peptide explains a spectrum and to choose
the highest scoring peptide, which explains the spectrum
the best. Among the popular protein database search
approaches, the spectrum dot product (SDP) is a basic
and very widely used scoring algorithm that can be used
applied directly or indirectly in Sonar [23], X!Tandem [1],
pFind [4] and Sequest [2], etc.

Table 1 Time usage of X!Tandem (Second)

Time distribution Dataset 1 Dataset 2 Dataset 3

Loading spectra 12 s 155 s 59 s

Computing models 125 s 1286 s 234 s

Models refinement 210 s 3084 s 379 s

Sorting and merging results 104 s 2574 s 298 s

Total time 451 s 7099 s 970 s

Scoring time percentage 74.3% 61.5% 63%

The peptide-spectrummatch (PSM) is a pair (P, S) con-
sisting of a peptide P and a spectrum S. The spectrum
includes a list of peaks, and each peak specified by anm/z
value. Therefore, representing spectra as vectors allows
us to represent the generation of spectra from peptides
by two-dimensional vector operations [24]. We use the
boolean vector t =[ t1, t2, . . . , tN ] to represent the theo-
retical spectrum and c =[ c1, c2, . . . , cN ] to represent the
experimental spectrum, where ti(ci) = 1 indicates that the
peak i (m/z) (or simply the peak i) exists, and ti(ci) = 0
otherwise. The SDP function is a kernel algorithm used to
score a PSM and is defined as

SDP =< c, t >=
N∑

i=1
(citi) (1)

Note that only experimental and theoretical spectra
whose precursor mass distances lie within a self-defined
tolerance need to be considered. We define |E| as the
experimental spectra set and |T | as the theoretical spec-
tra set. The workflow of the SDP scoring function
in X!Tandem is divided into two parts, as shown in
Algorithm 1. First, for each experimental spectrum
(peptide), all the theoretical spectra are searched using a
binary search to determine which precursor masses are
within the peptide precursor mass distance and obtainH,
assuming there are K spectra; Second, peak matching
of the experimental spectrum and each matched the-
oretical spectrum (or theoretical pair) is conducted is
conducted using SDP. The computation complexity is
O(|C||H|NK+|C|lg(T)).
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Algorithm 1 SDP scoring algorithm
Require: the group theoretical spectrum and experimen-

tal spectrum vectors.
Set: T : theoretical spectrum;
E: experimental spectrum;
H : hypothesis spectrum, the match theoretical spec-
tra of the experimental spectra by unrefined research;
hi−m, hii−m: the m/z and intensity value of the m-th
element of theoretical spectrum hi;
ei−m, eii−m: the m/z and intensity value of the n-th
element of experimental spectrumei.

Ensure: the top one score of each experimental spectrum
1: for each Em ∈ E
2: search T, get H
3: for each Hj ∈ H
4: for each hj−n ∈ Hj
5: search hj−n in Ej , get ej−l
6: SDP_score += dot( hj−n, ej−l )
7: end for
8: end for
9: end for

Related research
As one of the most powerful methods in proteomics,
peptide database searching has become a focus of compu-
tational biology researchers. Recently, many efforts have
been devoted to the development of efficient database
search methods for protein analysis.
A notable trend is to improve the database searching

scoring functions; for instance, Tang [25] adopted b/y
ions and peptides and their indices to improve peptide-
spectrum matching. Peng [26] and Dutta [27] used the
nearest neighbour search to decrease the redundant oper-
ations in the scoring stage. Chi and Li [28] considered
the problem of peptide-spectrum matching and redun-
dant peptides and adopted an inverted index strategy to
reduce the time complexity. Olivier et al.[29] developed a
fast and easy-to-use tool, named X!TandemPipeline, that
can process large volumes of samples simultaneously.
Using hardware acceleration is another approach to

improving database search performance. Since hetero-
geneous computing has become a main driving force
in HPC, techniques involving coprocessor acceleration
have been studied for several biological data analysis
methods [30]. Notably, Zhu [31] presented an efficient
OpenGL-based multiple sequence alignment implemen-
tation on GPU hardware. Baumgardner [7] developed a
spectrum library search algorithm based on GPU. Hus-
song [20] implemented a GPU-based feature detection
algorithm to reduce the search time. Liu et al. [32] devel-
oped CUDA-BLASTP to accelerate BLASTP, producing
identical results and maintaining the same output and
input interface. Vouzis et al. [33] presented a method

called GPU-BLAST, which achieves a 10-fold speedup on
a GeForce GTX 295 GPU compared with the sequential
NCBI-BLAST.
In addition to the GPU accelerator, using field-

programmable gate array (FPGA) to accelerate the com-
putation process is another solution with high perfor-
mance. Sotiriades [34] redesigned the scoring module,
which suits a single FPGA and achieves good perfor-
mance. Chen Zhang [35] has built a highly efficient
pipeline for coupled filtering on FPGA. In [36, 37], Dydel
et al. designed a large-scale sequence analysis method on
multi-FPGA platforms to explore high performance.
Additionally, some of the prevalent database search

engines adopted the HPC framework [38]. X!Tandem [1]
uses MapReduce [39] and MPI [21] two parallel technolo-
gies, to implement their parallel versions. Phenyx [40] and
Mascot [3] adopt anMPI to build a cluster system. Among
them, MR-Tandem using MapReduce achieved the best
acceleration rate.
Although these methods did improve performance

improvement, there are several drawbacks: the accelera-
tion and data processing scale are still far from satisfactory
for use in practical laboratories. MR-Tandem uses 50
nodes and takes 1.76 hours to complete the sequencing
(Dataset: 233 MB mzXML file, including 26 172 MS/MS
spectra. Database: 33 MB FASTA file, including 52 415
proteins) [39]. Large-scale heterogeneous cluster systems
are based not only on common CPUs, GPUs and FPGAs,
but also on different types of coprocessors. A typical rep-
resentative is the more recent Intel Xeon Phi coprocessor.
In this paper, we develop an improved database search
tool, MCtandem, that parallelized X!Tandem to acceler-
ate large-scale peptide identification on the CPU-MIC
heterogeneous clusters.
The rest of this paper is organized as follows:

“Results” section describes the experimental results by
comparison with a previous study. “Discussion and
Conclusion” section present our discussion and conclu-
sions. Finally, the computational design and optimization
strategies are evaluated in “Methods” section.

Results
A series of experiments were performed to evaluate the
performance and scalability of our proposed MCtandem
implementation. In this section, we will first introduce the
experimental environments and dataset and then compare
the performance of MCtandem and some state-of-the-
art peptide identification tools. Finally, we evaluate the
scalability of MCtandem.

Experimental setup
In our experiments, we implemented MCtandem using
the C++ programming language and evaluated them on
the MIC platform with the following configuration:
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- Intel E5-2640: six-core 2.5 GHz, 15 MB SmartCache.
- Intel Xeon Phi Coprocessors 7120p: 61 hardware

cores, 16 GB GDDR5 device, 1.33 GHz processor
clock speed.

Tests for MCtandem were conducted using three MIC
cards installed in a server with two Intel E5-2640 six-
core 2.0 GHz CPU and 32 GB RAM running NeoKylin
3.2. A proper process/thread/memory affinity is the basis
for optimal performance. Therefore, some default setting
needs to be modified. The details of the configuration
parameters are shown in Table 2. We have run X!Tandem
[1] and Parallel tandem [22] on one Intel E5-2640 CPU
and MR-Tandem [39] on Amazon Web Services.
We scanned two protein sequence databases: the 5.2GB

UniProtKB/SwissProt (540 171 proteins) and the 18GB
UniProtKB/TrEMBL (1 821 879 proteins). The protein
sequence database is obtained from the UniProtsKB
database (http://www.UniProt.org/downloads/), which is
a non-redundant, high quality, and manually annotated
protein sequence database [41]. The experimental spectra
data were generated by tandem spectrometry experiments
that analysed the behaviour of a mixture with human liver.
More details are shown in Table 3.

Performance on a single MIC node
First, we compared the single-MIC performance of
the proposed MCtandem implementation to that of
X!Tandem. For single MIC card tests, we used the
UniProtKB/Swiss-prot a test database and measured the
total search time to calculate the computing speedup val-
ues. To enhance the accuracy of the results, three different
datasets (see Table 3) were used in the experiments.
Table 4 shows the corresponding computing time and

speedup of MCtandem and X!Tandem. MCtandem is exe-
cuted on a single MIC node. X!Tandem is executed on
an Intel E5-2640 CPU with 32 threads. This table shows
that Dataset 1 achieved a 25.77-fold speedup, Dataset 2
achieved a 28.31-fold speedup and Dataset 3 achieved a
29.02 timeless speedup. The speedup is achieved from
the parallel MIC-SDP scoring algorithm and optimization
techniques. In addition, we have also tested the impact of
thread count on the speedup of MCtandem by changing

Table 2 A representative job script

Script commands

module load craype-hunepages2M

export MKL_FAST_MEMORY_LIMIT = 0

export OMP_PROC_BIND = TRUE

export OMP_PLACES = threads

export OMP_STACKSIZE = 512m

export OMP_NUM_THREADS = 16

the amount of threads. The experimental results show that
it can run up to 29 times faster on a single MIC than the
original CPU-based version, as shown in Fig. 2.
We further compare the obtained speedup of the

Parallel tandem [22] on the multi-core CPU and
MCtandem on a single MIC. Parallel tandem is a paral-
lel version of X!Tandem using PVM. For testing Parallel
tandem on the multi-core CPU, we limited the num-
ber of threads to twice of the core, two CPUs every 8
cores. TheMIC architecture’s in-order cores support four-
way hyper-threading, with more than 240 logical cores.
Figure 3 reports the speedup of MCtandem and Parallel
tandem against the number of threads. From this figure,
it can be observed that MCtandem can achieve nearly 28-
fold speedup over the X!Tandem, while Parallel tandem
running on multi-core CPU can obtain nearly a 9-fold
speedup.

Performance on the MIC cluster
To evaluate the performance of multi-node acceleration,
we used three nodes as the test platform. Each node
is equipped with two 6-core Intel E5-2640 CPUs and
a 61-core Intel Xeon Phi coprocessor. Figure 4 gives
the speedup of MCtandem compared with MR-Tandem,
where the X axis represents the number of nodes in the
MIC cluster and the Y axis represents speedup. MR-
Tandem uses 50 nodes to obtain a 20.56-fold speedup,
while MCtandem takes only 3 nodes to achieve 61.7-
fold speedup. MCtandem shows significantly better per-
formance than MR-Tandem as the number of nodes
increases. The results indicate that MCtandem exhibits
good scalability in terms of the number of computing
nodes.

Performance for processing large-scale datasets
In the large-scale experiments, we tested the capacity of
big data processing by varying the size of the dataset. The
large datasets in the experiment were formed by merging
Dataset 1, Dataset 2, and Dataset 3. X!Tandem and MR-
Tandem cannot operate normally for datasets larger than
1.96 GB in 18 GB databases. We ran MCtandem on a sin-
gle MIC node. Figure 5 demonstrates the performance of
MCtandem as the dataset size increases from 0.98GB (210
252) to 12.11 GB (3 102 956 spectra). As shown in Fig. 5,
MCtandem can handle extremely large datasets with a lin-
ear increase in computation time with dataset size. For
a 12.11 GB dataset, MCtandem took 282 min, which is
acceptable in most practical laboratories. Our implemen-
tation also demonstrates good scaling in terms of dataset
size.

Discussion
To overcome the drawbacks of the existing protein
database search methods, we propose a new algorithm

http://www.UniProt.org/downloads/


Li et al. BMC Bioinformatics          (2019) 20:397 Page 6 of 13

Table 3 Test datasets for MCtandem

Dataset Instrument Enzyme Tolerance Modifications Size

Dataset 1 LTQ Trypsin Precursors: 3Da Fragment: 0.5Da Fixed: Cabamidomethylation (C) 51.5MB (18 172 spectra)

Dataset 2 QSTAR AspN Precursors: 2Da Fragment: 0.2Da Fixed: Cabamidomethylation (C) 272MB (52 503 spectra)

Dataset 3 LTQ LysC Precursors: 0.2Da Fragment: 0.5Da Fixed: Cabamidomethylation (C) 486MB (106 616 spectra)

MCtandem, which parallelizes X!Tandem based on the
MIC cluster via the widely adopted MPI/OpenMP protocol.
The MCtandem has significant advantages over the previ-
ous methods that particularly show when analyzing large-
scale spectra datasets. In this section, we first validate our
results with a previous study and then evaluate the perfor-
mance of optimization technology used in MCtandem.

Accuracy analysis
We verified the accuracy of MCtandem by comparing
the cosine values for MCtandem to those of X!Tandem.
The results are presented in Table 5. MCtandem and
MR-Tandem obtain the same cosine value for the
spectra datasets. This result proves that the search-
ing results obtained by MCtandem are consistent with
those obtained by MR-Tandem. This result validates that
MCtandem achieves much higher execution performance
than MR-Tandem without sacrificing the accuracy and
correctness of the results.

Summary of optimization technology
To test the effectiveness of the above optimization, we ran
MCtandem on MIC cluster for three nodes and searched
Dataset 2 (the data size is 486 MB, including 106 616
spectra) in the UniProtKB/TrEMBL database. The opti-
mized MCtandem gained a 23.4 percent performance
boost compared with the original MCtandem, as shown in
Table 6. We also tuned the communication across nodes
on MIC clusters to achieve the best utilization of vari-
ous computing power within the heterogeneous system.
Meanwhile, the optimizationmethods we usemay provide
insights into other database search applications.

Conclusion
As the amount of MS/MS data increases rapidly, the
prohibitive computing time required for large-scale pep-
tide identification has become a critical concern in
proteomics. In this paper, we design and implement
a parallel scoring algorithm to accelerate large-scale

Table 4 Speedup effect of SDP using a single MIC coprocessor

Software Dataset 1 Dataset 2 Dataset 3

X!Tandem 451 s 7099 s 970 s

MICtandem 17.5 s 251 s 34 s

Speedup 25.77 28.31 29.02

peptide identification on CPU-MIC heterogeneous clus-
ters. To achieve high performance, we reformulated
the scoring model to reduce the time complexity and
eliminated the data dependence to enable all possible
localities and vectorization. Performance is also tuned
among the CPU and Xeon Phi coprocessors by pre-
fetching, multithreading and hyper-threading, vectoriza-
tion and communication overlapping schemes to achieve
the optimum performance and best utilization of var-
ious computation resources within heterogeneous sys-
tems. Evaluations on real MS/MS spectra datasets show
that MCtandem achieved a 28-fold speedup on a sin-
gle MIC. Our experimental results also demonstrate that
MCtandem can significantly increase the performance
and scalability of large-scale peptide identification with-
out sacrificing correctness and accuracy in the result. We
believe that the techniques we use may provide insights
into similar work on other large-scale sequence analysis
applications.

Methods
Computational Design
We first analysed X!Tandem to chase down the hotspot
of the program and then profiled the performance of
X!Tandem by using Intel VTune TMAmplifier XE. The
result shows that the “mscore” function (the calculation
of the sequence similarity scores) represents more than 60
percent of the whole computation time and should there-
fore be accelerated to improve performance. Meanwhile,
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Fig. 2 Speedup effect of SDP using a single MIC coprocessor
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Fig. 3 Comparisons of performance between MCtandem and
X!Tandem. Comparisons of performance between MCtandem and
X!Tandem: when the number of the threads reaches the 240,
MCtandem can speed up about 28 times over

we found that when searching the same type of MS/MS
spectra, X!Tandem processes each experimental spectrum
individually, which is desirable for parallel processing.
Based on these findings, our MCtandem on the MIC

heterogeneous system requires a two-level paralleliza-
tion mechanism to implement multi-level parallelism,
which specifically includes: task-level parallelism between
CPUs and their MIC coprocessors using a dynamic task
scheduling method and thread-level parallelism employ-
ing sequence-decomposition through dynamically sched-
uled multithreading.
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Fig. 5 Performance of MCtandem on datasets sized 0.98-12.11GB

Parallelization between CPU andMIC
In the Offload model, the task assignment between the
host CPU and the MIC coprocessor should be consid-
ered. Since the MIC coprocessor has a disjoint memory
space from the host CPU, task allocation would incur data
transfer. To support search tasks for large-scale peptide
databases, we further divide each spectra subset into a set
of chunks. We design and implement a task-level dynamic
distribution framework to distribute these chunks to both
the host CPU and the MIC coprocessors.
As shown in Fig. 6, first, a sample test is executed

to explore the computational source of all computing
nodes. Then, based on information about the sample data
run time and load balancing, the performance factors
of different computing nodes are automatically collected.
The relevant details are described in the next paragraph.
Finally, with the performance factor of each node, we can
then calculate and adjust the appropriate size of the spec-
tra chunk assigned to the corresponding node using a
dynamic feedback task scheduling algorithm [42].
To balance the load dynamically and eliminate the

system bottleneck, we must choose appropriate load
parameters for the performance factor. The first aspect
to consider is CPU utilization. In our implementation,
we extracted the real-time information parameters in a
/proc/stat file of the Linux system to calculate CPU uti-
lization. The task queue length of a single core decide
whether the task scheduler can keep up with the sys-
tem requirements, if it is too long, the execution time

Table 5 Accuracy analysis of MCtandem

Dataset Cosine of MR-Tandem Cosine of MCtandem

Dataset 1 0.975684 0.975684

Dataset 2 0.992485 0.992485

Dataset 3 0.982365 0.982365
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Table 6 Computational Time Before and After Optimization

Methods Execution time (seconds) Benefits

Before Optimization 1553 s 0

Pre-Fetching 1391 s 10.1%

Multithreading and Hyper-Threading 1408 s 9.3%

Vectorization 1329 s 14.4%

With Both Optimization 1190 s 23.4%

of a job will become too long, which causes the sys-
tem to be in the state of overload. Therefore, the average
length of the task queue is another key performance fac-
tor. We can use related parameters in file /proc/loadavg
of the Linux system to reflect the average task queue
length of a single core. In heterogeneous systems, mem-
ory utilization needs to be monitored. Four useful items
are extracted from the file /proc/meminfo: free mem-
ory (MF), file cache (Cached), total memory size (MT),
and block-device buffers (Buffers). Memory utilization is
defined as MemUsage, which can be calculated by

MemUsage = MT − MF − Buffers − Cache
MT

(2)

The dynamic feedback task scheduling process is described
as follows:

Step 1 Users choose a host node in the computing
environment service as the task scheduling host
node.

Step 2 The scheduling host node uses configuration
requirements to filter static resource information
and access the real-time information of backup
computing resources through the network.

Step 3 The scheduling host node distributes tasks to the
computing node, monitors the execution status of
the search task and collect the computing results.

Step 4 According to the ratio of the number of remaining
hosts after overload exceeded the number of
backup hosts, the geometric weighted coefficient
was adjusted, returning to Step 2. The task is
complete when the load on each node is balanced.

Our experimental results show that dynamic task
scheduling can maintain the system load imbalance below
8 percent in most cases.

Parallelization acrossMIC coprocessors
Due to the high bus bandwidth between CPU and sys-
tem memory, CPU can process data input and output
very quickly. Unlike the CPU, MIC coprocessor threads
can process multiple database peptide batches in paral-
lel. However, because of the relatively low bus bandwidth
between the system memory and the MIC coprocessor,
data read back from the MIC coprocessor to the CPU is a
known bottleneck and should be minimized. In this work,
we design a hybrid scoring algorithm and employ the
peptide sequence-decomposition method to implement
thread-level parallelism.

Fig. 6 Framework of dynamic task distribution
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Each core in MIC is an dual-issue, in-order core, which
has four-way hyper-threading supports to improve multi-
cycle instruction latency and hide memory. Our MIC-
SDP scoring algorithm on MIC is designed so that each
MIC core deals with one experimental spectrum seri-
ally, scoring with its entire matched theoretical spec-
trum. Compared with the original SDP algorithm, the
improvements in MIC-SDP are as follows: First, the MIC-
SDP scoring algorithm dispensed with the first loop
in the SDP algorithm by allocating each experimental
spectrum to a thread, which significantly decreases the
compute time as many threads are about working in par-
allel. Second, the MIC-SDP algorithm merges the SDP
calculation and the peak matching steps to decrease
the space for the variable. As shown in Algorithm 2,
the computational complexity of MIC-SDP decreases to
O(lg(T) + |H|NK).

Algorithm 2MIC-SDP scoring algorithm
Require: the group theoretical spectrum and experimen-

tal spectrum vectors.
Set: T : theoretical spectrum;
E: experimental spectrum;
H : hypothesis spectrum, the match theoretical spectra
of the experimental spectra by unrefined research;
hi−m, hii−m: the m/z and intensity value of the m-th
element of theoretical spectrum hi;
ei−m, eii−m: the m/z and intensity value of the n-th
element of experimental spectrumei.

Ensure: the top one score of each experimental spectrum

1: omp_set_nested(ture ) //allow nested paral-
lelism

2: #pragma parallel for num_thread No.of MIC +1
3: Each i to No.of MIC
4: #pragma offload target(mic:i) if (i > 1) in () out ()
5: #pragma omp parallel for num_threads

(THREAD_NUM1)
6: for each Em ∈ E
7: search T, get H
8: #pragma omp parallel for for num_threads

(THREAD_NUM2)
9: for each Hj ∈ H
10: for each hj−n ∈ Hj
11: search hj−n in Ej , get ej−l
12: SDP_score += dot( hj−n, ej−l )
13: end for
14: Max_score = Max(SDP_score,

Max_score)
15: end for
16: end for
17: end pragma omp parallel

When the computation tasks (scoring module) are
offloaded to the MIC coprocessor, it spawns a set num-
ber of threads to accomplish these tasks (depending to the
number of MIC cores). These threads develop the paral-
lelism of the scoring tasks through the peptide sequence-
based decompositionmethod, where each thread acquires
works based on the peptide sequence units. Meanwhile,
these threads adopt a dynamical scheduling policy for
workload balancing, where each thread acquires a new
sequence from the unsettled peptide sequence pool after
processing every peptide sequence.
Our MCtandem algorithm caters to the MIC architec-

ture in deploying SDP-based scoring with MPI+OpenMP.
It can fully utilize the vector processing unit (VPU) hyper-
threading. Meanwhile, to maximize MCtandem’s over-
all processing capacity and achieve loading balance in
the MIC cluster, we employed dynamic task scheduling
to automatically move spectra data from overutilized to
underutilized VPUs.
The workflow description of MCtandem is presented in

Fig. 7. To fully exploit the heterogeneous system on the
MIC, we defined four phases in the execution of MCtan-
dem. In the first phase, MCtandem partitions an MS/MS
spectra dataset into appropriately-sized datasets and dis-
tributes them across multiple computing nodes based
on MPI scheduling. In the second phase, the hypothe-
sized spectra dataset is obtained through an unrefined
search on Xeon E5 CPU. In the third phase, MCtandem
distributes each mass spectrum and the corresponding
hypothetical spectra dataset to the Xeon Phi coprocessor.
Each VPU addresses one experimental spectrum using
our MIC-SDP algorithm. In the last phase, the output files
are combined into a results document.

Optimization techniques
Several optimization techniques are employed onMCtan-
dem, including pre-fetching, multithreading and hyper-
threading, vectorization, computation and communication
overlapping schemes.

Pre-fetching
Task assignment incurs data transfer and memory access,
which greatly reduces the parallel efficiency, because the
MIC coprocessor has a disjoint memory space from the
host CPU. We implemented the pre-fetch manually by
using a tightly-coupled methodology to divided tasks
between the CPU and MIC and further improved the
parallel efficiency. We implemented the double-buffering
mechanism, which is a technique designed to improve
performance by hiding memory access, as shown in
Algorithm 3. When there are multi-cycle DMA read
(write) operations, MIC coprocessors assign double the
memory space in the scratch pad memory to two sets of
spectra. The two spectra are buffered from each other.
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Fig. 7 The overall flow of MCtandem. Our two-level parallelization scheme on the CPU-MIC heterogeneous system combines: (1) task-level
parallelism between CPU and MIC using a dynamic task scheduling method (based on MPI). (2) thread-level parallelism employing
sequence-decomposition through dynamically scheduled misreading (based on OpenMP)

When one spectra is scoring, the other spectrum serves as
the message buffer.

Multithreading and hyper-threading
Running code outside the parallel scaling region either
slows down scientific productivity or wastes valuable
computing resources. An appropriate parallel/thread scal-
ing of applications is critical to run the codes efficiently in

Algorithm 3 Programming framework pre-fetching
Require: E: experimental spectrum;

H : hypothesis spectrum, the match theoretical spec-
tra of the experimental spectra by unrefined research;

Ensure:
1: for i ranging from Estart to Eend ;
2: dataID ← getIndex() ;
3: DMA_get(j(dataID), H0, reply(getIndex(0)));
4: for j ranging from 1 to Eend ;
5: dataID ← getIndex(j) ;
6: DMA_get(j(dataID), Hj,

reply(getIndex(dataID)));
7: DMA_barrier( reply(getIndex(dataID)));
8: end for
9: DMA_barrier( reply(getIndex(j − 1)));

10: end for

HPC systems. We found experimentally that the MCtan-
dem performs best with four or eight threads per MPI
task at all node counts for all datasets. For the runs with
small node clusters (one or two nodes), using four threads
per MPI task performs best. However, when the node
clusters increase, using eight threads per MPI task out-
performs four threads per MPI task. Consequently, we
recommend using eight threads per MPI task or more for
larger threads.
Hyper-threading could improve the application acceler-

ation performance through increasing resource utilization
by simultaneously running multiple threads/processes on
the hardware threads on the core, making effective use of
the cycles that would otherwise be wasted due to branch
mis-predictions, data dependencies, cache misses, and/or
waiting for other resources in a single thread/process
execution on the core [43]. With the MIC, which pro-
vides four hardware threads per core, hyper-threading
improved MCtandem’s performance slightly.

Vectorization
In heterogeneous MIC architecture, the host CPU and
the MIC coprocessor share a similar computing archi-
tecture that consists of VPUs and multiple cores. There-
fore, vectorization is a key point in the optimization
process. In this work, we have achieved efficient uti-
lization of all available computing resources by utilizing
vectorization. To implement vectorization optimization
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Fig. 8 The improved proxy infrastructure. Our proxy infrastructure can be extended to support a single MPI process per Intel Xeon Phi for external
communication, and OpenMP threads for parallelism within the Intel Xeon Phi coprocessor

means that several spectra can be processed together.
In database searching, the hotspot of database searching
is the calculation of match scoring of pairwise spectra,
which can be vectorized by the same methods, including
numerical calculation and copying, demanding numeric
calculation, and vectoring the copy to execute in par-
allel. Meanwhile, in accordance with vectorization, we
modified all dependent statements to ensure a better vec-
torization. As the key to the entire optimization process,
the vectorization technique achieved a performance of
67.21 Gflops.

Communication overlapping scheme
With the efficient MPI/OpenMP parallelization of large-
scale peptide database searching, our MCtandem algo-
rithm based on a heterogeneous system not only makes
efficient use of the host CPUs and MIC coprocessor
resources as described previously but also exploits com-
munication overlapping to minimize the communica-
tion latency. During the MCtandem’s implementation, we
adopted an improved proxy infrastructure [44] to pro-
mote the communication performance and scalability of
MCtandem on MIC Clusters.
Twomemory-mapped circular queues between the host

and the MIC coprocessor used in our design are shown
in Fig. 8. One queue is used for requests and one for
responses. To eliminate the need to use lock and unlock
operations between the host CPUs and the MIC copro-
cessor, a set of free slots to hold the communication
commands, and each queuemaintains head and tail point-
ers to determine whether the queue is full or empty.
More specifically, before putting a task on MIC copro-
cessor, the proxy obtains a free slot by comparing the
trailer and header pointers to ascertain if the request
queue is full. The queue will wait for an available slot if
it is full. In the meantime, this slot will then increment

the tail pointer and the corresponding will fill with the
intended command. Moreover, to ensure the spectra data
pipes between the local CPU and the local MIC copro-
cessor, between the remote CPU and the local CPU, and
between the remote MIC coprocessor and the remote
CPU am always busy receiving or sending data, the send-
ing and receiving of spectra data chunks is performed in a
pipelined manner.
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