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Abstract

Background: Computational drug repositioning, which aims to find new applications for existing drugs, is gaining
more attention from the pharmaceutical companies due to its low attrition rate, reduced cost, and shorter timelines
for novel drug discovery. Nowadays, a growing number of researchers are utilizing the concept of recommendation
systems to answer the question of drug repositioning. Nevertheless, there still lie some challenges to be addressed: 1)
Learning ability deficiencies; the adopted model cannot learn a higher level of drug-disease associations from the
data. 2) Data sparseness limits the generalization ability of the model. 3)Model is easy to overfit if the effect of negative
samples is not taken into consideration.

Results: In this study, we propose a novel method for computational drug repositioning, Additional Neural Matrix
Factorization (ANMF). The ANMF model makes use of drug-drug similarities and disease-disease similarities to
enhance the representation information of drugs and diseases in order to overcome the matter of data sparsity. By
means of a variant version of the autoencoder, we were able to uncover the hidden features of both drugs and
diseases. The extracted hidden features will then participate in a collaborative filtering process by incorporating the
Generalized Matrix Factorization (GMF) method, which will ultimately give birth to a model with a stronger learning
ability. Finally, negative sampling techniques are employed to strengthen the training set in order to minimize the
likelihood of model overfitting. The experimental results on the Gottlieb and Cdataset datasets show that the
performance of the ANMF model outperforms state-of-the-art methods.

Conclusions: Through performance on two real-world datasets, we believe that the proposed model will certainly
play a role in answering to the major challenge in drug repositioning, which lies in predicting and choosing new
therapeutic indications to prospectively test for a drug of interest.
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Background
Traditional new drug design and discovery are an expen-
sive, time-consuming and high-risk process. For instance,
it takes at least 10–15 years, and an estimated budget of
8–10 billion dollars to develop and bring a new drug to
the market [1, 2]. Since the 1990s, the annual quota of new
drugs approved by the US Food and Drug Administration
(FDA) has been declining. Meanwhile, biopharmaceuti-
cal companies continue to increase their investments in
new drug design and discovery [3], which implies that new
drugs are becoming more and more expensive. And drugs
designed for specific targets often have unperceivable side
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effects, about 90% of experimental drugs fail to pass the
first phase of clinical trials [4]. The process of developing
innovative drugs remains expensive, time-consuming and
full of uncertainty. In light of these challenges, Compu-
tational drug repositioning, which aims to find new uses
and applications for existing drugs, has become an alter-
native for the traditional new drug discovery. The drugs
approved for sale, which has undergone several rigorous
clinical trials are ensured to be safe as they already passed
laborious assessments for any unpleasant side effects [5].
Hence, drugs designed according to the new applica-
tions are more likely to pass the screening of regulatory
authorities [6].
The core of computational drug repositioning is to mine

new uses of existing drugs, and treat diseases that are not
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within its original design. Drug repositioning begins with
an accidental discovery of new applications of the origi-
nal drug. Taking thalidomide as an example [5], the drug
was first used as a sedative in Germany, marketed in the
United Kingdom as a treatment to nausea and insom-
nia, and it is also used to relieve pregnancy reactions
among pregnant women. First listed in 1956 and banned
in 1962, the reintegration of thalidomide again as a drug is
attributed to the accidental discovery that it can be used
to treat leprosy nodular erythema. Cases of drugs like
thalidomide reflect the fact that a single medication can
treat multiple diseases. As an essential technology to dis-
cover new applications of old drugs, and an efficient way
to improve R&D productivity, computational drug reposi-
tioning has been receiving a great deal of attention from
the biotech and pharmaceutical industries.
In recent years, researchers have explored a variety

of computational drug repositioning approaches, such as
graph-based methods, matrix factorization based meth-
ods, Collaborative filtering etc. In relevance to our inspi-
ration for the presented work in this paper, we will give
a broad research overview for related work in the area of
computational drug repositioning. The aim is to further
clarify the research standing of the proposed model, and
showcase our initial setup motivations.
Graph-based models are considered to be the corner-

stone of the search recommendation area, used in many
fields, such as social networks and search engines to
name a few. Based on the provided information, the graph
model first constructs a connection diagram between
research objects according to certain rules. This diagram
can be a directed or undirected graph. In drug reposi-
tioning problem, there are at least two types of nodes,
drug nodes and disease nodes. The graph model con-
structs a drug-disease network according to the thera-
peutic relationships between drugs and diseases. Selecting
the appropriate strategy used to estimate the associa-
tions is key to the success of the graph model, such as
recent distance, public neighbors and other approaches.
Li et al. [7] proposed a method based on the “guilt-by-
association” notion, which uses all known proteins and
drugs to construct nodes- and edges-weighted biolog-
ical relevant interactome network. The novel network
topology features are proposed to characterize interaction
pairs, and random forest algorithm is employed to identify
potential drug-protein interaction. Chen et al. [8] pro-
posed a method, under the hypothesis that similar drugs
often target similar target proteins and the framework of
random walk, to predict potential drug–target interac-
tions on a large scale. Wang et al. [9] proposed a method
named Heterogeneous Graph Based Inference (HGBI).
A heterogeneous drug-target graph, which incorporates
known drug-target interactions as well as drug-drug and
target-target similarities, is first constructed. Based on

this graph, a novel drug and target association prediction
technique is inferred. Martinez et al. [10] proposed a new
methodology for drug-disease and disease-drug prioriti-
zation named DrugNet. Based on a previously developed
network-based prioritization method called ProphNet,
they were able to build a three-layer heterogeneous net-
work that contained diverse types of elements and inter-
actions. Their findings suggest that DrugNet could be
very useful for discovering new drug use cases, and the
integration of heterogeneous data would be beneficial
to improve the performance of classifiers for the drug
repositioning task. Luo et al. [11] proposed a computa-
tional method to find novel indications for existing drugs.
By applying comprehensive similarity measures, they
were able to build a heterogeneous network with known
drug-disease interactions. Bi-Random Walk algorithm
was then implemented to predict innovative drug-disease
associations.
Matrix factorization based models assume that several

factors can represent each drug and disease. When drugs
and diseases characteristics are consistent in the matrix,
it is believed that there is a high correlation between the
drug and the disease; that is, the drug may be used to treat
the disease. This model decomposes the known drug-
disease treatment association matrix into two low-rank
drugs and disease potential factor matrices. Usually, the
rank of the latent factor matrix is much smaller than the
number of drugs or diseases. Matrix factorization tech-
nique is widely used in data dimensionality reduction, and
recommendation application scenarios. Researchers con-
tinue to improve the matrix decomposition model for the
drug repositioning task to adapt to the application sce-
nario, as the use of a single feature does not entirely imi-
tate the characteristics of drugs and diseases. Zhang et al.
[12] proposed a unified computational platform which
presents the task of hypothesis generation for drug reposi-
tioning as a constrained nonlinear optimization problem.
They utilized a three-layer network approach to explore
potential new associations among drugs and diseases with
no prior links. Dai et al. [13] based on the idea that asso-
ciation between drug and disease has its evidence in the
interactome network of genes. The authors proposed a
matrix factorization model, which incorporates the bio-
logical information of genomic space interactions for the
prediction of novel drug-disease associations. According
to the drug-disease relationships, Luo et al. [14] pro-
posed the Drug Repositioning Recommendation System
(DRRS) to predict novel interactions for known drugs.
This method used the drug similarity and disease simi-
larity to construct a heterogeneous network, which was
represented by a drug-disease adjacency matrix. Finally,
the drug relocation could be realized by completing the
matrix with the use of fast Singular Value Thresholding
(SVT) algorithm presented in [15].
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Collaborative filtering is commonly used to learn and
predict the relationship between users and items in a rec-
ommendation system scenario. Lately, some researchers
turned to collaborative filtering to tackle the challenge
of drug repositioning. Following the same belief as Dai
et al. [13], Regenbogen et al. [16] via using a collaborative
filtering approach, constructed a relationship matrix com-
prising drugs, diseases, and genetic information. Non-
Negative Matrix Factorization (NMF) technique was then
introduced to predict the correlation between drugs and
diseases. Zhang et al. [17] proposed the model which
uses a neighbor-based collaborative filtering technique to
incorporate complex data information for drug-disease
relationship prediction.
Nevertheless, the above methods based on recommen-

dation systems are limited in three aspects: insufficient
learning ability, data sparsity, and disregarding the effect
of negative samples. Matrix factorization models the
drug-disease relationship as an inner product of drug
latent factors and disease potential factors, which is a lin-
ear combination. The combination itself does not take
into account the weight relationship between factors, and
cannot learn the complex associations between drugs and
diseases. In addition, the number of diseases which can be
treated by a single medication is small. Similarly, the num-
ber of drugs that can be applied to cure the same illness
is low as well. As a result, merely relying on drug-disease
treatment relationship data cannot adequately reflect the
relationship between drugs and diseases.
Moreover, the previously described models ignore the

negative sampling technique, and only uses known drug-
disease associations. This exclusion may lead to overfit-
ting, and degrades the performance of the model on the
test set. Therefore, to overcome the shortcomings men-
tioned above, we propose an Additional Neural Matrix
Factorization (ANMF) model. The ANMF model com-
bines additional auxiliary information, neural network,
and matrix factorization to infer novel treatments for
diseases.
So as to overcome data sparsity, the ANMF model

makes use of drug-drug and disease-disease similarities to
enhance the representation information of drugs and dis-
eases. Uncovering the hidden features of both drugs and
diseases is made possible by the use of a deep learning
technique, Additional Stacked Denoising Autoencoder
(ADAE) [18]. The extracted hidden features will then
participate in a collaborative filtering process by utiliz-
ing the idea of the product operation of the Generalized
Matrix Factorization (GMF)method [19]. The GMF prod-
uct operation introduces neuronal nodes and a nonlinear
activation function. Therefore, the model can uncover
further nonlinear relationships between drugs and dis-
eases. This procedure will eventually allow us to obtain
a model with a greater learning ability. Lastly, with the

aim of minimizing the likelihood of model overfitting,
negative sampling techniques are employed to strengthen
the training set. Compared with the state-of-the-art mod-
els, the ANMF model is shown to be more valid. We
can summarize the main contributions of this paper as
follows:
(1) A novel Additional Neural Matrix Factorization

(ANMF) model is proposed for drug repositioning. The
model combines deep learning representation with the
nonlinear matrix factorization technique, and allows for
integration of auxiliary information regarding drugs and
diseases during the hidden features extraction process. As
follows, a better-hidden relationship between drugs and
diseasees can be captured.
(2) The negative sampling technique mentioned in [20]

from the field of natural language processing is used to
enhance the training set, which reduces the possibility
of overfitting. The generalization feature of the model is
improved as well.
(3) The ANMF model tested both on the Gottlieb

dataset [21] and the Cdataset [14], is assumed to retain
its validity as its AUC (Area Under Curve), AUPR (Area
Under Precision-Recall Curve) and HR (Hit Ratio) values
are superior to that of the state-of-the-art related model’s
benchmarks.
The rest of this paper is as constructed as follows:

we will introduce the implementation details and prin-
ciples of the ANMF model in “Methods” section. In
“Results” section, the experiments and results of the
ANMF model on the Gottlieb dataset and the Cdataset
will be discussed. The corresponding discussions are
presented in “Discussion” section. The final “Conclusion”
section will serve as a summary of our work and a guide-
line for future ventures.

Methods
The ANMF model proposed for drug repositioning com-
bines neural network withmatrix factorizationmodel, and
fuses additional auxiliary information to infer novel treat-
ments for diseases. Figure 1 shows the architecture of the
ANMF model.
The upper part of Fig. 1 is the process of mining

the hidden feature of drug i, where drugi indicates
the hidden feature of drug i. The bottom portion is
the process of mining the hidden feature of disease
j, where diseasej indicates the hidden feature of dis-
ease j. The procedure of mining the hidden features
of diseases and drugs is in reality the reconstruction
of drug and disease attribute features. This process
will be described in detail in “Hidden feature mining”
section. The middle part of Fig. 1 shows the ele-
mentwise product operation of the extracted drugi
and diseasej. Finally, the product result will be
inputted into a single layer perceptron to predict the
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Fig. 1 The architecture of the ANMF model

drug-disease relationship. The prediction process
will be described thoroughly in “Generate predicted
value” section. In “ANMF Learning process” section, we
will define the general loss function of the ANMF model,
and show how the model can learn the correspond-
ing parameters. Incorporating the negative sampling
techniques onto the training set with will be described
in the “Defining the number of negative sampling”
section.
At present, the field of deep learning is still consid-

ered as a “blackbox process”, lacking a set of axiomatic
mathematical proof. However, we can proceed from

the practical significance of matrix factorization model.
The hidden features of drugs store the specific prefer-
ences of drugs, and the hidden features of diseases store
the attributes of diseases. What our model does is to
retrieve the implicit characteristics of drugs and diseases
based on the historical links of drugs-diseases and also
the auxiliary information. By matching the drug hid-
den feature with the hidden feature of the disease, the
probability that the drug can treat the disease can be
obtained.
Several relevant definitions are given to facilitate the

interpretation of the ANMF model.
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Definition 1 (Drug-Disease relationship matrix)
R represents the drug-disease relationship matrix, where
R ∈ R

m×n, m is the total number of drugs, and n is the
total number of diseases. If drug i can treat disease j, then
R[ i] [ j] will be set to one, else will be set to zero.

Definition 2 (Drug similarity matrix and Dis-
ease similarity matrix) DrugSim represents the drug
similarity matrix, where the value of DrugSim[ i] [ j]
indicates the degree of similarity between drug i and drug
j, DrugSimi∗ =[DrugSimi1,DrugSimi2 . . .DrugSimim]
represents the similarity vector between drug i
and all drugs in the dataset. DiseaseSim repre-
sents the disease similarity matrix; where the value
of DiseaseSim[i][j] denotes the degree of similar-
ity between disease i and disease j, DiseaseSimj∗ =
[DiseaseSimj1,DiseaseSimj2 . . .DiseaseSimjn] represents
the vector of similarity between disease j and all diseases
in the dataset.

Datasets
There are two datasets used in the paper, the Got-
tlieb dataset [21] contains 593 drugs registered in Drug-
Bank[22], 313 diseases listed in the Online Mendelian
Inheritance in Man database (OMIM) [23] and 1933 vali-
dated drug-disease associations in total. The summary of
the Gottlieb dataset is shown in Table 1.
We performed additional experiments on the Cdataset

[14]. The Cdataset contains 409 drugs registered in Drug-
Bank [22], 663 diseases recorded in the OMIM database
[23] and 2532 validated drug-disease associations. See
Table 2 for details.
Here, drug similarities are calculated via the Chemical

Development Kit (CDK) [24] based on SimplifiedMolecu-
lar Input Line Entry Specification (SMILES) [25]. Pairwise
drug similarity and chemical structures are denoted as the
Tanimoto score of their 2D chemical patterns. The sim-
ilarities between diseases are obtained from MimMiner
[26], which estimates the degree of pairwise disease simi-
larity via text mining their medical descriptions informa-
tion in the OMIM database. All of the above information
can be obtained from [14].

Hidden feature mining
In recent years, deep learning proved to be efficient in
discovering high-level hidden representations from vari-
ous raw input data. Various algorithms used the auxiliary

Table 1 Statistics of the Gottlieb dataset

Dataset Drugs Diseases Interactions Sparsity

Gottlieb 593 313 1933 1.041 × 10−2

Table 2 Statistics of the Cdataset

Dataset Drugs Diseases Interactions Sparsity

Cdataset 409 663 2532 9.337 × 10−3

information to deal with data sparsity in the field of rec-
ommendation systems. Therefore, inspired by the Addi-
tional Denoising Autoencoder (ADAE) [18] model from
the recommendation systems field, we combined drug
similarity, disease similarity, and deep learning to extract
the hidden features of drugs and diseases.
The upper part of Fig. 1 shows the process of extracting

the hidden feature of drug i. sdrugi ={Ri1,Ri2, . . .Rin}which
is generated by the given drug-disease relation matrix R,
where sdrugi that represents the relationship between drug
i and all other diseases. Adding Gaussian noise to sdrugi and
DrugSimi∗ respectively to produce s̃drugi and ˜DrugSimi∗.
Inputting s̃drugi and ˜DrugSimi∗ as the original information
and auxiliary information when performing the following
described encoding and decoding operation.
First, the encoding procedure described by formula (1)

is performed, where drugi is the hidden feature of drug i,
g represents an arbitrary activation function, W1 and V1
represent the weight parameters, and bdrug denotes the
bias parameter.

drugi = g
(
W1s̃

drug
i + V1 ˜DrugSimi∗ + bdrug

)
(1)

The decoding operation is performed by using formula
(2). The objective is to generate the reconstructed value
ŝdrugi of sdrugi , where f represents an arbitrary activation
function, W2 represents the weight parameter and bŝdrugi
denotes the bias parameter.

ŝdrugi = f
(
W2drugi + bŝdrugi

)
(2)

Likewise, formula (3) is also a decoding operation on
drugi, and the purpose is to generate the reconstructed
value ˆDrugSimi∗ of DrugSimi∗.

ˆDrugSimi∗ = f
(
V2drugi + b ˆDrugSimi∗

)
(3)

As a result, the loss function caused by the above encoding
and decoding operations is as shown in the formula (4).
Where ‖ sdrugi − ŝdrugi ‖2 and ‖ DrugSimi∗ − ˆDrugSimi∗ ‖2
represent the error caused by the input value and the
reconstructed value,

(∑
l ‖ Wl ‖2 + ‖ Vl ‖2) controls the

complexity of the model by allowing it to have a better
generalization performance. α represents the equilibrium
parameter and λ is the regularization parameter.

arg min
{Wl},{Vl},{bl}

α

∥∥∥sdrugi − ŝdrugi

∥∥∥
2+(1 − α)

∥∥∥DrugSimi∗ − ˆDrugSimi∗
∥∥∥
2

+λ

(∑
l

‖ Wl ‖2 + ‖ Vl ‖2
) (4)
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By minimizing Eq.(4), the hidden feature of drug i can
ultimately be obtained.
Similarly, the lower part of Fig. 1 shows the process of

acquiring the hidden feature of disease j, which is the-
oretically the same procedure as extracting the hidden
feature of drug i. The process substitutes the original
information and auxiliary information with sdiseasej and
Diseasej∗, where sdiseasej = {R1j,R2j, . . .Rmj} represents the
relationship between disease j and all other drugs.

Generate predicted value
Through the above-described steps, we managed to
acquire the hidden feature of drug i and the hidden feature
of disease j respectively. The traditional matrix factor-
ization model allows us to perform the inner product
operation on drugi and diseasej to obtain the predicted
value r̂ij, which represents the probability that drug i can
treat disease j. However, the traditional matrix factor-
ization model has the limitation of insufficient learning
ability caused by the use of a fixed and straightforward
inner product to estimate complex drug-disease interac-
tions. The inner product operation does not take into
account the weight relationship between factors, and can-
not learn the complex associations between drugs and
diseases.
In reference to the GMF model, the ANMF model

uses the product operation of GMF instead of the inner
product operation of the traditional matrix factoriza-
tion model. Consequently, the ANMF model can learn
the nonlinear relationship between drugs and diseases
by introducing neuronal nodes and the nonlinear activa-
tion function, which improves the accuracy of the ANMF
model. To do this, first calculate the elementwise product
of the drug hidden feature and the disease hidden fea-
ture, and then input it into the single layer perceptron
to obtain the predicted value. By introducing the neural
network, the model can learn nonlinear drug-disease rela-
tionship and exhibit better learning and prediction ability.
The ANMF model predicts the drug-disease relationship
as presented formula (5):

r̂ij = Fout
(
hT

(
drugi

⊙
diseasej

))
(5)

Where drugi and diseasej respectively represent the hid-
den features of drug i and disease j calculated by the
ANMF model,

⊙
is the elementwise product, h repre-

sents the weight parameter, Fout represents an arbitrary
activation function and r̂ij denotes the predicted value.

ANMF Learning process
Now, we will define the general loss function of the ANMF
model, and introduce how the model can learn the corre-
sponding parameters. In general, the loss function of the
ANMF includes two parts: the loss caused by extracting

drug hidden features and disease hidden features as well
as the loss between the predicted values and the target
values.
The loss function of drug i hidden feature extraction is

defined as shown in formula (6) :

LossOfDrugi = α

∥∥∥sdrugi − ŝdrugi

∥∥∥
2

+ (1 − α)

∥∥∥DrugSimi∗ − ˆDrugSimi∗
∥∥∥
2

+ λ

(∑
l

‖ Wl ‖2 + ‖ Vl ‖2
) (6)

Where, Wl, Vl denote the weight parameters, λ denotes
the regularization parameter and α represents the equi-
librium parameter. Similarly, the loss function of dis-
ease j hidden feature extraction is defined as shown in
formula (7):

LossOfDiseasej = β

∥∥∥sdiseasej − ŝdiseasej

∥∥∥
2

+ (1 − β)

∥∥∥DiseaseSimj∗ − ˆDiseaseSimj∗
∥∥∥
2

+ δ

(∑
d

‖ Wd ‖2 + ‖ Vd ‖2
)

(7)

Where Wd, Vd denote the model parameters, δ denotes
the regularization parameter and β represents the equilib-
rium parameter. The loss between the predicted value and
the target value is defined as shown in formula (8):

LossOfPredictioni,j = rij log r̂ij+(1−rij) log(1− r̂ij) (8)

Where rij denotes the target value and r̂ij denotes the
predicted value.
As a result, the general loss function for the training

model is presented in formula (9):

Loss =
∑

(i,j)∈R+∪R−
LossOfPredictioni,j + ϕLossOfDrugi

+ ψLossOfDiseasej
(9)

where R+ denotes a set of positive instances and R−
denotes a set of negative instances, which can all be
(or sampled from) unobserved drug-disease interactions.
Where ϕ andψ denote for the hyperparameters of the loss
function.
As shown formula (6), formula (7) and formula (8),

the mathematical formulas for LossOfPrediction, LossOf-
Drug, and LossOfDisease share similar fragments, namely
drugi and disiseasej. In other words, the parameters con-
tained in drugi and disiseasej are shared by two steps of
mining hidden feature and generating predicted value. It is
these shared parameters that serve as a bridge between the
two steps. Moreover, parameters are trained simultane-
ously. Thus, the information contained is orthogonal. This
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also ensures that there is no overlap in information in for-
mula (9). And enabling our model to simultaneously learn
effective hidden features, and capture drug and disease
similarity and relationship.
The parameters of the ANMF model can be learned

by minimizing formula (9), using the stochastic gradient
descent method(SGD).

Results
In this section, we will systematically evaluate the per-
formance of the ANMF model using the Gottlieb dataset
[21]. First, the evaluation metrics used in this study will be
introduced. Next, the performance of the ANMF model
under various parameter settings will be compared to
find the optimal parameter settings. And we will survey
the ANMF model’s performance with several state-of-
the-art algorithms by referring to the evaluation metrics
previously described, including new drug scenario. To fur-
ther validate the robustness of the ANMF model, further
experiments on the Cdataset [14] will be presented.

Evaluation metrics
For a systematical evaluation of the ANMF model’s per-
formance in comparison to other approaches, we adopted
ten-fold cross validation (10-CV). To implement ten-fold
cross validation, we randomly split all verified drug-
disease associations in the dataset into ten equal-sized
subsets, and all non-verified associations are considered
as candidate associations. In each fold, we considered one
subset as the test set, while the combined remaining nine
subsets served as the training set. All candidate associa-
tions were then added to the test set. After the ANMF
model training is completed, the associations in the test
set will get a corresponding score.
In this study, we denoted the verified drug-disease asso-

ciations as positive samples, while the remaining unveri-
fied associations were considered as negative samples. For
each specific threshold, we calculate the corresponding
true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) values. If a test association’s corre-
sponding score is greater than the threshold, it was labeled
as a positive sample. Else, it was considered as a negative
sample. Hence, TP and TN values characterized the num-
ber of positive and negative samples correctly identified.
FP and FN values denoted the number of positive and neg-
ative samples misidentified. By regulating the threshold,
we were able to obtain the True Positive Rate (TPR) and
False Positive Rate (FPR). Finally, the AUC (Area Under
Curve) value was acquired by drawing the Receiver Oper-
ating Characteristic (ROC) curve. Moreover, this study
also used AUPR (Area Under Precision-Recall Curve) as
the second evaluation indicator. Because AUC measure
does not capture all aspects of the model’s performance,
adding the AUPR measure can more fully reflect the true

performance of the model. The Hit Ratio (HR) evaluation
indicator was also used in this study. Intuitively, HR mea-
sures the presence of the positive samples within the top
N. And HR@n means Hit Ratio with cut offs at n.

Parameters setting
The main parameters that the ANMF model needs to set
are the hidden feature dimension, and the number of neg-
ative sampling. This is due to the fact that, the size of
the hidden feature vector controls the complexity of the
ANMF model, while the number of negative sampling
controls the generalization capabilities of the proposed
model. Hence, two experiments are conducted for evalu-
ating the performance of the model under both different
dimension values of hidden feature vector and different
negative sample sizes.
All hyperparameters are set as follows: In order to

reduce the amount of calculation, ϕ and ψ in Eq. (9) were
set to 0.5, by default. Similar to [16], we use a mask-
ing noise with a noise level of 0.3 to get the corrupted
inputs from the raw inputs. The rest of hyperparameters
are tuned according to the validation set. The validation
set is formed by holding out one interaction per drug
from the training set. We perform a grid search over α

in formula (6) from {0.1, 0.3, 0.5, 0.7, 0.9} and β in formula
(7) terms {0.1, 0.3, 0.5, 0.7, 0.9}. In addition, we varied reg-
ularization parameters λ and δ from {0.1, 0.01, 0.001}.
Moreover, the dimension of the hidden feature varies from
{16, 32, 64, 128, 256} and the number of negative sampling
varies from {1, 5, 10, 15, 20}. Finally, we set α, β , λ, δ, the
dimension of the hidden feature and the number of nega-
tive sampling to 0.7, 0.3, 0.001, 0.01, 128 and 10 according
to the performance of the model on the validation set.

The dimension of hidden feature
Since it controls the complexity of the model, the dimen-
sion of the hidden feature vector is a very important
parameter for the ANMF model. If the dimension of hid-
den feature vector was set to a large value, the model
will likely to over-fit. But if the dimension was set to a
small value, the model will not be able to learn the high-
level association between drugs and diseases. Thus, the
following experiment was preformed to observe the per-
formance of the ANMF model in different settings, and
to have a clear understanding in regards to the appropri-
ate dimension value that required to be set for the hidden
feature vector.
Figure 2 illustrates the performance of the ANMFmodel

on the Gottlieb dataset under different dimension val-
ues of the hidden feature vector. We can observe that
there is a steady improvement as the dimension of the
hidden feature vector increases, where a dimension value
of 128 shows a peak in HR@10 performance, followed
by a degradation potentially due to overfitting. As the
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Fig. 2 The performance of ANMF model under different hidden
feature dimensions

dimension grows, the model’s AUC value and Hit Ratio
value increases. This scenario shows that the ANMF
model can capture more complex associations between
drugs and diseases as the dimension increases. However,
the AUC value has a downward trend as the dimension of
value varies in the range [128,256], this confirms that the
model tends to over-fit when the dimension of the hidden
feature vector is too large. The larger the dimension value
of the hidden features, the more complex the model will
be. According to Occam’s razor law, among models with
the same effect, amodel with a lower complexity should be
selected. So 128 was chosen as the appropriate dimension
parameter value for the ANMF model.

Defining the number of negative sampling
The inclusion of the negative samples is a crucial step to
the ANMF model. In this study, we refer to the idea of
the negative sampling techniques in natural language pro-
cessing [20] to enhance the training set. For each validated
drug-disease association in the training set, we randomly
take in N associations that have not been verified as neg-
ative samples into the training set. Since the number
of positive samples, in reality, is much smaller than the
number of negative samples, the above approach is desir-
able. However, Negative sampling is risky. The greater the
number of negative sampling, the more it will increase
the probability of forming a wrong negative sample or
forcing the unknown positives to be considered negative.
Therefore, we conducted this experiment to observe the
performance of themodel at different numbers of negative
sampling.
The abscissa calculated from of Fig. 3 represents the

value of N. Figure 3 illustrates the performance of the
ANMF model on the Gottlieb dataset when the negative
samples value varies from [1,20]. We can observe a steady
improvement as the number of negative samples grows.

Fig. 3 The performance of ANMF model under different negative
sampling number

This scenario clearly demonstrates that using negative
sampling techniques to enrich the training set is effec-
tive. However, when the value of N ranges from 10 to 20,
both the AUC and the Hit Ratio values tend to decrease,
which shows that wrong negative samples were forming
as the value of N is increasing. According to the above
experiment, we set the appropriate value of N to 10.
The experimental results clearly demonstrates that the

negative sampling technique has a certain degree of
improvement on the prediction effect and generalization
performance of the model, which explains the effective-
ness of the negative sampling technique to some extent.

Baselines and comparison
With the aim of evaluating the performance of the pro-
posed ANMF model, we will compare it with the current
three most advanced models, DRRS [14], GMF [19] and
HGBI [9].
DRRS is currently considered to be one of the best

algorithms in the field of drug repositioning. This algo-
rithm works by constructing a heterogeneous network via
exploiting the drug-disease relationships, drug similarity
and disease similarity. It then implements a fast Singu-
lar Value Thresholding (SVT) algorithm to complete the
drug-disease adjacency matrix with predicted scores for
previously unknown drug-disease associations.
GMF is a matrix decomposition model, in which neu-

ral networks and matrix decomposition are combined
to enable the capturing of the nonlinear relationships
between drugs and diseases. In other sense, the GMF
model is an ANMF model without an auxiliary informa-
tion version.
HGBI is introduced based on the guilt-by-association

principle, as an intuitive interpretation of information
flow on the heterogeneous graph. The parameters set-
ting for the above mentioned methods are all established
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according to their corresponding literature. The overall
performance of all methods is evaluated by applying the
ten-fold cross validation technique (10-CV) specified in
“Evaluation metrics” section.
The experiment results in terms of AUC, AUPR and Hit

Ratio values are illustrated in Table 3. As clearly shown by
the experimental results of Table 3, the proposed ANMF
model outperforms other competitive methods in terms
of AUC value. More specifically, the ANMF has an AUC
value of 0.938, while DRRS, GMF, and HGBI yield results
of 0.93, 0.88, and 0.829, respectively. Moreover, in terms
of AUPR value, the ANMF model achieved the highest
value of 0.347, while DRRS, GMF, and HGBI have results
of 0.292, 0.281, and 0.16, respectively. Next, we compared
the performance of the ANMFmodel with the other three
models in terms of Hit Ratio value. The proposed ANMF
model surpasses othermodels in regards toHR@1, HR@5,
and HR@10. Furthermore, in the case of HR@10, our pro-
posed ANMF model has a Hit Ratio value of 74.2%, while
DRRS, GMF, and HGBI have 72.7%, 61.9%, and 59.3%,
respectively.

Predicting indications for new drugs
The ANMF model can also be used for drugs with-
out previously known disease associations. One hundred
seventy-one drugs in the Gottlieb data set only has one
known drug-disease association. In this case, we will be
taking 171 known association as the test set, the remain-
ing verified associations are considered as the training set.
The evaluation metrics are AUC value, AUPR value and
Hit Ratio. The experimental results in terms of AUC value,
AUPR value and Hit Ratio are presented in Table 4.
As shown in Table 4, the performance of our proposed

ANMF model is superior to other competitive methods
regarding AUC value. More specifically, the AUC value
of the ANMF model is 0.859, while the results of DRRS,
GMF, and HGBI are 0.824, 0.813, and 0.746, respectively.
Moreover, in terms of AUPR value, the ANMF model
achieved the highest value of 0.161, while the results
of DRRS, GMF, and HGBI are 0.107, 0.106, and 0.065,
respectively.
Now we turn to the comparison of the ANMF model

performance with the other previously mentioned models
in terms of Hit Ratio value. As likewise shown in the
experimental results in Table 4, the proposed ANMF

Table 3 Prediction results of different methods on Gottlieb
dataset

Method name AUC AUPR HR@1 HR@5 HR@10

ANMF 0.938 0.347 47.9% 61.3% 74.2%

DRRS 0.93 0.292 45.9% 53.1% 72.7%

GMF 0.88 0.281 35.1% 48.5% 61.9%

HGBI 0.829 0.16 33% 45.4% 59.3%

Table 4 Prediction results of different methods for new drug on
Gottlieb dataset

Method name AUC AUPR HR@1 HR@5 HR@10

ANMF 0.859 0.161 28.1% 34.5% 46.2%

DRRS 0.824 0.107 28.1% 30.4% 39.2%

GMF 0.813 0.106 18.1% 19.3% 21.1%

HGBI 0.746 0.065 9% 14% 24.6%

model outperforms other models. In regards to the HR@1
case, the DRRSmodel has the same hit ratio as the ANMF.
However, in the case of HR@5 and HR@10, the hit ratio
value of the ANMFmodel is superior to those of the other
examined models. For instance, in the case of HR@10, the
Hit Ratio value of the ANMFmodel is 46.2%, while the Hit
Ratio values of DRRS, GMF, and HGBI is 39.2%, 21.1%,
and 24.6% respectively.

Validation on the Cdataset
To further validate the robustness of the proposed ANMF
model, we performed additional experiments on the
Cdataset [14]. The evaluation metrics used in this valida-
tion phase experiment are the same as the onesmentioned
in “Evaluation metrics” section. The hidden features
dimension and the number of negative sampling were
set to 256, and 10, respectively. Other hyperparameter
settings remain the same.
In terms of predicting known associations, the results

of this experiment portrayed in Table 5 show that the
ANMF model measured an AUC value of 0.952, a supe-
rior outcome when compared to the AUC values that
of DRRS, GMF, and HGBI which were 0.947, 0.915, and
0.858 respectively. Moreover, in terms of AUPR value, the
ANMF model achieved the highest value of 0.394. Con-
cerning the Hit Ratio value, the ANMF model similarly
performed better than the other models in the case of
HR@1, HR@5 and HR@10. For instance, in the case of
HR@10, the Hit Ratio value of the ANMF model is 76.3%,
while the DRRS, GMF, and HGBI models measured Hit
Ratio values of 70.1%, 56.3%, and 55.1% respectively.
According to the results in Table 6, the ANMF model

likewise outperformed the previously mentioned models
in predicting new drugs with an AUC value of 0.857, as
opposed to 0.824 for DRRS, 0.798 for GMF, and 0.732
for HGBI. Moreover, in terms of AUPR value, the ANMF

Table 5 Prediction results of different methods on Cdataset

Method name AUC AUPR HR@1 HR@5 HR@10

ANMF 0.952 0.394 42.1% 65.1% 76.3%

DRRS 0.947 0.351 32.3% 59% 70.1%

GMF 0.915 0.337 25.4% 39.7% 56.3%

HGBI 0.858 0.204 26.7% 37.1% 55.1%
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Table 6 Prediction results of different methods for new drug on
Cdataset

Method name AUC AUPR HR@1 HR@5 HR@10

ANMF 0.857 0.097 19.2% 33.3% 37.3%

DRRS 0.824 0.084 25.4% 30.5% 35%

GMF 0.798 0.071 13.6% 17% 26%

HGBI 0.732 0.022 11.3% 21.5% 26%

model achieved the highest value of 0.097. In terms of
Hit Ratio value, the ANMFmodel measured a lower value
than of the DRRS model for the HR@1 value, possibly
because the Cdatasets is sparse. However, in the case
of HR@5 and HR@10, the performance exceeded other
models. For example, in the case of HR@10, the Hit Ratio
value of ANMF is 37.3%, while that of DRRS, GMF, and
HGBI were 35%, 26% and 26% respectively.

Discussion
Through experiments performed on two real-world
datasets, we managed to demonstrate that the proposed
ANMF model outperformed other portrayed methods,
and displayed significant performance enhancements. For
the Gottlieb dataset, the AUC, AUPR and Hit Ratio mea-
sured values were 0.938, 0.347 and 74.2% respectively. And
the model’s predictive performance on the Cdataset was
0.952 for the AUC value, 0.394 for AUPR value and 76.3%
for the Hit Ratio value. The above-declared findings are
all superior to their counterparts among other surveyed
algorithms. Furthermore, we can deduce that using nega-
tive sampling techniques to enrich the training set showed
to be effective through the performed experiments in
“Defining the number of negative sampling” section.
Moreover, integrate assistance information to assist the

model in overcoming the challenges of data sparsity. By
comparing the performance of the ANMF model and the
GMF model, which is an ANMF model with no auxiliary
information version, the ANMF model outperforms the
GMF model both in terms of AUC, AUPR and Hit Ratio
values on two common data sets. And as the sparseness of
the data set increases, the gap between the performance
of the ANMF and the GMF model also increases. This
result demonstrates the correctness of our initial assump-
tion that integrating auxiliary information can overcome
the sparseness of the data to a certain extent.

Conclusion
As a vital and lucrative technology to discover new
applications of old drugs, computational drug reposition-
ing has been receiving growing attention from both the
industry and academia. In this paper, we proposed an
Additional Neural Matrix Factorization (ANMF) model
for computational drug repositioning. The ANMF model

combined deep learning representation with the non-
linear matrix factorization technique, to resolve the
problems of data sparsity and insufficient learning abil-
ity. Furthermore, the negative sampling technique was
employed to overcome the issue of model overfitting.
Exhaustive experiments under multiple configurations
demonstrated significant improvements over related com-
petitive benchmarks. However, we believe that improve-
ments can be made to the ANMF model in the future
research. This study only makes use of drug similarity and
disease similarity, and the attribute information of drugs
and diseases is not limited to these two features. Fur-
thermore, the ANMF model only uses a single-layer per-
ceptron, which is the simplest deep learning model. For
future work, using a complex deep learning model along
with other auxiliary information to learn drug-disease
relationship promises to deliver far improved results.
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