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Abstract

Background: Literature Based Discovery (LBD) produces more potential hypotheses than can bemanually reviewed,
making automatically ranking these hypotheses critical. In this paper, we introduce the indirect association measures
of Linking Term Association (LTA), MinimumWeight Association (MWA), and Shared B to C Set Association (SBC), and
compare them to Linking Set Association (LSA), concept embeddings vector cosine, Linking Term Count (LTC), and
direct co-occurrence vector cosine. Our proposed indirect association measures extend traditional association
measures to quantify indirect rather than direct associations while preserving valuable statistical properties.

Results: We perform a comparison between several different hypothesis ranking methods for LBD, and compare
them against our proposed indirect association measures. We intrinsically evaluate each method’s performance using
its ability to estimate semantic relatedness on standard evaluation datasets. We extrinsically evaluate each method’s
ability to rank hypotheses in LBD using a time-slicing dataset based on co-occurrence information, and another
time-slicing dataset based on SemRep extracted-relationships. Precision and recall curves are generated by ranking
term pairs and applying a threshold at each rank.

Conclusions: Results differ depending on the evaluation methods and datasets, but it is unclear if this is a result of
biases in the evaluation datasets or if one method is truly better than another. We conclude that LTC and SBC are the
best suited methods for hypothesis ranking in LBD, but there is value in having a variety of methods to choose from.
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Background
Introduction
Literature Based Discovery (LBD) [1] seeks to find infor-
mation that is implicit in text, but never explicitly stated.
New knowledge can be formed by piecing together frag-
ments of information found across multiple documents.
For example, one document may state that “A implies
B” and another that “B implies C”; new knowledge is
generated by hypothesizing that therefore “A implies C”.
In its simplest form, a hypothesis is an assertion that a
relationship exists between two terms that never directly
co-occur, and the likelihood of that hypothesis being true
can be estimated by the strength of their relatedness. In
modern LBD systems, hypothesis generation is oftenmore
complex and varied than the simple ABC paradigm we
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used as an example, but there is a critical need for effec-
tive hypothesis ranking; both for eliminating uninteresting
hypotheses, and for ordering results when displayed to the
user. All methods in this paper use term-term pairs to rep-
resent and rank hypotheses, and are therefore usable by
nearly all LBD systems.
Association measures have been shown to be good

indicators of semantic relatedness. They are statistical
methods based on two term’s individual and shared co-
occurrence frequencies, but they were designed for terms
that directly co-occur. In this paper, we present indirect
association measures, which incorporate connecting term
information to quantify the relatedness between terms
that never directly co-occur. Specifically, in this paper we
introduce the indirect association measures of:

1 Linking Term Association (LTA), which quantifies
association using counts of unique connecting terms
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2 MinimumWeight Association (MWA), which
quantifies association using co-occurrence counts of
A-B-C pathways

3 Shared B to C Set Association (SBC), which
quantifies association using the set of shared B terms
as a proxy for A

We compare these new methods against Linking Set
Association (LSA) [2], concept embeddings cosine [3],
linking term count (LTC) [4], and direct co-occurrence
vector cosine [5]. We introduce the use of estimat-
ing semantic relatedness on standard evaluation datasets
(MiniMayoSRS and UMNSRS) as an intrinsic evaluation
method for hypothesis ranking in LBD, and we perform
extrinsic evaluation using precision and recall (PR) curve
analysis [6]. LBD hypothesis ranking methods should per-
form well for both intrinsic and extrinsic evaluations,
and our analysis shows that LTC and SBC are the best
performing of the ranking methods evaluated.
This paper begins with a brief overview of related works,

which include: ranking methods for LBD, ranking method
evaluation, and semantic similarity and relatedness. Next,
the methods section begins by describing our implemen-
tations of baseline methods, describing traditional associ-
ation measures, and presenting each indirect association
measure in detail. Next, the evaluation methods, datasets,
and experimental details are presented Lastly results are
shown, and conclusions are made.

Related work
Rankingmethods for literature based discovery
The number of hypotheses generated by LBD systems
is usually too large to be manually reviewed, so ranking
them is critical. One of the first developed, and best per-
forming ranking methods is Linking Term Count (LTC)
[4], which counts the number of unique linking (B) terms
between the start (A) and each target (C) term. LTC
is a purely frequency-based metric, and in an effort to
reduce its bias towards frequently occurring terms, sev-
eral methods that account for both single term occurrence
and term-term co-occurrence rates were created. Aver-
age Minimum Weight (AMW) [7, 8] calculates the mean
of minimum mutual information from A to B and B to
C for all A to B to C pathways. X to Z support [9]
sums the weights of all ABC pathways between A and C,
and uses the data-mining metric of support as a weight,
but it is noted that other metrics may be used. A more
application specific method is Predicate Interdependence
[10] which ranks drug-disease pairs based on drug-gene
and gene-disease predicate independence versus inter-
dependence in literature. Yetisgen-Yildiz and Pratt [8]
perform a comparison between several ranking methods,
including LTC and AMW, and find that LTC is best per-
forming hypothesis ranking method evaluated. Due to

this performance, we use LTC as a baseline measure for
comparison.
Vector-based ranking methods have also been used in

LBD. In these cases, a term or concept vector representa-
tion is constructed, and a score is generated using cosine
distance [11], Euclidean distance [12], or information flow
[12] between the A and C terms. The method in which
vectors are created varies by LBD system. Bruza et al.
[12] construct vectors in Hyperspace Analogue to Lan-
guage (HAL) space, Cohen, et. al [13] construct vectors
using Predication-Based Semantic Indexing (PSI), and
Sybrandt et al. [6] construct vector representations using
FastText [14] (a word2vec implementation). We con-
struct word2vec concept embedding vectors and direct
co-occurrence vectors, and use cosine distance between
the A and C vectors in our evaluation.
Graph-based ranking methods have also been used.

Graph-based methods construct co-occurrence graphs,
and rank hypotheses based on the graphs’ characteristics,
such as degree centrality [15], or graph proximity met-
rics such as probability of best path, network reliability,
expected reliable distance, or variations of random walks
[16]. More recently, Kastrin et al. [17] using the graph
proximity metrics of Jaccard’s Coefficient - a ratio of com-
mon neighbors to total neighbors, and Adamic/Adar met-
ric - which uses weighted counts of shared neighbors, such
that lower connected neighbors receive a higher weight.
Sybrandt et al. [6] propose and evaluate several rank-
ing methods for LBD which include concept embeddings,
topic network graph based metrics, and a combination of
these methods. We compare against their best performing
method, PolyMultiple in our extrinsic precision and recall
curve evaluation.

Rankingmethod evaluation
The variety of LBD systems [4, 18–25] and the lack
of standard evaluation datasets and methodologies have
made comparing LBD ranking methods difficult. Evalu-
ation methods have been criticized as too narrow, as is
the case with discovery replication [26], too noisy, as is
the case with time slicing [8], not quantitative or replica-
ble, as is the case with new discovery proposal [4], or are
system specific and do not generalize [23, 27, 28]. Meth-
ods that are applicable across systems, quantifiable, and
replicable are preferred, and since time slicing and link
prediction type evaluation methods look at the presence
or absence of links, rather than whether they are in-fact
true and novel discoveries they are more easily assessed
quantitatively [29].
Time-slicing evaluation was first proposed byHristovski

et al. [20], and later elaborated by Yetisgen-Yildiz and Pratt
[8]. It is an evaluationmethod in which a dataset is divided
into pre- and post-cutoff segments, and all post-cutoff co-
occurrences or relationships that do not occur in
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the pre-cutoff dataset are used to estimate future
knowledge.
Using co-occurrence information instead of relationship

information to estimate future knowledge will capture the
greatest number of possible future relationships, but will
also capture many false future relationships. This cre-
ates a dataset with high recall and low precision [30].
Yetisgen-Yilidiz and Pratt [8] use co-occurrence informa-
tion to constitute relationships in the pre- and post-cutoff
segments, and use precision and recall curves to evaluate
several LBD target term ranking measures.
Using relationship information rather than co-

occurrence information will capture fewer future
relations, but those found will be more accurate, meaning
the dataset will have lower recall, but higher precision.
Eronen et al. [16] evaluate their system, BIOMINE as a
link prediction task. They define link prediction as “the
prediction of relationships that are not obvious in the
existing data”. Using a biological network of protein inter-
actions and gene-pairs, they select 500 positive (links that
are added in a post-cutoff dataset) and 500 negative (links
that do not exist in the pre- or post-cutoff datasets) links
to generate ROC curves. Sybrandt et al. [6] generalize this
idea, and divide a dataset of SemRep predications into
pre- and post-cutoff segments, and create three datasets,
highly-cited, published, and noise. They view LBD ranking
and thresholding as a noise discrimination task, and
create published versus noise and highly-cited versus
noise ROC curves. We use both co-occurrence-based
and relationship based time-slicing datasets. We generate
a co-occurrence based time-slicing dataset in the same
manner as Yetisgen-Yildiz and Pratt [8], and use Sybrandt
et al. evaluation dataset to create precision and recall (PR)
curves for our LBD extrinsic evaluation.

Semantic similarity and relatedness
The likelihood of a hypothesis in LBD being true can be
estimated by the strength of the relatedness between the
start and target terms. We introduce the use of seman-
tic similarity and relatedness as an intrinsic evaluation
method for hypothesis ranking in LBD. Semantic simi-
larity and relatedness measures quantify how similar or
related two concepts are. Two terms are related if any
relationship exists between them (e.g. aspirin-headache).
Semantic similarity is a subset of relatedness, in which
the relationship between them is their similarity, typi-
cally an isA relationship (e.g. headache-migraine). These
measures are critical for many natural language process-
ing applications, such as clustering of biomedical and
clinical documents [31], the development of biomedical
terminologies and ontololgies [32], and word sense dis-
ambiguation [33]. Evaluation of relatedness measures may
be performed extrinsically by applying them to a task
(e.g. word sense disambiguation) and determining the

performance, or intrinsically using several standard eval-
uation datasets [34, 35]. We use the standard evaluation
datasets of UMNSRS [35] and MiniMayoSRS [34] as an
intrinsic evaluation method for LBD ranking measures.

Methods
In this section we describe the LBD hypothesis ranking
measures that we evaluate. This includes the baseline
measures we use, an introduction to direct association
measures, and a detailed explanation of each indirect
association measure. These methods rely on co-
occurrence data collected from a corpus, and in our
implementation, we use the MetaMapped MEDLINE
baseline, a corpus of text mapped to United Medical
Language System (UMLS) concepts. Each method is,
however easily adapted to other data sources by using
word or term co-occurrences in place of concept co-
occurrences. Similarly, relationship data extracted from a
corpus (such as SemRep predications [36]) may be used
as a data source by treating the existence of a relationship
as a co-occurrence. For this reason, and for clarity, when
describing each method, we say “term” to refer to the
co-occurrence or relationship between any “concept”,
“term”, or “word”.

Baseline methods
Evaluation between LBD systems and their hypothesis
ranking methods is difficult, due to the variety of LBD
systems and datasets. In our intrinsic and extrinsic eval-
uation, only the hypothesis ranking method is evaluated,
which means we can evaluate ranking methods regardless
of how hypotheses are generated, or from what data-
source they are generated from. This allows us to com-
pare different hypothesis ranking methods to our newly
proposed indirect association measure ranking methods.
These previously proposed methods include linking term
count (LTC) [4], direct co-occurrence vector cosine [5],
and concept embeddings cosine [3]. For the extrinsic
LBD evaluation we compare against Sybrandt et al. [6]
PolyMultiple method. Each method is described below.
Linking Term Count:We use our own implementation

of Linking TermCount (LTC) as a baseline measure in this
paper. A linking term is defined as any term for which both
A and C co-occur with, and LTC is defined as the count of
linking terms between A and C. A and C term pairs with
more linking term are ranked higher than those with less
in both intrinsic and extrinsic evaluations.
Cosine Distance: We use the cosine distance between

two different vector representations as baseline measure.
These vectors are constructed in a manner similar to
Henry et al. [5]. (1) Direct co-occurrence vectors have a
dimensionality the size of the vocabulary. Each term in the
vocabulary is assigned an index, and each vector contains
the co-occurrence count between the term at that index,
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and the term represented by the vector. The result is a
vector containing the counts of all directly co-occurring
terms. (2) Concept embeddings are reduced dimensional-
ity distributional context vectors constructed by iterating
over a training corpus, and learning concept represen-
tations in a neural network based approach. The neural
network learns a series of weights (the hidden layer within
the neural network) that maximize the probability of a
word given the surrounding context. The resulting hidden
layer consists of a matrix where each row corresponds to
the word embedding for each word in the vocabulary. For
both vector representations, we rank terms as the cosine
distance between A and C term vectors.
PolyMultiple: In their development of the extracted-

relationship based time-slicing dataset, Sybrandt et al. [6]
generate Receiver Operating Characteristic (ROC) curves
to compare several LBD target term ranking methods.
We compare against their best performing metric, Poly-
Multiple. PolyMultiple is a linear combination of all their
evaluated metrics, which include vector similarities, topic
model correlations, topic model centroid similarities, and
topic model network based methods. Since we use PR
curves, rather than ROC curves in our evaluation, we
do not show the results, but instead report just the area
under the ROC curve (AUROC) to compare against these
measures.

Association measures
In this section we describe traditional, direct association
measures, and introduce our new, indirect association
measures. Both direct and indirect association measures
are based on co-occurrence statistics in a corpus. They
quantify two terms’ expected co-occurrence together by
chance versus their observed co-occurrence together in
text. Both direct and indirect association measures fol-
low a similar calculation process, which is shown in Fig. 1.
In this process, co-occurrence information is collected
from a corpus and used to populate a contingency table of
values.
Table 1 shows a contingency table for the generic term

pair X and Y, and uses the standard notation, X and Y to
indicate any token except X or Y respectively. ∗ indicates
any single token. The cell n11 is the joint frequency of the

term pair XY, the number of times token X precedes Y.
The cell n12 is the frequency in which X occurs in the first
position but Y does not occur in the second position, and
the cell n21 is the frequency in which Y occurs in the sec-
ond position, but X does not occur in the first position.
The cell n22 is the frequency in which neither X nor Y
occur in their respective positions. The cells, n1p, np1, n2p
and np2 represent the marginal totals which are the num-
ber of times a term does not occur in the first or second
position of the term pair. Lastly, the cell npp is the total
number of term pairs found in the corpus. It is important
to note that all contingency table values can be calculated
as sums and differences between just four values, n11, n1p,
np1, and npp.
The contingency table values are input into an asso-

ciation measure equation, such as Log Likelihood Ratio
[37], Dice Coefficient [38], or Pearson’s Chi-Squared [37]
(shown in Fig. 1) to produce a single number that quan-
tifies the association between two terms. To develop
indirect association measures, we modify how the contin-
gency table values are calculated prior to input into the
association measure equation. The modifications make
it possible to quantify the association between indirectly
related terms while preserving the beneficial statistical
properties encoded in association measure equations. We
modify the contingency table values as follows:

1 MinimumWeight Association (MWA):modifies
n11 as the average minimum co-occurrence for each
A-to-B-to-C pathway

2 Linking Term Association (LTA): uses the counts
of unique linking terms to populate the contingency
table

3 Shared B to C Set Association (SBC): uses the
co-occurrences between the shared B term set and C
to populate the contingency table

4 Linking Set Association (LSA): uses
co-occurrences between terms that co-occur with A
(BA) and terms that co-occur with C (BC) to
populate the contingency table

MWAand LTA are similar, since rather than using direct
A to C co-occurrences, they combine A to B and B to C
co-occurrence information. MWA uses A − B and B − C

Fig. 1 Process overview. An overview of how association measures are calculated. The equation shown is Pearson’s Chi Squared, wheremij values
are:m11 = n1p∗np1

npp
,m12 = n1p∗np2

npp
,m21 = np1∗n2p

npp
,m22 = np2∗n2p

npp
and n2p = npp − n1p , np2 = npp − np1
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Table 1 A contingency table showing how the counts, nxy are
calculated for the generic term pair XY

Y Y totals

X n11 = XY n12 = XY n1p = X∗
X n21 = XY n22 = XY n2p = X∗
totals np1 = ∗Y np2 = ∗Y npp =**

X and Y indicate any token except X or Y respectively. ∗ indicates any single token

co-occurrence counts, while LTA uses the count of unique
B terms. SBC and LSA are similar, since they are based
on set associations. SBC uses the shared B terms set as
a proxy for A when collecting co-occurrence counts, and
LSA uses BA and BC as proxies for A and C respectively
when collecting co-occurrence counts.
In the next few subsections, we give detailed explana-

tions on how each association measure is calculated. We
define the following terminology: A is the set of starting
term(s); BA is the set of terms preceded by A (A’s con-
necting terms); C is the set of target terms; BC is the set
of terms preceding C (C’s connecting terms); V is the set
of all terms (the vocabulary); wij is the weight of the edge
going from node i to node j in the co-occurrence graph,
and is the frequency that term i is followed by term j.
We also use Fig. 2 as an example. Figure 2 shows a co-

occurrence graph between term A and term C. A and C
directly co-occur with a set of connecting terms, B. A
subset of which co-occur with both A and C; an indi-
rect relationship is created through this set of shared B
terms. Each circle in Fig. 2 indicates a unique term, and
each edge indicates a direct co-occurrence. The number
above each edge indicates that edge’s co-occurrence fre-
quency. The terms A co-occurs with are shown as white
and black-and-white circles. The terms C co-occurs with
are shown as black and black-and-white circles. White
B terms co-occur with A only, black B terms co-occur
with C only, and black-and-white terms are shared link-
ing terms that co-occur with both A and C. Gray B terms
exist in the vocabulary, but do not co-occur with A or C.
Figure 2 therefore shows thatA co-occurs with four differ-
ent terms, it co-occurs with the top-most B term one time,
the second top-most B term two times, the B term below
that eight times, and the term below that three times.
C co-occurs with three different terms, four times, five
times, and seven times respectively, and there is a single B
term that co-occurs with neither A or C.

Direct association measures
Direct association measures have been shown to perform
very well at quantifying relatedness [39], but they are
unsuitable for LBD hypothesis ranking because they were
designed for two terms that directly co-occur. They form
the basis for indirect association measures. Using Fig. 2 as

an example, we define direct association contingency table
values as follows:
n11 (Eq. 1) is the sum of weights (co-occurrences)

between A and C. In Fig. 2, n11 = 0, since A and C never
directly co-occur.

n11 =
a∈A∑ c∈C∑

wac (1)

n1p (Eq. 2) is the sum of weights between A and each Bi.
In Fig. 2, n1p = 1 + 2 + 8 + 3 = 14.

n1p =
a∈A∑ j∈V∑

waj (2)

np1 (Eq. 3) is the sum of weights between each Bi and C.
In Fig. 2, np1 = 4 + 5 + 7 = 16.

np1 =
j∈V∑ c∈C∑

wjc (3)

npp (Eq. 4) is the sum of all weights in the dataset, which
is the total number of co-occurrences between all terms.

npp =
i∈V∑ j∈V∑

wij (4)

Using these four contingency table values, we can calcu-
late the rest of the values in a contingency table, and cal-
culate an association measure equation, such as Pearson’s
Chi Squared (shown in Fig. 1) to test for association
between A and C with a single value. Start-target term
pairs in LBD explicitly do not co-occur, meaning n11 = 0
for all start-target term pairs. This is shown in Fig. 2,
where A and C never co-occur. Since there is no direct
co-occurrence between the terms, we develop indirect
association measures which incorporate additional infor-
mation to quantify the association between two terms
which do not directly co-occur, but are instead, indirectly
related.

Minimumweight association
Minimum Weight Association (MWA) calculates associ-
ation between A and C based on the information flow
between them relative their co-occurrences with all terms
in the dataset. It uses co-occurrence counts to populate
the contingency table, however we modify the value of
n11 to allow indirect associations to be quantified. We can
view each A to Bi to C link as a weighted path connect-
ing A and C, and use the co-occurrence information along
this path to calculate n11. The question becomes how to
combine the A − Bi and Bi − C weights. One approach
may be to sum, average, or take the maximum value of
weights along a path, but association measures require
that n11 ≤ n1p ≤ npp and n11 ≤ np1 ≤ npp; sums, aver-
ages, or maximums may violate this. Therefore, for MWA
we take the minimum value along each A − Bi − C path,
and sum over all A − Bi − C pathways. If we imagine
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Fig. 2 Association scenario. A co-occurrence graph showing A and C co-occurrences with a set of B terms

the co-occurrence counts along each A − Bi − C pathway
as information flowing between A and C, then summing
the co-occurrence counts is analogous to finding the total
information flow between A and C, where each A−Bi −C
pathway cannot carry more than its minimum capacity.
n1p, np1, and npp remain unchanged from direct associa-
tion measures. The contingency table values are defined
formally as:
n11, (Eq. 5) is the sum of minimum A to Bi and Bi to C

weights of each shared Bi term. In Fig. 2, n11 = min(8, 4)+
min(3, 5) = 7.

n11 =
b∈BA∩BC∑

min
(a∈A∑

wab,
c∈C∑

wbc

)
(5)

n1p, (Eq. 2) remains unchanged from direct association
measures. It is the sum of A to Bi weights. In Fig. 2, n1p =
1 + 2 + 8 + 3 = 14.
np1, (Eq. 3) remains unchanged from direct association

measures. It is the sum of B to C weights. In Fig. 2, np1 =
4 + 5 + 7 = 16.
npp, (Eq. 4) remains unchanged from direct association

measures. It is the sum of all possible weights (total co-
occurrence count) of the whole dataset.

Linking term association
Linking term association (LTA) quantifies the association
between A and C based on the count of shared linking
terms. It combines the empirically proven performance of
Linking Term Count (LTC) with the statistical properties
of association measures. Rather than using co-occurrence
counts for contingency table values, LTA uses counts of
unique co-occurring terms. If we view the co-occurrence
graph in Fig. 2 as an unweighted graph, the contingency
table value equations for LTA are identical to MWA, but
it is perhaps more intuitive to define these values in terms
of set theory.
n11, (Eq. 6) is the count of unique shared linking terms.

In Fig. 2, n11 = 2.

n11 = |BA ∩ BC | (6)

n1p, (Eq. 7) is the count of unique terms A co-occurs
with. In Fig. 2, n1p = 4.

n1p = |BA| (7)

np1, (Eq. 8) is the count of unique terms C co-occurs
with. In Fig. 2, np1 = 3.

np1 = |BC | (8)
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npp, (Eq. 9) is the count of all possible unique terms
(vocabulary size).

npp = |V | (9)

In this formulation, the value of n11 is equivalent to the
LTC between A and C, but we weight the LTC by the
number of terms A and C independently co-occur with in
the association measure equation. This makes the asso-
ciations between terms that independently co-occur with
many terms lower than those that independently co-occur
with a just few terms.

Shared B to C set association
Shared B to C association (SBC) quantifies the associa-
tion between A and C as the set association between their
shared B terms and C itself. It builds upon the idea of set
associations [2], which quantify the association between
sets of terms rather than individual term-term pairs. SBC
uses the shared B terms between A and C as a proxy
for the A term, then calculates the direct set association
between that proxy and C itself. That is, we populate the
contingency table using the co-occurrences between the
shared B term set and C, rather than between A and C.
Equation 10 formally defines SBC in terms of set theory,
where assoc() is an association measure equation such as
Pearson’s Chi Squared (shown in Fig. 1).

assoc(BA ∩ BC ,C) (10)

Linking set association
Linking Set Association (LSA) quantifies association
betweenA andC using the set association betweenBA and
BC . Like SBC, LSA is based on direct associations between
sets of terms, but for LSA, we replace both A and C. A
is replaced with the set of all terms that it co-occurs with
(BA), and C is replaced with the set of all terms that it co-
occurs with (BC). The association between these two sets
is then calculated.

assoc(BA,BC) (11)

Intuitively, both SBC and LSA are estimating A and C
with a set of terms. LSA estimates A and C with their
co-occurrences, which is indicative of their context, and
therefore their meaning. SBC estimates A with respect
to its shared co-occurrences with C, and uses C directly.
In other words, the association between how A’s mean-
ing overlaps with C’s meaning, and C itself. LSA defines
its proxies in terms of their own independent contexts,
where as SBC defines the proxies in terms of the more
constrained, shared context.

Evaluation
We evaluate the proposed indirect association measures
both intrinsically on the task of estimating semantic sim-
ilarity and relatedness, and extrinsically on the task of
ranking target terms for LBD. Each evaluation technique
measures a different aspect of performance:

1 Estimating similarity and relatedness - uses human-
generated gold standard datasets of term pairs that
directly co-occur to evaluate the ability of a measure
to estimate how similar or related two terms are.

2 Ranking target terms for LBD - uses
automatically-generated silver standard datasets of
term pairs that do not co-occur to evaluate the ability
of a measure to rank target terms in LBD.

Since it is our hypothesis that ranking in LBD should be
based on estimating the strength of a relationship between
two unrelated terms, ranking methods should perform
well at estimating semantic relatedness for two terms
regardless of if they co-occur together or not. Estimating
semantic relatedness is a well established field with stan-
dard, human-generated gold standard evaluation datasets.
We use these datasets in our evaluation, but they contain
terms that directly co-occur, which does not evaluate the
ability of a measure to estimate relatedness between terms
that never co-occur, as is the case with start-target term
pairs in LBD.
We therefore also evaluate on the extrinsic task of rank-

ing target terms for LBD, for which evaluation methods
and datasets are less standardized. We use time-slicing
based techniques to automatically create silver standard
datasets. The silver standard datasets consist of start-
target term pairs representing both true and false future
discoveries. We estimate this using time-slicing, in which
a dataset is divided into pre- and post-cutoff segments.
The post-cutoff segment estimates future knowledge, and
use the pre-cutoff segment estimates known knowledge.
Term pairs that occur in the post-cutoff segment, and
not in the pre-cutoff segment represent new discoveries,
and form the true samples of the silver standard dataset.
Their is no best method to generate a time-sliced dataset,
so we evaluate using two silver standard datasets. One
based on term co-occurrences, and another based on
extracted relationships. We describe the intrinsic evalua-
tion method and datasets, and both extrinsic evaluation
method and datasets in the next subsections.

Semantic similarity and relatedness intrinsic evaluation
Intrinsic evaluation is performed by estimating semantic
similarity and relatedness. It is our hypothesis that rank-
ing in LBD should be based on estimating the strength
of a relationship between two terms, and ranking meth-
ods should therefore, perform well at estimating semantic
relatedness. We evaluate using the reference standards of:
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the UMNSRS [35] tagged for similarity (UMNSRS Sim),
the UMNSRS tagged for relatedness (UMNSRS Rel), the
MiniMayoSRS dataset [34] rated by medical coders (Min-
iMayo Cod) and the MiniMayoSRS rated by physicians
(MiniMayo Phys). We report Spearman’s Rank Correla-
tion Coefficient (ρ) between the scores generated for each
term pair and these gold standards scores.
MiniMayoSRS consists of 30 term pairs whose related-

ness was determined by nine medical coders and three
physicians from the Mayo Clinic. The relatedness of each
term pair was assessed based on a four point scale: (4.0)
practically synonymous, (3.0) related, (2.0) marginally
related and (1.0) unrelated. MiniMayoSRS is a subset
of the MayoSRS [34], for which a high inter-annotator
agreement was achieved. The average correlation between
physicians is 0.68. The average correlation between medi-
cal coders is 0.78. We evaluate our method on the mean of
the physician scores, and the mean of the coders scores on
the 29 term pairs found within the Systematized Nomen-
clature of Medicine - Clinical Terms (SNOMED CT)
terminology [40].
UMNSRS, developed by Pakhomov et al. [35], consists

of 725 clinical term pairs whose semantic similarity and
relatedness was determined independently by four med-
ical residents from the University of Minnesota Medical
School. The similarity and relatedness of each term pair
was annotated based on a continuous scale by having the
resident touch a bar on a touch sensitive computer screen
to indicate the degree of similarity or relatedness. As
suggested by Pakhomov and colleagues, we use a subset
of ratings with higher Intraclass Correlation Coefficients
(ICCs). This subset has an ICC of 0.73, and consists of
401 pairs for the similarity set, and 430 pairs for the
relatedness set.
Some examples of concept pairs in these evaluation

datasets are: difficulty walking, antalgic gait (C0311394,
C0231685); rheumatoid nodule, lung nodule (C0035450,
C0034079); hand splint, splinter hemorrhage (C0409162,
C0333286); diabetes, polyp (C0011849, C0032584); and
portal hypertension, nevus (C0020541, C0027962).
TheMiniMayoSRS and UMNSRS datasets contain term

pairs of different UMLS semantic groups, concept pairs of
the same semantic group, and synonymous term pairs.We
can further analyze the performance by selecting concept
pairs most relevant to LBD. The UMNSRS dataset con-
tains concepts from primarily from the semantic groups
of Disorders and Chemicals and Drugs. There are 113
and 126 Disorders-Chemicals and Drugs or Chemicals
and Drugs-Disorders concept pairs in the UMNSRS Sim
and Rel datasets respectively [41]. Since LBD is often
applied to finding new treatments (chemicals and drugs)
for diseases and disorders, these concept pairs are partic-
ularly relevant for LBD and can be used to better evalu-
ate the target term ranking algorithms’ performance. We

report results using both the full datasets for comparison
between other papers, and also on this subset, which we
recommend using alone for use in future LBD target term
ranking evaluation.

Target term ranking for LBD extrinsic evaluation
Extrinsic evaluation for ranking terms in LBD is per-
formed by using time-slicing techniques in a manner sim-
ilar to that outlined by Yetisgen-Yildiz and Pratt [8]. Both
ROC curves [6, 16, 17] and PR curves [8] have been used
as a time-slicing evaluation methods. PR curves and ROC
curves show similar information. An ROC curve shows
the true and false positive fractions on each axis, where as
a PR curve shows the precision and recall on each axis. PR
curves have been shown to be more informative for tasks
with a severe class imbalance [42], such as LBD, so we use
PR curves in our evaluation.
To generate a PR curve, we use time-slicing evaluation

in which a silver standard evaluation dataset is created by
dividing a dataset into pre- and post-cutoff segments. The
silver standard contains true and false term pairs. The true
term pairs are created by finding term pairs that occur in
the post cutoff segment and do not occur in the pre-cutoff
segment. False term-term pairs are created as pairs that
occur in neither the pre- or post-cutoff segments. Data
from the pre-cutoff segment is used to calculate scores for
each silver standard term pair, and the pairs are ranked in
descending order, meaning pairs with high scores have a
high estimated semantic relatedness, and pairs with low
scores have a low estimated semantic relatedness. A PR
curve is generated by applying a threshold at each rank.
Pairs ranked below the threshold are considered false, and
pairs above are considered true. The precision and recall
at each rank is calculated and plotted to create a PR curve,
and the area under the curve (AUC) may be calculated
to quantify performance with a single number. To penal-
ize methods that produce term pairs with tied rankings,
we penalize tied pairs by always ranking false pairs higher
than true pairs in the event of a tie.
An ideal silver standard would contain all possible

future discoveries, and no currently known discoveries.
This is an impossibility, and there is no widely accepted
silver standard dataset, and no consensus on the best
way to generate it. To address this in our extrinsic eval-
uation, we use two silver standard datasets, each with
different strengths and weaknesses. One is based on
co-occurrence information, and the other is based on
extracted-relationship information.

Time-slicing datasets
We use two silver standard datasets in our extrinsic eval-
uation. These datasets both simplify future discoveries as
future relationships, and a future relationship is simplified
as a term pair. Term pairs that occur in the post-cutoff
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dataset and not in the pre-cutoff dataset are considered
new discoveries. The datasets differ in how the pre- and
post-cutoff pairs are generated. One uses co-occurrence
information, and the other uses extracted relationships.
Eachmethod has advantages and disadvantages, which we
contrast using the following characteristic desirable in a
time-slicing dataset:

1 Representative - have statistical properties similar to
real-world LBD data

2 High Precision - contain minimal false discoveries
3 High Recall - contain maximum true discoveries

For our evaluation, we create a co-occurrence based
dataset as outlined by Yetisgen-Yildiz and Pratt [8], and
use an extracted-relationship based dataset developed by
Sybrandt et al. [6]. Both datasets use UnifiedMedical Lan-
guage System (UMLS) concept pairs instead of term pairs
to represent relationships, but a mapping between terms
and concepts exists (and can be found using a tool such as
the UMLS-Interface [43]), so these datasets can be used
regardless of whether a system uses concepts or terms.
Both datasets are imperfect, but we relax the constraint
that the silver standard datasets must contain all possi-
ble future discoveries, and instead evaluate based solely
on the presence or absence of samples in each dataset,
making them more easily assessed [6, 16, 17, 29].

Our co-occurrence based dataset:
We create a co-occurrence based time slicing dataset
using the procedure outlined by Yetisgen-Yildiz and Pratt
[8]. In this dataset, we use co-occurrence information
to constitute a relationship. We collect co-occurrence
information using UMLS::Association version 1.3’s CUI
Collector tool1 run over titles and abstracts of the 2015
MetaMapped MEDLINE Baseline, with sentence bound-
aries ignored. We used a window size of 8 (meaning 8
concepts after a concept are counted) and default values
for all other parameters. As with Yetisgen-Yildiz and Pratt
[8], we use a cutoff date of January 1, 2000.
The silver standard dataset is constructed using start-

target term pairs. Two hundred start terms are selected
by randomly choosing 50 terms from each of the semantic
types of: Clinical Drug (T200, clnd), Pharmacologic Sub-
stance (T121, phsu), Disease or Syndrome (T047, dsyn),
Sign or Symptom (T184, sosy). The set of target terms
is defined as all terms in the vocabulary, and start-target
term pairs are generated for all possible start-target term
pairs. Term pairs that exist in the pre-cutoff segment are
removed, which results in a labeled silver standard dataset
of all possible start-target terms pairs for each of the 200
start terms. Those that occur in the post-cutoff dataset are
labeled as true, and those that do not are labeled as false.

1https://metacpan.org/pod/UMLS::Association

This dataset is somewhat representative of LBD data,
since using all terms in the vocabulary mimics how LBD
is performed, the distribution of true and false samples
should be representative of real LBD data. It, however,
relies of randomly selecting 200 start terms, and there is
no guarantee these terms are representative samples. The
dataset has low precision since using co-occurrence infor-
mation over-generates relationships [30]. This dataset has
high recall, since using co-occurrences will capture nearly
all true relationships in the data.
Some examples of false concept pairs in this dataset

include: sulfadiazine 500mg, sh869 (a derivative of dipyri-
damole) (C0990411, C0074443); premenstrual symptom,
infection caused by leishmania tropica minor(C0232959,
C0086541); and recurrent low back pain, asarumin B
(C0751648, C0646400). Some examples of true con-
cept pairs in this dataset include: cicatrix of ton-
sil, age differences (C0272389, C0699810); eruption of
skin, melanoma antigen recognized by t cells(C0015230,
C1334510); and lower extremity weakness, glucosamine
(udp-n-acetyl)-2-epimerase/nacetylmannosamine kinase
(C1836296, C1428183).

Sybrandt’s extracted-relationship based dataset:
Sybrandt et al. [6] create an extracted-relationship based
time-slicing dataset. Their dataset uses extracted relation-
ships to constitute a relationship. They use SemMedDB
[44], a database of semantic predications extracted from
MEDLINE by SemRep [36]. SemRep [36] extracts rela-
tionships from biomedical text as semantic predications in
the form of subject-predicate-object triples. For example,
aspirin ASSOCIATED_WITH headache, where aspirin
and headache are concepts, and ASSOCIATED_WITH is
a SemRep relation type. The concept pairs of these predi-
cations are used to represent relationships, and they divide
SemMedDB into pre- and post-cutoff segments using a
cutoff date of January 1, 2010.
They construct two silver standard datasets from three

sets of pairs. (1) Published pairs, which consists of 4319
concept pairs which occur only in the post-cutoff seg-
ment; (2)Highly cited pairs, which consists of 1448 con-
cept pairs selected from the published dataset which occur
in papers that are cited at least 100 times, and (3) Noise
pairs which do not occur in the pre- or post-cutoff seg-
ments. They create a published versus noise silver standard
dataset by randomly combining all 4319 published pairs
with 4319 randomly selected noise pairs, and a highly-cited
versus noise silver standard dataset by randomly combin-
ing all 1448 highly-cited pairs pairs with 1448 randomly
selected noise pairs. Noise pairs are treated as false, and
published and highly-cited pairs are treated as true.
This dataset is not very representative of LBD data.

There are two reasons for this: (1) Sybrandt et al. arti-
ficially produce a balanced dataset, but since most term

https://metacpan.org/pod/UMLS::Association
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pairs are not future discoveries, LBD evaluation datasets
should have a high class imbalance; (2) the terms used
in their true and false pairs have distinct differences in
occurrence rates.
We found this difference in occurrence rates using co-

occurrence counts collected from the pre-cutoff (January
1, 2010) segment of MEDLINE. For each term in each
term pair, we calculated the number of unique terms it
co-occurs with, and its total number of occurrences in
the pre-cutoff segment. Table 2 summarizes our findings.
It shows the average number of co-occurring terms, and
average number of occurrences for the start (A) and target
(C) terms in the highly-cited, published, and noise datasets.
Table 2 shows that on average, both the start (A) and

target (C) terms in the true pair sets (highly-cited and pub-
lished) occur much more frequently and co-occur with
many more terms than the terms in the false (noise)
dataset. This difference in occurrence rates is understand-
able, since highly cited term pairs may come from more
popular research areas than just any published term pair,
and noise term pairs that never co-occur together likely
consist of rarely used terms. This difference in occurrence
rates between true and false terms creates a bias in the
dataset.
Sybrandt et al. dataset is, however fairly precise, since

using relationships rather than co-occurrences greatly
increases the precision of the extracted relationships.
SemRep has precision rates between 73% and 96% [44]
depending on the relationship type, and the accuracy of
the extracted relationships was found to be 84% [45]. This
increase in precision from using SemMeDB also means
a decreased recall; SemRep recall rates were found to be
between 55-70% depending on the relationship type.
Lastly, Sybrandt et al. dataset relies solely on

SemMedDB to create the pre- and post cutoff segments,
and although the true concept pairs (highly-cited and pub-
lished sets) may be absent from the pre-cutoff segment of
SemMedDB, they may co-occur together in a pre-cutoff
version of MEDLINE. We found that over half of these
true pairs directly co-occur in the pre-cutoff portion of

Table 2 ROC dataset co-occurrence means

Difference in co-occurrences rates between terms in each dataset

Term set Mean co-occurring terms Mean occurrences

Highly-cited A 13,587 987,086

Highly-cited C 9065 607,984

Published A 10,312 627,894

Published C 7109 398,202

Noise A 2152 82,555

Noise C 1770 76,213

Average number of co-occurring terms and average occurrence count for each A
and C term in the highly-cited, published, and noise datasets

MEDLINE. Although this is not ideal, it is acceptable, as
long as only SemMedDB data is used to calculate scores
in ranking.
Some examples of highly-cited concept pairs in this

dataset include: mitogen, rett syndrome (C0018284,
C0035372); cerebral vascular disorder, grains (C0007820,
C0086369); and psoriasis, rituximab antibody (C0033860,
C0393022). Some Examples of published concept pairs
include: carbonyl cyanide chlorophenyl hydrazone,
barasthesia (C0007043, C0234222); natural regenera-
tion, lozartan (C0034963, C0126174); and exocytosis,
lumen formation in an anatomical structure (C0015283,
C1523599); and some examples of noise pairs include:
filamin binding lim protein, ferm domain-containing
protein (C1825283, C1825283); lipanor, epiphysis of tibia
(C0591814, C1282300); and montanoas, pediatric pain
assessment (C1135607, C1827921).

Summary
To summarize, there is no agreed upon best method to
create time-slicing datasets, so we use two methods, each
with strengths and weaknesses. Our co-occurrence based
dataset uses co-occurrence data to constitute relation-
ships. Using co-occurrences means that the silver stan-
dard will have a higher recall, but much lower precision.
We use all possible start-target term pairs as a silver stan-
dard so the class distribution is likely representative of
LBD data, but using only 200 randomly could introduce a
bias. Sybrandt et al. extracted-relationship based dataset
used SemMedDB predications to constitute relationships.
Using extracted-relationships means that the silver stan-
dard will have lower recall, but much higher precision.
They artificially create a balanced class distribution, so the
data may not be representative of class distributions in
LBD.

Experimental details
In this section, we describe the specifics of how results
were generated. Code and data, including co-occurrence
matrices and concept embeddings are available online2.

Corpus
Each ranking method relies on co-occurrences collected
from a corpus. We use the 2015 MetaMapped MED-
LINE baseline3. The MetaMapped MEDLINE Baseline is
a database of biomedical and life science journals mapped
to United Medical Language System (UMLS) concepts by
using the MetaMap tool [46]. Using MetaMapped text
has the effect of performing stop word removal and text
normalization. For our intrinsic evaluation of estimating
semantic relatedness, no time slicing is required, and we
use data from January 1, 1975 to December 31, 2015 to

2http://www.people.vcu.edu/~henryst/indirectRanking.tar.gz
3https://ii.nlm.nih.gov/MMBaseline/index.shtml

http://www.people.vcu.edu/~henryst/indirectRanking.tar.gz
https://ii.nlm.nih.gov/MMBaseline/index.shtml
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construct a co-occurrence matrix. For our co-occurrence
based time-slicing dataset, we use a time-sliced version
of the 2015 MetaMapped MEDLINE baseline for which
all data from January 1, 1975 to December 31, 1999 is
used to construct a co-occurrence matrix. For Sybrandt
et al. [6] extracted-relationship based time-slicing dataset,
we use a time-sliced version of SemMedDB version
31_R processed up to June 30, 2018. We use a cutoff
date of January 1, 2010. Predications are treated as co-
occurrences, and term pairs in predications extracted
from publications prior to the cutoff date are used to
create a co-occurrence matrix.

Co-occurrencematrix
For our intrinsic evaluation of estimating semantic relat-
edness, and our extrinsic co-occurrence based time-
slicing evaluation, we create a co-occurrence matrix in
the same manner as Henry et al. [39], who perform a
study to optimize several parameters of direct association
measures. We use UMLS::Association version 1.3’s CUI
Collector tool4 run over titles and abstracts of the 2015
MetaMapped MEDLINE Baseline, with sentence bound-
aries ignored. This tool takes MetaMapped text as input,
and treats it as a sequence of UMLS concepts. We used
a window size of 8 (meaning 8 concepts after a con-
cept are counted) and default values for all other param-
eters. The result is a co-occurrence matrix for which
each row corresponds to the co-occurrences of a single
UMLS concept to every other UMLS concept (indicated
by the column). We apply a minimum co-occurrence
threshold of 1 to this matrix, meaning all matrix val-
ues less than or equal to 1 are set to 0. This removes
noise and greatly increases the sparsity of the matrix,
reducing computation time with little effect on perfor-
mance [39]. For Sybrandt et al. extracted-relationship
based time-slicing evaluation, MEDLINE co-occurrences
are not used, and instead only term pairs in SemMedDB
predications are used. The co-occurrence matrices are
used to compute all of the indirect association mea-
sures (LTA, MWA, SBC, LSA), and LTC. The rows of the
matrices are used as vectors for the direct co-occurrence
cosine method.

Indirect associationmeasures
Indirect association measures and LTC are implemented
in the UMLS::Association v1.7 package5, a Perl imple-
mentation of association measures. LTC is calculated
using the ‘- -lta’ option with ‘measure=freq’. The Pear-
son’s Chi Squared association measure (‘measure=x2’)
was selected for the association equation for all indi-
rect association measures, because it has been shown to

4https://metacpan.org/pod/UMLS::Association
5https://metacpan.org/pod/UMLS::Association

perform well for semantic similarity and relatedness with
direct associations [39].

Concept embeddings
Concept embeddings rely on co-occurrence information,
but not a co-occurrence matrix. Vector representations
are created as the training algorithm iterates over a cor-
pus. For creating concept embeddings, we use abstracts
from the 2015 MetaMapped MEDLINE baseline as input
into the word2vec-interface package version 0.036 with
the Continuous bag of words (CBOW) embedding model,
a window size of 8, a frequency cutoff of 0, and default
settings for all other hyper-parameters. These hyper-
parameters have been shown to perform well when using
concept embeddings for semantic similarity and related-
ness [5]. The full MEDLINE dataset was used for intrinsic
evaluation of estimating semantic similarity and related-
ness, and the pre-cutoff MEDLINE segment was used for
our co-occurrence based time-slicing evaluation. Concept
embeddings are not constructed for evaluation with the
Sybrandt et al. dataset, since it is unclear how to best
generate them from predication information.

Results
In this section, we evaluate our indirect association mea-
sures (LTA, MWA, SBC, and LSA) against the baselines of
concept embedding cosine distance (Emb Cos), direct co-
occurrence vector cosine distance (Dir Cos), linking term
count (LTC), and randomly assigned scores.

Semantic similarity and relatedness results
Table 3 shows results for each method on each dataset
on the task of estimating semantic similarity and relat-
edness. Each row shows the results for a single ranking
method, and each column for a single dataset. The Spear-
man’s Rank Correlation coefficient (ρ) with the number
of terms (n) compared in parentheses are shown for each
method on each dataset. The top two rows show the
performance of baseline methods of randomly assigning
scores and LTC. The middle four rows show results for
indirect association scores (LTA, MWA, SBC, LSA), and
the bottom two rows show results for vector-based meth-
ods (direct cosine (Dir Cos) and embeddings cosine (Emb
Cos)). Higher values of ρ are better, and indicate higher
rank correlation to the gold standard. Higher values of n
indicate more terms are able to be compared. The best
performing method for each dataset is shown in bold.
Emb Cos performs the best for each dataset (MiniMayo

Cod., MinMayo Phys., UMNSRS Sim, and UMNSRS Rel),
and SBC performs the second best for each dataset except
UMNSRS Sim, for which Dir Cos performs better. We
calculate p-values using Fisher’s R-to-Z transformation

6https://metacpan.org/pod/Word2vec::Word2vec

https://metacpan.org/pod/UMLS::Association
https://metacpan.org/pod/UMLS::Association
https://metacpan.org/pod/Word2vec::Word2vec
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Table 3 Semantic relatedness results

Correlation Coefficients (ρ) and number of samples (n)

Measure MiniMayo Cod MiniMayo Phys UMNSRS
Sim

UMNSRS
Rel

Random -0.0300 (29) -0.1279 (29) -0.0185
(401)

-0.0113
(430)

LTC 0.5132 (29) 0.5063 (29) 0.2195
(390)

0.2386
(415)

LTA 0.4930 (29) 0.5403 (29) 0.4772
(390)

0.3526
(415)

MWA 0.2902 (29) 0.3231 (29) 0.3617
(390)

0.2606
(415)

SBC 0.6351 (29) 0.5978 (29) 0.5163
(389)

0.5112
(414)

LSA 0.3881 (29) 0.4027 (29) 0.3366
(390)

0.3080
(415)

Dir Cos 0.5946 (29) 0.5165 (29) 0.5315
(390)

0.4015
(415)

Emb Cos 0.7762 (29) 0.6942 (29) 0.7038
(392)

0.5537
(418)

Spearman’s Rank Correlation Coefficient and the number of terms compared for
each method on the task of semantic similarity and relatedness. Each row shows the
results for a single method, and each column for a different dataset. Bold terms
indicate the best performance

[47] to determine statistical significance between these
results, and use p ≤ 0.05 to indicate statistical signifi-
cance. Emb Cos performs statistically significantly better
than Dir Cos on the UMNSRS Sim and UMNSRS Rel
datasets, and statistically significantly better than SBC on
only the UMNSRS Sim dataset. SBC performs statistically
significantly better than direct cosine on only the UMN-
SRS Rel dataset. The results of other indirect association
measures and LTC are mixed. MWA performs worse than
LTA and LSA for all datasets, and worse than LTC for both
MiniMayo datasets; it is the worst performing indirect
associationmeasure. LTC performs well for theMiniMayo
datasets, and poorly for the UMNSRS datasets, indicating
that since it is a simplistic method, it may not be able to
effectively quantify indirect association for all concepts,
and that the concepts in the MiniMayo dataset may be
“easy” examples. LTA performs better than LSA for each
dataset.
All methods are able to quantify most concepts in all

datasets (indicated by n), but only 390 of the 401UMNSRS
Sim concepts and 415 of the 430 UMNSRS Rel concepts.
Notably, SBC cannot calculate the association for one less
concept than other indirect association measures for the
UMNSRS Sim andUMNSRS Rel datasets.When concepts
share no linking terms, the shared B to C set is undefined,
and association cannot be quantified.
Table 4 shows results for each method on estimat-

ing semantic similarity and relatedness for Disorders and
Chemicals and Drugs concept pairs. Each row shows the
results for a single ranking method, and each column for

Table 4 Semantic relatedness results for Disorders and Chemicals
and Drugs semantic group pairs

Correlation Coefficients (ρ) and number of samples (n)

Method UMNSRS Sim UMNSRS Rel

Random 0.0460 (109) 0.0433 (122)

LTC 0.2480 (109) 0.2190 (121)

LTA 0.1622 (109) 0.3191 (121)

MWA 0.0412 (109) 0.2435 (121)

SBC 0.3639 (109) 0.4146 (121)

LSA 0.1982 (109) 0.2663 (121)

Dir Cos 0.2519 (109) 0.2878 (121)

Emb Cos 0.5690 (109) 0.5730 (122)

Spearman’s Rank Correlation Coefficient and the number of terms compared for
each method on the task of semantic similarity and relatedness. Each row shows the
results for a single method, and each column for a different dataset. Bold terms
indicate the best performance

a single dataset. The Spearman’s Rank Correlation coef-
ficient (ρ) with the number of terms (n) compared in
parentheses are shown for each method on each dataset.
The best performing method for each dataset is shown in
bold.
Results forDisorders andChemicals andDrugs semantic

group pairs are lower than results using the full datasets.
This indicates that this is a harder problem. The order
of performance of methods is similar to the full dataset.
Emb Cos performs the best, and SBC performs the sec-
ond best for both UMNSRS Sim and Rel subsets. Dir Cos
performs the third best, and fourth best for the UMN-
SRS Sim and Rel datasets respectively. Results are mixed
for the other methods, but interestingly, LTC performs
third best for the UMNSRS Sim subset, and the worst
on the UMNSRS Rel subset. LTA performs third best
on the UMNSRS Rel subset, and second worst on the
UMNSRS Sim subset. MWA performs very poorly on
the UMNSRS Sim subset, but OK on the UMNSRS Rel
subset. This may indicate that it is better at estimating
relatedness than similarity. Emb Cos performs statistically
significantly better than SBC on neither dataset, but sta-
tistically significantly better than the third best perform-
ing measures (Dir Cos and LSA) on both datasets. Only
109/113, and 122/126 concept pairs for the UMNSRS
Sim and UMNSRS Rel subsets occur in our corpus. Only
121/122 concept pairs can be computed using the met-
rics based on a co-occurrence matrix (LTC, LTA, MWA,
SBC, LSA, and Dir Cos), because the concept for prosta-
torrhea (C0392071) is removed from the co-occurrence
matrix when the threshold of 1 is applied.

Co-occurrence based time-slicing results
In this section, we present the results using the co-
occurrence based time slicing dataset we created based
on the procedure outlined by Yetisgen-Yildiz and Pratt [8].
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Figure 3 shows the PR curve. Each colored line corre-
sponds to a different target term ranking method. Figure
legends show the area under the curve (AUC) in paren-
theses.
In PR curve analysis, an ideal classifier would produce a

curve that goes straight up the y-axis at a value of 0.0 and
straight across the x-axis at a value of 1.0, and produce
an AUC of 1.0. A random classifier would produce a line
straight across at a value of the true/false class ratio, which
in this case is 0.00089. Lines closer to this perfect scenario
with higher AUCs are better, and lines closer to this ran-
dom scenario with lower AUCs are worse. We cast target
term ranking as a classification problem by scoring and
ranking each concept-concept pair and applying a thresh-
old at each rank. False concept-concept pairs above the
threshold are false positives, and the true concept-concept
pairs above the threshold are true positives.
LTC is the best performing metric, and is the only one

to achieve high precision rates at low levels of recall.
This good performance of LTC confirms the findings of
Yetisgen-Yildiz and Pratt [8], who also found that LTC per-
forms the best for their co-occurrence based evaluation
dataset. Since LTC performs much better than the other
methods, it is difficult to distinguish the curves of the
other measures from one another, so in Fig. 4, we reduce
the maximum value of the Y-axis to better distinguish the
other methods from one another.
Figure 4 shows that LTC performs better than all other

measures at all levels of recall. Dir Cos performs the
second best overall, and performs better than the other
methods at most levels of recall, except for LTA which
performs better at low levels of recall. LTA andMWA per-
form better than SBC for low levels of recall, but SBC

performs better for higher recall levels. For LBD, where
the truth values of the highest ranked terms is impor-
tant, LTA and MWA may be preferred over SBC on this
dataset, even though SBC has a higher AUC overall. LSA
and Emb Cos both perform poorly, LSA performs only
slightly better than random.

Extracted-relationship based time-slicing results
In this section, we present the results using the extracted-
relationship based time slicing datasets developed by
Sybrandt et al. [6]. Figures 5 and 6 show the PR curves for
the highly-cited versus noise, and published versus noise
datasets respectively. Each colored line corresponds to a
different target term rankingmethod. Figure legends show
the area under the curve (AUC) in parentheses. Results
were not generated for Emb Cos because it is unclear how
to best generate concept embeddings from SemMedDB
data.
For both the highly-cited versus noise and published ver-

sus noise datasets, results are very similar. The order of
performance based on AUC from best to worst for both
datasets is LSA, LTC, Dir Cos, LTA, MWA, and SBC. The
vertical drops in performance seen in both figures are
results of our tie-breaking rule. When term pairs have the
same rank, false pairs are ranked higher, which results in
vertical drops in precision until all tied terms have been
ranked. LTA andMWAhave low precision for low levels of
recall indicating that the top ranked terms are noise term
pairs. SBC and LSA have good precision for low levels of
recall, so they may be preferred over LTA and MWA due
to the importance of the top ranked terms. LTC has the
highest precision for recall levels greater than 0.5, so it
may be preferred over all other measures.

Fig. 3 Co-occurrence Dataset PR Curve This ROC curve shows the ability of each ranking method to distinguish between term pairs that newly
co-occur in the post-cutoff dataset and those that co-occur in neither the pre- or post cut-off datasets
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Fig. 4 Co-occurrence Dataset PR Curve (zoomed in) This ROC curve shows the ability of each ranking method to distinguish between term pairs
that newly co-occur in the post-cutoff dataset and those that co-occur in neither the pre- or post cut-off datasets.. To better distinguish between
methods other than LTC, the maximum value on the Y-axis has been changed

Sybrandt et al. [6] report the results of several rank-
ing methods using ROC curves. To compare against their
measures, we generated ROC curves (not shown) in a sim-
ilar manner to PR curves, and calculated the area under
the ROC (AUROC) curve for each of our evaluated meth-
ods. Table 5 shows the AUROC scores of our evaluated
measures and their best performing measure, PolyMulti-
ple. All our evaluated methods except SBC and random
outperform PolyMultiple on both datasets.
Upon analysis of Sybrandt et al. dataset, we found 7

and 13 term pairs from the highly-cited and published

sets that exist in our pre-cutoff segment. The reason for
this is unclear, since we both use SemMedDB for our
pre-cutoff dataset, but it is possibly due to differences
in SemMedDB versions. No term pairs from the noise
dataset were present in our pre-cutoff segment.

Discussion
We evaluated four indirect association measures, LTA,
MWA, SBC, and LSA on the extrinsic task of rank-
ing hypotheses in LBD using PR curve analysis, and on
the intrinsic task of estimating semantic similarity and

Fig. 5 Highly-cited versus noise PR curve. This PR curve shows the ability of each ranking method to distinguish between highly-cited term pairs and
noise. Highly-cited pairs appear in papers with over 100 citations after the cutoff date
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Fig. 6 Published versus noise PR curve. This PR curve shows the ability of each ranking method to distinguish between published term pairs and
noise. Published pairs appear in at least one paper after the cutoff date

relatedness. Results were also calculated for the baseline
methods of LTC, direct cosine (Dir Cos) and embed-
dings cosine (Emb Cos). To better understand each evalu-
ated measure’s overall performance, we summarized their
results in Fig. 7. Each row shows the results of a different
method and a “grade” of their performance. The grades
were assigned in a somewhat subjective manner based
on their order of performance and any noticeable group-
ings. The performance of measures varied depending on
the evaluation methods and datasets, but this is under-
standable since each intrinsic and extrinsic evaluation
method measures different aspects of performance, and
the extrinsic time-slicing datasets are constructed in
much different manners.
The first columns of Fig. 7 show performance for the

intrinsic evaluation task of estimating semantic similarity
and relatedness. For intrinsic evaluation, we measure the

Table 5 AUROC Scores for Comparison against Sybrandt

Our AUROC scores versus Sybrandt et al.

Method Highly-Cited vs. Noise Published vs. Noise

Random 0.526 0.515

LTC 0.909 0.883

LTA 0.903 0.876

MWA 0.899 0.876

SBC 0.773 0.728

LSA 0.925 0.907

Dir Cos 0.919 0.906

PolyMultiple 0.874 0.834

The AUROC scores we generated using Sybrandt et al. code and the AUROC scores
for their best performing methods

ability to estimate how similar or related two terms are,
and use human-generated gold standard datasets of term
pairs that directly co-occur. The “Dir. Rel. All” columns
shows results for estimating direct relatedness using the
full UMNSRS and Mini Mayo datasets. They show the
mean Spearman’s rank correlation averaged across all
four datasets, and a grade of their performance. Emb
Cos, SBC, and Dir Cos all perform well. LTA, LTC, and
LSA perform OK, and MWA performs poorly. The “Dir.
Rel. Subset” columns shows results for estimating direct
relatedness of the subsets of UMNSRS Sim and UMN-
SRS Rel using the Disorders and Chemicals and Drugs
concept pairs. They show the mean Spearman’s rank cor-
relation across both datasets, and a grade of their per-
formance. All methods perform poorly, with the excep-
tions of SBC and Emb Cos, which perform OK and well
respectively.
The next columns show performance for the extrin-

sic evaluation task of ranking target terms for LBD.
For extrinsic evaluation, we measure the ability to rank
target terms in LBD, and use automatically generated
silver standard datasets of term pairs that do not co-
occur. The “Co-occ PRC” columns show the results using
our co-occurrence based time-slicing dataset. The AUC
and a grade are shown. LTC performs the best. LTA,
MWA, SBC, and Dir Cos performed similarly and per-
formed OK, and LSA and Emb Cos performed the worst.
The “Sybrandt PRC” columns shows the results using
Sybrandt et al. [6]’s extracted-relationship based time-
slicing dataset. All methods performed relatively well for
this dataset, but LTC and LSA performed the best. All
other methods performed OK. Results for Emb Cos were
not generated for this dataset, since it is unclear how
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Fig. 7 Performance comparison of evaluatedmethods. The average performance of each rankingmethod on the intrinsic task of estimating semantic
relatedness, and the extrinsic task of ranking hypotheses in LBD. A grade of good, OK, or bad is assigned to each method to summarize the results

to best create concept embeddings using SemMedDB
predication data.
Although LTC performs much better on our co-

occurrence based extrinsic evaluation dataset, it performs
similar to other methods on Sybrandt et al. extracted-
relationship based extrinsic evaluation dataset, and worse
than most methods for both intrinsic evaluation datasets.
Co-occurrence based time-slicing datasets have been
criticized as being too imprecise to effectively evalu-
ate LBD. Since performance is similar for all methods
using Sybrandt et al. dataset, which has higher preci-
sion, it’s possible that LTC’s good performance on our
co-occurrence based dataset is a result of this low pre-
cision. Similarly though, Sybrandt et al. dataset has low
recall, and other bias issues. This is why we used multi-
ple evaluation datasets, and ideally a hypothesis ranking
method should performwell for all datasets of both intrin-
sic and extrinsic evaluation tasks. LTC and SBC perform
well, or OK on all evaluation datasets. SBC is one of the
best performing methods for intrinsic evaluation, and has
decent performance for both extrinsic evaluation datasets.
Emb Cos performs the best for intrinsic evaluation, but

poorly for extrinsic evaluation, indicating that it is good at
estimating relatedness between directly, but not indirectly
co-occurring term pairs. LTA andMWA have consistently
OK to bad performance across all datasets, indicating
that although their ability to estimate relatedness extends
to indirectly co-occurring terms, they don’t do a great
job at it. LSA doesn’t perform well at estimating direct
relatedness, and performs well on just a single extrinsic
evaluation dataset. Its good performance on Sybrandt et
al. datasets is due partially to its higher than average pre-
cision rates at high levels of recall, rather than having
particularly high precision overall. Dir Cos appears to be
one of the better performing measures, but on Sybrandt et
al. dataset it never achieves very high levels of precision,
and like LSA gets a higher AUC due to higher precisions
at high levels of recall.

It is surprising that Emb Cos performs the best at esti-
mating direct relatedness, but poorly for target term rank-
ing in LBD, and that LTC performs the best for target term
ranking, but just OK for the estimating direct related-
ness. This shows the difference in estimating relatedness
between directly versus indirectly co-occurring terms. It
highlights differences in, and biases of the different evalu-
ation techniques, and this along with differences in results
for each extrinsic evaluation dataset highlights the need
for a standard evaluation dataset that addresses the biases
present in each of our evaluation datasets.
The difference in performance between SBC and LSA

is surprising since their methodologies are similar, but
indicates that their performance may be sensitive to the
selection of the proxy sets for A and C. We believe LSA
performs poorly because the BA and BC sets are too
large and too noisy. SBC uses the shared linking term
set, which is much smaller and more relevant to how
A and C interact. Interestingly, direct cosine also uses
the overlap of co-occurring terms or shared contexts,
since only concepts that co-occur with A and C (and
therefore are non-zero) contribute to the cosine distance.
Filtering, or selecting only the most relevant terms for
LSA, SBC, and direct cosine may improve results in the
future.
Even though the performances of each method varied,

having a variety of ranking methods with different theo-
retical foundations is useful; it allows the best method to
be selected for each application. Preliminary collaborative
efforts show that researchers often know the types of con-
nections they are looking for, and want to fix both the A
and B term sets to determine how some knownA interacts
with some C term set via the means of a relatively small,
known B set (e.g. how a drug affects a class of diseases
through means of several metabolites). In this scenario, it
is likely that most terms will co-occur with the entire B
term set, which means that each evaluated method except
MWA would produce uninteresting results. LTC, LTA,
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and LSA require that the linking terms between A and C
are different in order to produce interesting results. SBC
and direct cosine produce similarly uninteresting results,
since restricting the B set restricts the shared B set making
results identical for all A and C terms. Emb Cos takes the
cosine between A and C vectors and ignores the B terms
entirely, and therefore how A interacts with C through B.
So, although MWA performs poorly at estimating future
relatedness, MWA is the only method capable of pro-
ducing interesting rankings in this scenario. To further
differentiate each evaluated method, we divide the meth-
ods into three groups, linking term based methods (LTC,
LTA, MWA), which directly use the linking terms in their
calculations. Set based association methods (SBC, LSA),
which use set associations between proxy sets in their
calculations. Vector methods (Dir Cos, Emb Cos) which
use vector cosine to quantify relatedness. Below, we sum-
marize the differences between evaluated measures and
indicate their strengths:

• LTC - linking term based, which is simple to
compute and has the best empirical performance for
link prediction.

• LTA - linking term based method, is faster to
compute than other indirect association measures.

• MWA - linking term based method, which may be
the only interesting method when B terms are
restricted to a small set.

• SBC - set based association method, which performs
well at all tasks making this a good general purpose
indirect association measure.

• LSA - set based association method, which performs
poorly at most tasks, but uses the largest sets of proxy
terms. This gives it the greatest chance of being able
to quantify relatedness, and could therefore be useful
in domains with small datasets

• Dir Cos - vector method, which performs well on all
tasks (except Dir. Rel. Subset), making this a decent,
simple to compute, general purpose method.

• Emb Cos - vector method, good for estimating direct
relatedness. This is the only method that does not
rely on a co-occurrence matrix, which makes it the
fastest to compute.

Conclusions
In conclusion, we evaluated four indirect associationmea-
sures, LTA, MWA, SBC, and LSA against and baselines
of LTC, direct co-occurrence vector cosine, and concept
embeddings cosine for the intrinsic evaluation task of
estimating semantic similarity and relatedness, and the
extrinsic evaluation task of ranking hypotheses in LBD.
We used a gold standard, human graded dataset for intrin-
sic evaluation, but it only evaluates performance using
directly co-occurring terms. To evaluate for terms that

never directly co-occur, we used two different extrinsic
evaluation datasets, a co-occurrence based time-slicing
dataset, and an extracted-relationship based time-slicing
dataset. These silver standard time-slicing datasets both
imperfectly estimate the gold standard of all possible
future discoveries, but have different characteristics and
biases. The co-occurrence based dataset has high recall,
but low precision, and the extracted-relationship based
dataset has low recall, but higher precision. Results dif-
fered based on the evaluation method and dataset, but
overall we found that LTC and SBC are the best per-
forming methods for hypothesis ranking in LBD. This
conclusion is based on SBC’s overall good performance,
and LTC’s good performance on both extrinsic evaluation
datasets.
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