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Abstract

Background: Next-generation sequencing technologies can produce tens of millions of reads, often paired-end,
from transcripts or genomes. But few programs can align RNA on the genome and accurately discover introns,
especially with long reads. We introduce Magic-BLAST, a new aligner based on ideas from the Magic pipeline.

Results: Magic-BLAST uses innovative techniques that include the optimization of a spliced alignment score and
selective masking during seed selection. We evaluate the performance of Magic-BLAST to accurately map short or
long sequences and its ability to discover introns on real RNA-seq data sets from PacBio, Roche and Illumina runs,
and on six benchmarks, and compare it to other popular aligners. Additionally, we look at alignments of human
idealized RefSeq mRNA sequences perfectly matching the genome.

Conclusions: We show that Magic-BLAST is the best at intron discovery over a wide range of conditions and the

best at mapping reads longer than 250 bases, from any platform. It is versatile and robust to high levels of mismatches
or extreme base composition, and reasonably fast. It can align reads to a BLAST database or a FASTA file. It can accept
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a FASTQ file as input or automatically retrieve an accession from the SRA repository at the NCBI.

Background

RNA-seq and DNA-seq experiments generate tens of
millions of reads sampled from transcripts or genomes.
The resulting data allows investigations that include, but
are not limited to, gene expression, gene structure,
nucleotide and structural variations. Different analysis
approaches are available for some investigations. For ex-
ample, gene expression can be studied with alignments
or with alignment-free methods [1, 2]. On the other
hand, the investigation of fine grain gene structure does
require alignments or sequence assembly and may bene-
fit from a specific sequencing technology. While rela-
tively short reads, 50 or 100 bases paired end Illumina
style reads are sufficient for gene expression profiling
and most introns or single-nucleotide variant (SNV)
calling, other studies such as SNV phasing, full length
transcript description or structural genomic rearrange-
ments are facilitated by longer reads. But not all aligners
can handle longer reads. Towards comprehensive and
reliable mapping and variant discovery, the aligner

* Correspondence: madden@ncbi.nlm.nih.gov
National Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA

K BMC

should provide good tolerance to mismatches and robust
discrimination of reads mapping ambiguously at mul-
tiple quasi-repeated sites. Several groups have written
fast aligners [3-5], but a recent benchmark by Baruzzo
and the Grant team showed that new aligners could still
offer value to the community [6].

Here, we present Magic-BLAST, the RNA-seq splice
aware and pair aware new member of the BLAST family
of programs. We compare Magic-BLAST to five other
popular aligners. We look at a variety of RNA-seq read
lengths, between 100 bases and 100 kilobases, from
[llumina, Roche 454 and PacBio as well as full length
RefSeq transcripts and find that most aligners can accur-
ately map short Illumina-style human paired reads with
few mismatches, but that aligners do not work as well
with longer reads. We also find that higher numbers of
mismatches as well as compositionally biased genomes
pose problems for some aligners. Magic-BLAST can
handle the different sequencing technologies, error rates,
and compositional bias without special tuning, and this
should allow, in particular, to map an RNA-seq experi-
ment to the genome of a related species when a good
quality reference genome is not available. Additionally,
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Magic-BLAST performs well in the mapping of long
reads and in identification of introns, even though it is
single pass and is aligning RNA to the genome without
knowledge of a transcriptome.

We chose the name Magic-BLAST to emphasize the
ideas that went into the tool. Magic-BLAST derives its
core algorithms from the Magic pipeline, described in
detail in the Additional file 1 of [7]. It is implemented
using the same C++ framework as the BLAST+ execut-
ables [8-10]. The merger of these tools results in a ver-
satile and robust aligner. Magic-BLAST implements the
Magic ideas of checking for overrepresented target
sequence fragments during seed selection as well as an
innovative greedy alignment extension procedure.
Magic-BLAST can produce spliced alignments when
aligning RNA on genome and selects the best-matching
position genome wide by optimizing a spliced alignment
score for single and for paired reads. Magic-BLAST has
a more limited role than its namesake. Magic refers to
an entire pipeline with high level functionalities, but
Magic-BLAST implements de novo just a Magic-like
aligner.

Magic-BLAST takes advantage of the existing BLAST
infrastructure. It aligns reads against a BLAST database,
which is the same database used by other BLAST pro-
grams. It can also align reads against a FASTA file or
even just an accession, with the actual sequences auto-
matically retrieved from the NCBI. Sequence reads can
be provided as SRA accessions or as files in FASTA or
FASTQ format. Magic-BLAST can transparently gzip or
gunzip the sequence reads and/or the reference FASTA
or FASTQ files. It was field-tested in several NCBI
hackathons that provided substantial feedback on
features and usability.

We compare Magic-BLAST (version 1.4) to three
popular aligners, HISAT2 [11], STAR [12, 13], and
TopHat2 [14, 15], also evaluated in [1, 6]. We look at
precision (percentage of results that are correct), recall
(percentage of the total true positives returned) and F-
score (harmonic mean of recall and precision) for
alignments and for intron discovery, as measured on
truth-bearing RefSeq [16] human transcripts (assembled
to exactly match the genome), on experimental long or
short reads, and on simulated benchmark data assessing
the impact on the alignments of variable levels of poly-
morphisms and errors, up to mimicking an alignment to
a related species [6]. The last data set additionally tests
the aligners on a genome with extremely biased base
composition, using the malaria agent Plasmodium falcip-
arum, which is 80.7% AT. Magic-BLAST is not the fast-
est tool but is reasonably fast and works well when
mapping RNA to the genome or to the transcriptome.
For RNA-seq, it works well with a variety of read lengths
and data without requiring from the user any choice of
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parameters. It is versatile, easy to use, robustly precise
and conservative in all circumstances.

Magic-BLAST can also align DNA-seq, but we exam-
ine only RNA-seq performance here.

Additionally, we performed a reduced set of tests on
two aligners, Minimap2 [17] and Subread [18], that
claim to handle long reads well.

Implementation

Algorithm overview

The Magic-BLAST algorithm has a structure similar to
that of other BLAST programs [10]. It reads the data in
batches and builds a “lookup table”, which is an index of
word locations in the reads, 16-bases by default. It then
scans the database sequences, usually a reference gen-
ome, for matches in the lookup table and attempts to
extend selected initial matches to the length specified by
the user (18 by default). The resulting matches form a
seed for computation of local gapped alignments. Collin-
ear local alignments are combined into spliced align-
ments. In order to be used as a seed, the original 18
base match must be completely contained within one
exon (i.e., cannot span two exons). Consequently, exons
shorter than the seed length cannot be captured, but
they are rare (less than 0.2% of RefSeq exons), and most
will be recognized by aligning in parallel on the known
transcriptome. For paired reads, the best alignments are
selected based on the alignment quality of the pair. For
example, if one read of a pair maps equally well at two
genomic sites, and the second read maps best at a single
site, the read pair will be reported as mapping uniquely
at the position dictated by the second read. In this way,
the specificity of the mapping truly reflects the number
of bases sequenced in the whole fragment, i.e. 200 bases
specificity for 100+ 100 paired-end reads. Below, we
present a detailed description of the above steps. Figure 1
presents an overview of these steps.

Repeat filtering

Most genomes contain interspersed repeats and gene
families that complicate correct placement of reads in a
genome. To avoid seeding to ambiguous positions,
Magic-BLAST scans the reference sequence and counts
16-base words. Those words that appear in the reference
database more than a user-specified number of times (by
default 60) are not indexed in the lookup table, so that
they never form a seed alignment. To make this proced-
ure more efficient, only words present in the reads are
counted. The cut-off number 60 was selected experi-
mentally as the best trade-off between sensitivity and
runtime for RNA-seq. Additionally, Magic-BLAST spe-
cifically masks out 16-base words that contain at least
15 A’s or 15T, effectively avoiding seeding on poly-A
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Fig. 1 Flowchart of the Magic-BLAST algorithm

tails. This approach is similar to soft masking in other
BLAST programs.

Local gapped alignment

Magic-BLAST computes a local alignment by extending
exact word matches (18-bases by default) between a read
and a reference sequence. We use a simplified greedy
alignment extension procedure, previously used in
Magic [7]. Starting with the seed, the alignment is ex-
tended until the first mismatch. Next, we attempt to
characterize the mismatch as a substitution, insertion or
deletion of one to three bases by recursively testing the
quality of the alignment of the following few bases. This
is done by applying successively a table of candidate
alignment operations (Table 1) until the associated re-
quirement is met. A requirement is that a specific
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Table 1 List of alignment operations used in the Magic-BLAST
alignment extension

Operation  Length Required number of matching  Allowed number
bases of mismatches
Substitution 1 9 0
Insertion 1 10 0
Deletion 1 10 0
Insertion 2 10 0
Deletion 2 10 0
Insertion 3 13 0
Deletion 3 13 0
Substitution 2 12 0
Insertion 1 10 2
Deletion 1 10 2
Insertion 2 10 2
Deletion 2 10 2
Insertion 3 13 2
Deletion 3 13 2

number of bases must match within a given number of
bases following the applied operation. The first oper-
ation whose requirement is met is applied to the align-
ment and the algorithm proceeds to the next position on
both sequences. A single substitution is reported if no
requirement is satisfied. The list of alignment operations
and their associated conditions used in Magic-BLAST is
presented in Table 1.

Figure 2 shows an example alignment extension. First,
there are two matches and the algorithm moves to the
right by two positions on both sequences. When a mis-
match (T-G) is encountered the algorithm tries succes-
sively each alignment operation and checks its
requirements. The first operation, a substitution which
requires nine matching bases following the mismatch,
fails. The second operation, an insertion which requires
ten consecutive matches, succeeds and is applied to the
alignment. In the last step there is a match (G-G).

We use the X-drop algorithm [8] to stop the exten-
sion. At each position, we record the running alignment
score. The algorithm stops at the end of a sequence or
when the current score is smaller than the best score
found so far by more than the most penalized gapped
alignment operation (three-base gap in Table 1). The al-
gorithm then backtracks to the position with the best
score.

Because most reads align to a reference with few or no
mismatches, this method is faster and more memory
efficient than the dynamic programming-based exten-
sion procedure used in other BLAST programs. More-
over, this approach facilitates collection of traceback
information at little additional cost. This method can be
tuned to a given sequencing technology for an expected
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AA  Match: Move to the next position on both sequences.

Mismatch: Try the first operation.

AATGAGTGATAC Try the first operation: substitution, requires 9 matches.

AATGAGTGATACC Try the second operation: insertion, requires 10 matches.

Fig. 2 An example alignment extension procedure. The arrows point at each step to the position currently considered in both sequences. First,
there are two matches and the arrows move to the right by two positions on both sequences. When a mismatch (T-G) is encountered the
algorithm tries alignment operations and conditions. The first operation: a substitution, which requires nine matching bases following the
mismatch, fails. The second operation, an insertion which requires ten matches succeeds and is applied to the alignment. In the last step there is

rate of mismatches or gaps simply by adapting Table 1.
For example, in Roche 454 or PacBio, where insertions
and deletions are more frequent than substitutions, one
could switch to a modified table.

We compute an alignment score using the following
system: 1 for each matching pair of bases, — 4 for a base
substitution, zero for gap opening (either a read or refer-
ence sequence), and — 4 for each base of gap extension
(insertion or deletion). A user can modify the mismatch
and gap penalties. The quality coefficients present in the
FASTQ file have no impact on the alignment score and
are not exported in the SAM output.

About half the time, a matching base can be placed on
either side of a gap, so the gap can slide at equal score.
To avoid difficulties in SNP detection, Magic-BLAST by
convention shifts the sliding bases upstream of the gap,
in the orientation of the target.

Spliced alignments

Spliced alignments are found by combining collinear
local alignments on a read and a reference sequence.
Magic-BLAST constructs a chain of local alignments
that maximizes the combined alignment score. It then
updates the alignment extents so that the spliced align-
ment is continuous on the read and the intron donor

and acceptor sites are, whenever possible, consistent
with the canonical splice signals.

If two local alignments are continuous on a read
(possibly with an overlap), then we first search for the
canonical splice site (GT-AG or CT-AC) where the
alignments meet. If this site is not found and each align-
ment has a score of at least 50, we search successively
for the minor splice sites or their complement: GC-AG
or CT-GC, AT-AC or GT-AT, then for any other non-
canonical site. The first site found is accepted. The
alignment score threshold of 50 was chosen because
minor and non-canonical splice sites are rare, but pairs
of di-nucleotides are frequently found in the genome. As
a result, for reads shorter than 100 bases, Magic-BLAST
conservatively only calls GT-AG introns.

Magic-BLAST also attempts to produce spliced align-
ments if a read has several local alignments separated by
one to ten unaligned bases. First, we look for a splice
signal within four bases of the end of the left alignment
and, if found, we fix the beginning of the candidate in-
tron. Second, we search for the corresponding end of in-
tron signal at offsets that ensure a continuous alignment
on the read, allowing at most one additional insertion or
deletion. If this fails, the procedure is repeated with the
end of the intron fixed and a search for the signal indi-
cating the start of the intron. When the candidate splice
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signals are found, the alignments are trimmed or ex-
tended to the splice signals. The benefit of this method
is that it correctly identifies introns even in the presence
of a substitution, insertion, or deletion close to the in-
tron boundaries. Because this procedure is very sensitive
and can produce many spurious alignments, Magic-
BLAST only allows the GT-AG signal in this situation.

The spliced alignment is scored with the same scoring
system as the local alignment. There is no reward or
penalty for splice sites and no preference is given to con-
tinuous versus spliced alignments. When mapping RNA
to the genome, Magic-BLAST does not support the use
of an annotation file or a two-pass method. If desired,
one can map both on the genome and on an annotated
transcriptome, then use the universal scoring system of
Magic-BLAST to select the best alignment, be it gen-
omic or transcriptomic, for each fragment. In this paper,
we mapped only to the genome.

Output

Magic-BLAST returns results in the Sequence Alignment/
Map SAM/BAM format [19] or in a tab-delimited format
similar to the tabular format in other BLAST programs,
which is less standard but richer and easier to mine.

Results

Datasets and programs

The ability of Magic-BLAST and other popular programs
to map RNA-seq to genomes in a naive fashion, without
knowledge of an annotated transcriptome, and to find
introns and their precise splice sites was assessed using
seven truth-bearing datasets, one of which is new, and
several experimental runs, from Illumina, Roche 454 and

Table 2 Datasets used for analysis
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PacBio. Table 2 summarizes the datasets used for this
analysis.

The new benchmark, called iRefSeq, is the image of
the Human RefSeq mRNAs [16] exactly matching the
genome. We selected the protein-coding RefSeq
mRNAs, limiting to the 45,108 NM accessions that map
to the main chromosomes and mitochondrial DNA of
GRCh38 (GCF_000001405.36). These mRNAs are tran-
scribed from 19,269 protein coding genes. Using the
mapping coordinates, as given in the RefSeq annotation,
we assembled genomic sequences into transcript
sequences so that they exactly match the genome (see
Additional file 1: section 2.1). iRefSeq mRNAs range in
length from 147 bases to 109,224 bases. This perfect
data set forms a useful benchmark for RNA-seq aligners,
because it seems simple to align, and each mismatch in
the alignment indicates an imperfect mapping. Further-
more, the coordinates of the 210,509 distinct introns in
iRefSeq are known.

The Baruzzo benchmark set of simulated RNA-seq
reads, presented in [6], was also used. This set has some
qualities that make it appealing for our analysis. The au-
thors document their procedure well, they produce 10
million paired-end 100 + 100 Illumina-like reads at three
vastly different error rates, nominally from 6.1 to 55
mismatches per kb, and they produce data for human
and Plasmodium falciparum, a protozoan causing mal-
aria in human (we refer to the latter sets as ‘malaria’).
Baruzzo names these three different error rates T1, T2,
and T3. The variable error rates simulate how the
aligners would perform if the genome of the same spe-
cies was available (T1), if only a poor-quality version of
the genome or the sequence data was available (T2), and
if only the genome of a related organism was available

Name Type Number of Reads Average read length (bases) Range of read lengths (bases) Accession
iRefSeq Real 45,108 3427 147-109224 N/A

PacBio Real 8,285 1854 710-2703 SRR5009494
Roche Real 416,045 348 36-808 SRR899420
[llumina 101 + 101 Real 109 million 202 202-202 SRR534301
lllumina 250 + 250 Real 23.3 million 500 500-500 SRR5438850
lllumina 300 + 300 Real 16.5 million 600 600-600 SRR5437876
PacBio Brain Real 264,100 1323 46-6116 SRR5189652
PacBio testes Real 408,801 1307 42-7359 SRR5189667
Human T1 Simulated 10 million 200 200-200 N/A

Human T2 Simulated 10 million 200 200-200 N/A

Human T3 Simulated 10 million 200 200-200 N/A

Malaria T1 Simulated 10 million 200 200-200 N/A

Malaria T2 Simulated 10 million 200 200-200 N/A

Malaria T3 Simulated 10 million 200 200-200 N/A
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(T3). The malaria sets allow an analysis of how the
aligners perform under extreme genome base compos-
ition as the genome is 80.7% AT. The human and mal-
aria sets have the same number of reads, so the malaria
sets are at least 100 times deeper, a confounding effect
to unravel. In practice, each set is provided as triplicate
benchmark runs, but since the results are very similar,
only the results of R1 are shown in the figures (all 18
datasets are shown in Additional file 1: Tables S3, S4,
S6). Surprisingly, we noticed that the measured level of
mismatches per kb differs between the human and mal-
aria sets: T1 has 5.4 and 6.5 mismatches per kilobase
aligned in human and malaria respectively, T2 11.86 and
16.6, and T3 60.2 and 86.5.

Furthermore, we selected experimental RNA-seq data
sets from the public Sequence Read Archive (SRA at
NCBI) to represent three sequencing platforms, PacBio
(SRR5009494, with 8285 reads of average length 1854
bases, sequenced from colon carcinoma cells), Roche
454 Titanium (SRR899420, with 416,045 reads of aver-
age length 348 bases, sequenced from the MAQC/SEQC
brain mRNA sample (16)), and a deep Illumina HiSeq
run (SRR534301, with close to 109 million 101 + 101
bases paired-end reads sequenced from fetal lung, also
tested in (9)). Here, we will refer to each of these RNA-
seq sets by its technology: PacBio, Roche and Illumina.
Figure 3 presents a histogram of read lengths for the
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iRefSeq and these three experimental sets. To refine the
conclusions, we later added two large PacBio hybrid
runs (testes SRR5189667 and brain SRR5189652 from
the GENCODE project [20], with non-native sequences
edited using Illumina runs), two Illumina runs with lon-
ger read pairs (250 + 250 bases SRR5438850 from meta-
static melanoma; 300 + 300 bases SRR5437876 from
MCEF7 cells, also studied in [1]).

We examined the performance of several programs
aligning RNA to the genome in the absence of a tran-
scriptome (Human genome GRCh38 and P. falciparum
genome provided in [6]). Magic-BLAST was compared
to programs from 2009 to 2015: HISAT2 [11], STAR
[12, 13], STAR long [1, 12, 20] and TopHat2 [14, 15]
(Details in Additional file 1: section 1.2). The standard
STAR is optimized for Illumina-type reads while the au-
thors recommend STAR long for reads longer than 300
bases, but we tried both versions on all runs. The two-
pass mode is recommended if no transcriptome annota-
tion is provided: STAR long was run only in two-pass
mode, but both one-pass and two-pass modes were tried
for standard STAR. We used a parameter set for STAR
long based on information in [13] as well as https://
groups.google.com/d/forum/rna-star. HISAT2 was run
with default parameters as well as in a ‘relaxed’ mode
which is more sensitive and works better on longer reads
but is much slower: the HISAT2 default parameters left
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4,663 iRefSeq unmapped while all aligned in relaxed
mode. Magic-BLAST and TopHat2 do not have a two-
pass mode and were run with default parameters. Add-
itionally, we performed preliminary analysis on two
aligners optimized for long reads (Minimap2 [17] and
Subread [18]).

Two analysis programs were used in this project (Add-
itional file 1: section 1): AliQC.py was developed in col-
laboration with Joe Meehan from the FDA for the SEQC
project [21]. It extracts, by comparing the SAM file to
the genome, a detailed quality control on alignments,
their length and multiplicity, and mismatches by reads,
by type and by position along the read (i.e. by sequen-
cing cycle) (Additional file 1: section 7). In case of mul-
tiple alignments, only the ‘primary alignment is
considered in this analysis. The number of mismatches
were confirmed using the NM: optional tag present in
the BAM files. Another program, sam2gold.c, was writ-
ten in C to compare the SAM files to the format in
which Baruzzo [6] provided the benchmark truth (Add-
itional file 1: sections 2 to 6). A master-script, described
in Additional file 1: section 1.5 and deposited in GitHub
(https://github.com/ncbi/magicblast), can download all
the data, realign the sequences, and reproduce Add-
itional file 1: tables and sections 2 to 7, which support
our entire analysis.

We first measure how well the different aligners iden-
tify introns, then we examine the properties of the
alignments.

Intron discovery
To test how well the aligners discover introns, the splice
sites were extracted from the BAM output using the ‘N’
operation in the CIGAR string [19]. For the iRefSeq and
Baruzzo benchmark sets, the true position of each intron
is known. The experimental sets do not come with such
a “Ground Truth”, but a proxy for true and false posi-
tives are the introns annotated and not-annotated in
RefSeq. Of course, this is not strictly correct as some un-
annotated introns are no doubt real and just have not
been discovered or annotated on the genome. On the
other hand, it seems likely that all (or almost all) the an-
notated introns are real. This strategy allows a compari-
son of the results of all programs on all datasets and the
measurement of precision, recall and F-score for intron
discovery. We require that the starting and ending posi-
tions of introns identified by an aligner exactly match ei-
ther the Ground Truth in the benchmark sets or the
RefSeq annotation for the experimental sets.
Magic-BLAST, HISAT?2 in relaxed or standard mode,
and STAR long are able to align very long reads on the
genome and find introns. TopHat2 and the standard
STAR failed to produce any results for very long reads,
although TopHat2 marginally worked for Roche 454.
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We first use a ROC curve approach [22] to precisely
judge the quality of intron discovery, true versus false, as
a function of minimal read coverage (Fig. 4 and
Additional file 1: Figure S3). We group the introns by
read coverage in up to 100 bins. For each bin, the num-
ber of true positive (or annotated) introns are plotted on
the Y-axis while the number of false positives (or unan-
notated) introns are on the X-axis. The resulting curves
have up to 100 points and give us visual insight into
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(See figure on previous page.)

Fig. 4 ROC curves showing intron discovery as a function of
minimal read coverage, from 1 to 100 (or to the maximal observed
coverage). The point with coverage 1, corresponding to all introns
found in the experiment, is the point closest to the top right corner.
The plots show, for each minimal coverage, the true positives on the
Y-axis and the false positive on the X-axis. In the experimental sets,
annotated and unannotated introns are used as a proxy for true and
false positives. The best curve would have all the true positives
before any false positives, meaning the steeper the slope the better.
The benchmark sets, iRefSeq and six Baruzzo, have a built-in truth
(vertical blue line in some graphs). a For the iRefSeq set, because of
the alternative splice variants, the truth has introns supported by 1,
2,and up to 51 RefSegs, and Magic-BLAST (red) follows the truth
remarkably closely, point by point. It finds slightly more true-positive
introns than the HISAT2 programs, but the biggest difference is that
HISAT2 finds fifteen to seventeen times as many false positive
introns. STAR long finds only 60% of the introns with some false
positives. b For PacBio, with less than 9000 reads, Magic-BLAST
already finds 11464 annotated introns, many more than the two
HISAT2 versions and STAR long, yet it finds the fewest unannotated
introns. ¢ The Roche presents a similar, though less extreme, result.
d In lllumina (zoomed in Additional file 1: Figure $3.1), Magic-BLAST
followed by STAR 1-pass have the steepest slopes. Then come STAR
2-pass and TopHat2, then HISAT2; these last three aligners call
unannotated introns at high coverage. e-j) In the Baruzzo shallow
human T1 (e) and T2 (g) benchmarks, Magic-BLAST then HISAT2
perform the best, followed by STAR 1- then 2-pass, then TopHat2. i
In human T3, HISAT2 and TopHat2 drop considerably, only Magic-
BLAST and STAR can find introns in the presence of a high level of
mismatches. f, h, j In the ultra-deep malaria sets, Magic-BLAST
remains best, STAR 2-pass and HISAT2 drop below TopHat2. At
coverage 1, STAR has by far the largest number of false positives
(Additional file 1: Figures S3)

how the different programs behave when the support,
given by the number of reads mapped to each junction,
increases. The truth for the benchmark sets is vertical
and dark blue. The best curve, of course, would have all
the true positives before any false positives, meaning the
steeper the slope, and ultimately the higher to the left
the curve is, the better. In fifteen cases, Magic-BLAST
(red) is to the left and above all other curves and quali-
fies as the best intron finder in all conditions tested, for
reads from 100 bases to 100 kilobases, with any level of
mismatches, from perfect match to 8.6% mismatch. This
observation applies to benchmark as well as all seven
real data sets tested from PacBio, Roche or Illumina.
This observation can be summarized by quantifying
intron precision, recall, and F-score for the iRefSeq
and experimental sets (Fig. 5a-c and Additional file 1:
Figure S4). For the experimental sets where we use
RefSeq annotated introns as truth, only the compari-
son of the scores of the various aligners is meaning-
ful: on the same data, they should detect the same
introns. But the precision and the recall depend on
the tissue and on the depth of the experiment. The
[lumina 101 + 101 run is from fetal lung, a stage not
well represented in the RefSeq collection, and this
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explains the apparently low precision (below 46%):
many of the observed introns are probably real but
not annotated. At the same time, RefSeq annotates
introns and genes from all tissues, and typically a
sample derived from a single tissue and sequenced
deeply will express 70 to 75% of all annotated genes
and introns, this explains the recall around 72% in
this Illumina set. For the shallow data sets from
Roche adult Brain and PacBio colon carcinoma cells,
precision seems good (up to 92% in Magic-BLAST)
because these tissues were used intensely in RefSeq
annotation, and because at low coverage, one sees mainly
the highly expressed genes, which are the best annotated.
Yet the low depth of sequencing explains why Roche finds
only 31% of the annotated iRefSeq introns, and the very
small PacBio run finds less than 6%.

The ROC curves make it apparent that the ability of the
aligners to discover introns, with a good balance of true to
false positives, changes as the read coverage for introns
decreases. We use this insight to calculate a coverage
dependent best F-score for the aligners (Additional file 1:
sections 3 and 4). At the best F-score, Magic-BLAST has
the highest F-score in 15 experiments, plus the 12 dupli-
cate benchmarks. The only exception is human T1 trun-
cated at 50 + 50, where HISAT?2 takes the lead. Magic-
BLAST also reaches its best score at the lowest coverage
of all aligners in almost all cases. The other aligners
achieve optimal scores at much higher coverage than
Magic-BLAST for the deep experimental Illumina and
Baruzzo malaria sets. Magic-BLAST is more conservative
than the other programs, and even the introns supported
by a single read appear reasonably trustworthy.

Another notable feature in the ROC curves for the
Baruzzo benchmark is that STAR produces the largest
number of false positives in every case, followed by
HISAT2 (Fig. 4, Additional file 1: section 3). In the
deep malaria set, which has about 5500 annotated in-
trons, STAR produces up to 600,000 false positive in-
trons (Fig. 4j). This greedy intron-finding behavior fits
with the observation that introns and splice sites
found by STAR and HISAT2 at low coverage are
mainly untrustworthy. It is worth noting that, as
judged by the ROC curves, HISAT2 produces much
worse results in the very deep malaria T1 than in the
shallow human T1 (Fig. 4e and f), and that STAR 2-
pass can produce worse results than the 1-pass ver-
sion. This is especially apparent for deep sets such as
the experimental Illumina and the Baruzzo malaria
(Fig. 4f, h, j, Additional file 1: Figure S3.1). This hypothesis
was tested and confirmed by subsampling 1% of malaria
T1: STAR 2-pass became just as good as STAR 1-pass
(compare Fig. 4f and Additional file 1: Figure S3.3) and
the false positive introns went away much faster than the
true positives in STAR and HISAT?2.
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Intron dols.covery Intron discovery  Intron discovery B % reads aligned % bases aligned
precision recall F-score
0% 50% 100% 0% 50% 100% 0% 50% 100% 0 50 100 0 50 100
iRefSeq
Magic-BLAST N 09.9% 98.3% 99.1% N 100.0 99.0
HISAT2 relax NN 98.9% 95.9% 97.4% N 100.0 94.0
HISAT2 N 98.6% 93.7% 96.1% N 89.7 89.5
STAR long NN 09.5% 59.4% 74.4% I 824 82.4
PacBio
Magic-BLAST NN 91.8% 5.5% 10.3% I 100.0 73.0
HISAT2 relax N 56.8% 3.5% 6.5% . 100.0 44.6
HISAT2 N 79.6% 2.3% 4.5% Bl 200 19.3
STAR long N 66.5% 4.2% 7.8% . 68.4 65.1
Roche
Magic-BLAST N 91.3% 31.0% 46.3% I 08.8 94.7
HISAT2 relax N 79.6% 30.7% 44.3% I 97.6 91.8
HISAT2 I 34.7% 29.6% 43.8% I 34.7 84.1
STAR long N 80.3% 30.4% 44.1% I 95.0 93.9
TopHat2 N 95.0% 18.3% 30.7% . 491 49.1
Illumina 101+101
Magic-BLAST I 42.8% 70.6% 53.3% I 7.4 93.1
HISAT2 Wl 19.3% 71.8% 30.4% I 011 90.7
STAR 1-pass M 20.8% 71.5% 32.2% I 04.3 92.6
STAR 2-pass Il 21.5% 71.6% 33.0% I 95.0 94.2
TopHat2 [N 45.6% 68.7% 54.8% I 30.4 80.4
Illumina 250+250
Magic-BLAST N 57.8% 71.8% 64.1% I 99.8 76.1
HISAT2 N 50.4% 69.0% 58.2% . 459 44.5
STAR long N 54.8% 69.6% 61.3% . 50.6 47.3
STAR 2-pass I 55.9% 70.2% 62.2% I 557 50.2
Illumina 300+300
Magic-BLAST N 54.9% 65.8% 59.8% I 99.9 74.2
HISAT2 N 47.9% 63.1% 54.4% I 46.2 44.1
STAR long N 55.7% 63.6% 59.4% I 55.0 50.3
STAR 2-pass I 54.9% 64.5% 59.3% I 56.2 49.7
PacBio brain
Magic-BLAST N 68.9% 27.1% 38.9% I 99.0 70.0
HISAT2 relax I 27.5% 22.6% 24.8% I 98.6 58.5
HISAT2 N 68.8% 4.5% 8.4% I 35 33
STAR long N 58.4% 24.8% 34.9% I 76.1 65.4
PacBio testes
Magic-BLAST I 49.3% 36.5% 42.0% I 99.6 73.1
HISAT2 relax Wl 22.2% 31.7% 26.1% I 994 59.8
HISAT2 N 64.2% 6.5% 11.8% I 3.0 2.8
STAR long I 42.1% 34.1% 37.7% I 830.7 68.8
Fig. 5 Performance of the aligners on intron discovery and alignment statistics measured on iRefSeq and seven experimental datasets. a Intron
discovery precision p = (TP/TP + FP). b recall r= (TP/TP + FN) and ¢) F-score (2pr/p + ). All introns are counted, including those with a single
support. An intron annotated in iRefSeq is counted as true, an unannotated intron as false. d percentage of reads aligned. e percentage of bases
aligned. Average sequenced length per fragment are: iRefSeq 3427 bases, PacBio 1854 bases, Roche 348 bases, lllumina 202, 500 and 600 bases,
PacBio 1300 and 1323 bases. The longer the reads, the more specific their alignments are
J

Figure 6g presents intron discovery F-scores for the
Baruzzo set. Magic-BLAST has the best F-scores for all
the sets, but really excels for the T3 human set and all
the malaria sets.

Alignment quality

Various metrics can be applied to characterize the ability
of aligners to accurately map the reads. For simulated
runs, where a truth is known by construction, one can
compare the precise placement of each alignment to the
‘true’ position of the read and partition all alignments in
one of four categories: completely correctly aligned
(True positive type 1), partially but correctly aligned

(True positive type 2), misaligned (False positive) or not
aligned (False negative). This provides a direct measure
of alignment precision, recall and F-score (Figs 6¢c and
7a-c, Additional file 1: Figure S6.1). These categories do
not treat true and false positives symmetrically, since a
missing exon would be True positive type 2 but an extra
exon would be a False positive. We take this cautious
approach since we consider an incorrect exon a more
serious issue than a missing exon.

In all cases, even when no truth is available, we char-
acterized the quality of the alignments by using the
alignment statistics derived from the AliQC program
(Additional file 1: S1.3), which includes the number of
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Alignment Alignment % reads % bases % unique Mismatchqs per Intron discovery
precision recall aligned aligned kilobase aligned F-score
85% 90% 95%100% 0% 50% 100% 0 50 100 50 100 92 9% 100 O 50 100 0% 50% 100%
Human T1 I 543 .
Magic-BLAST il 95.1% 99.3% I 90.3 9g5 M os0 0528 94.8%
HISAT2 IEENNNNE 96.4% 99.3% I 99.3 992 NN 97.8 I 526 94_6°A,
STAR 1-pass N 96.4% 99.8% I 99.8 994 N 97.9 I 539 92.90/0
STAR 2-pass I 96.4% 99.8% I 99.8 go.7 NN 979 I 539 93.604,
TopHat2 HEEE 90.9% 96.7% I 6.6 966 N 07.1 1 5.03 90.5%
Human T2 W 11.86 '
Magic-BLAST SN 94.7% 99.5% N 99.5 9g2 MmN 079 M 11.90 93.0%
HISAT? SN 96.3% 93.3% 933 932 N o783 M 1066 90.7%
STAR 1-pass N 96.2% 99.5% I 99.5 ogp NN 976 W 1215 88.80/0
STAR 2-pass NN 96.3% 99.7% I 9.7 991 NN 97.6 m 1230 89.5%
TopHat2 HEEE 90.4% 82.6% K §23 N 97.1 N 8.99 86.8%
Human T3 . 60.24 .
Magic-BLAST I 92.2% 99.3% I 99.3 90.1 — 7.7 . 37.33 082.1/0
HISAT2 BN 94.6% 23.1% Il 233 23.0 I 975 Bl 18.26 45.0% .
STAR 1-pass NN 95.8% 81.7% I 816 76.6 — 97.4 . 37.60 70.5%
STAR 2-pass NN 95.6% 88.6% I 85.6 843 NN 975 4245 o 748%
TopHat2 M 87.1% 12.9% 129 12.9 968 1443 25.5%
Malaria T1 B 6.50 .
Magic-BLAST NSNS 97.8% 100.0% I 100.0 906 N 085 0588 9.1%
HISAT? IS 97.3% 99.0% I 99.0 989 MmN 981 0 593 1 81.0%
STAR 1-pass N 97.2% 99.9% I 99.9 99.8 NN 0978 I 6.16 35'9f’
STAR 2-pass SN 97.0% 99.9% I 99.9 99.s mmmmmm 977 0616 38.5% )
TopHat2 NN 97.4% 96.0% I 96.0 960 N 033 0 563 93.2%
Malaria T2 B 16.60 .
Magic-BLAST I 97.7% 100.0% I 100.0 99.0 NN 935 M 1510 94.3%
HISAT? NS 97.3% 87.9% I 879 s7.s NN 932 W 1305 i 67.5%
STAR 1-pass NN 96.9% 99.8% I 99.3 992 NN 9.7 1587 14.2%
STAR 2-pass NN 96.6% 99.8% I 9.8 99.3 NN 96.6 ™ 1599 15.0% )
TopHat2 NN 97.2% 73.1% 731 73.1 e 082 M 10.80 88.5%
Malaria T3 I 86.53 .
Magic-BLAST IS 96.4% 98.3% I 953 886 NN 084 NN 5255 8p-4%
HISAT? BN 96.9% 5.9% 160 5.9 I 082 N 23.28 S 57.9%
STAR 1-pass I 93.3% 77.0% I 76.1 68.5 W 929 . 51.23 150/0
STAR 2-pass NN 95.5% 92.1% I 01.9 867 NN 954 N 61.80 45%
TopHat2 NN 96.5% 2.1% I 2.4 2.1 080 M 17.01 48.2%
Fig. 6 Performance of the aligners and quality control characteristics measured on the Baruzzo lllumina-like benchmark. First, the results of the
comparison of all alignments to the truth are shown: a alignment precision, b alignment recall, counting as true an alignment which is identical
or included in the truth (perfect or partial); each alignment for multiply aligned reads is counted. Second, the statistics of the alignment
independently of the truth are shown: ¢ percentage of reads aligned. d percentage of bases aligned. Note that the aligners differ on their view of
what can be reported as an ‘alignment’ and on their thresholds for minimal aligned length and maximal level of mismatches. e Percentage of
reads aligned uniquely. A higher rate of unique alignments is desirable, but the true number of ambiguous reads is unknown. f The number of
mismatches per kilobase aligned. The true rate (first line of each dataset) was measured using the official benchmark mapping. A rate below the
truth, correlated with lower alignment recall, characterizes an aligner which cannot deal with high levels of mismatches. g the intron discovery F-
score, measured for all introns (coverage at least 1). Magic-BLAST reaches the highest F-score for intron discovery in all datasets

reads and bases aligned, unique versus multiple align-
ments, aligned length histograms, mismatches per read,
type and position (Additional file 1: section 7 presents
more information on the topics covered in this
paragraph).

A simple and rich summary of the quality of the long
reads alignments is provided in Fig. 8 (and Additional
file 1: Figures S2), which shows for each aligner the
histogram of aligned length as compared to the length of
the reads. The best performance an aligner could pos-
sibly achieve would be to map each read along its entire
length, so ideally the histogram of aligned length should
be superimposed on the histogram of the read lengths
(blue), especially for the longest reads (to the right). In
the iRefSeq case of very long transcripts perfectly match-
ing the genome (Fig. 8a), TopHat2 fails, Magic-BLAST
matches the read length histogram all the way from long
to short transcripts. HISAT2 relaxed is better than
HISAT?2 and nearly as good as Magic-BLAST, but with
an elbow of very short alignments. STAR long is

distinctly lower over the longest reads. The situation is
different for PacBio (Fig. 8b) where the bulk of the se-
quences are between 1000 and 2700 bases long and
show a high rate of sequencing errors, close to 20 mis-
matches per kb. There, STAR long finds some of the
longest alignments but fails to align close to 30% of the
reads. Magic-BLAST maps all reads, but often as partials
because if an alignment presents a gap, Magic-BLAST
reports only the highest scoring partial alignment. The
curves for HISAT2 and HISAT?2 relaxed are much lower,
especially for long reads. In addition, HISAT2 relaxed
creates a very large number of alignments shorter than
200 bases. Again, TopHat2 fails. The Roche reads are
shorter, between 33 and 808 bases (Fig. 8c), and some
are now in the range acceptable to TopHat2, which
aligns about half of the reads up to 600 bases. Alignment
lengths for STAR long and Magic-BLAST are close to
read lengths. The curve for HISAT2 is a little below.
Both Magic-BLAST and HISAT2 relaxed produce a
small number of shorter alignments, as is evident from
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Fig. 7 Characteristics of alignments of the iRefSeq set. a The 45,108 iRefSeq include 154,601,873 bases exactly matching the genome (Truth). For
each program, the percentage of iRefSeq sequences aligned (green) and the percentage of bases aligned (yellow) are given. In case of multiple
alignments, each read contributes only once, at its primary position. Note that the scale is from 80 to 100%. b Intron discovery in iRefSeq: the
number of introns correctly found (green, TP), the number present in the truth but missed by the aligner (black, FN) and the number of invented
introns, found by the aligner but absent from the truth (red, FP) are shown. ¢ Accuracy of the alignments: the true alignment of each read is
defined by the RefSeq annotation (GRCh38 GFF file). A read is considered exactly aligned (green) if it is completely aligned, without mismatch,
and starts and ends at the same chromosomal coordinates as the truth. A partial (light blue) must be within the true alignment. For misaligned

reads (red), at least part of the alignment does not overlap the truth. Unmapped reads are shown in black. Note that the scale is from 75 to
100%. d The number of mismatches reflects mis-mappings, since by construction the iRefSeq exactly match the genome

the peaks on the very left end of the graph. Magic-
BLAST has the fewest complete alignments, but the
situation is reversed for the longer Illumina reads 250 +
250 and 300 + 300 (Additional file 1: Figure S2.2) where
Magic-BLAST aligns 50% more bases than STAR and
twice as many as HISAT2.

We now detail the results for the iRefSeq benchmark,
then the six Baruzzo benchmarks, and finally the experi-
mental runs from SRA.

The iRefSeq experiment evaluates the ability of the
programs to align long spliced mRNA sequences exactly
matching the genome, an idealized situation with no se-
quencing errors (Fig. 7, Additional file 1: section 5).
Magic-BLAST, HISAT2, HISAT2 relaxed, STAR long,
and Minimap2 produced results for this experiment.
There is no bias, as Magic-BLAST was not used to pre-
pare the RefSeq annotation.

Figure 7a displays the percentage of reads and bases
aligned. Magic-BLAST performs the best. Similarly, at

the intron level (Fig. 7b), Magic-BLAST has more than
10 times fewer false positive introns than HISAT2 (158
versus 2336 or 2765) and four times fewer than STAR
long. STAR long also misses the most introns (false
negative) by a wide margin while Magic-BLAST misses
the least.

Measuring the mapping accuracy by comparison to
the iRefSeq annotation taken as the truth (Fig. 7c) shows
that 97.2% of the 45,108 iRefSeq mRNAs are perfectly
mapped over their entire length by Magic-BLAST, 88.1%
by HISAT2 relaxed, 84.1% by HISAT2, and 80.6% by
STAR long (no clipped bases, substitutions or indels).
There are also some correct but partial alignments. An
important question is how often a program misaligns a
read, since this would create noise in downstream ana-
lyses. This error happens 196 times (0.43%) with Magic-
BLAST, but four to eight times more frequently in
HISAT?2 and STAR long. Most of the time, the misalign-
ments are subtle, affecting just one or a few exons, but
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in 12 cases for Magic-BLAST, 103 for HISAT?2 relaxed,
39 for HISAT2, and 100 for STAR long, the mRNA is
wildly misaligned at a genomic site not overlapping the
true position. Another functionally important case is the
proper identification of the first and last exons, which
reveal the location of promoters and 3" ends regulatory
regions. In Magic-BLAST, five alignments overlap the
truth but extend outside of the annotated gene, creating
a new or incorrect first or last exon, but this problem
happens much more frequently in HISAT2 (191 and 79
times) and in STAR long (58 times). In a gene recon-
struction project, this type of defect is hard to fix and
may lead to incorrectly intertwined neighboring genes.
We also performed some preliminary analysis of
Minimap2 and Subread with respect to the iRefSeq map-
ping accuracy (Additional file 1: Table S6). Subread was
only able to align 533 of the 45,108 reads. Minimap2
performed comparably to Magic-BLAST on this criteria.

The iRefSeq mRNAs should match the genome
exactly, and the number of mismatches shows how well
each aligner performs (Fig. 7d). The truth has no mis-
match. Magic-BLAST has 771 mismatches, STAR long
and HISAT2 relaxed 38018 and 66358 mismatches re-
spectively, and STAR long aligns many fewer bases. On

iRefSeq, Magic-BLAST alignments are superior to both
HISAT?2 and STAR long by all criteria.

We then assessed the accuracy of the alignments and
measured the mapping statistics using 100 + 100 base Illu-
mina-like simulated RNA-seq data from the Baruzzo
benchmark [6] (Fig. 6). The first two columns (6a and 6b)
use the built-in truth to measure the precision and recall of
the mapping: an alignment is counted as true if it overlaps
the benchmark position, even if it is partial; otherwise it is
counted as false (Additional file 1: section 6). In case of
multiply aligned reads (Fig. 6e), each alignment contributes.
The human T1 set should be the easiest. STAR does the
best, followed by HISAT, and then Magic-BLAST: their
precision is above 95% and recall above 99%. TopHat2 is
noticeably lower. For the human T2 set, STAR 2-pass does
the best, and HISAT2 and TopHat2 show some degrad-
ation. Magic-BLAST maintains a strong performance at the
T3 level, STAR shows a significant degradation of the recall,
and HISAT2 and TopHat2 perform very poorly. The
percentage of reads and bases aligned tells a similar story
(Fig. 6¢, d), with results degrading from T1 to T2 to T3, es-
pecially for HISAT2 and TopHat2 probably because the
rate of mismatches in the benchmark, 60 per kb in Human
T3 (Fig. 6f), exceeds the thresholds of these programs.
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The Plasmodium (malaria) benchmark sets should be
more challenging owing to the AT-rich strong bias in
the composition of the genome; also, the coverage is
100-fold deeper. The results are similar to the human
benchmark; the main difference is that STAR is very
slow and inefficient on malaria and produces huge
numbers of false positive introns (Additional file 1:
Figure S3) and Magic-BLAST now has the best align-
ment precision and recall for T1, T2 and T3 (Fig. 6).

Finally, we examine the ability of the programs to align
experimental RNA-seq reads generated with different
technologies. We do not have a ground truth for these
sets, but, as mentioned above, we may use alignment
statistics to judge quality. Figure 5d-e shows the percent-
age of reads and bases aligned for the experimental sets
and iRefSeq. Focusing on the percentage of bases
aligned, Magic-BLAST, HISAT2, and STAR all do rela-
tively well for Illumina 101 + 101 and Roche, with STAR
aligning the most reads on the short Illumina set and
Magic-BLAST aligning the most on the Roche set. For
longer Ilumina reads (250 + 250 and 300 + 300 bases),
Magic-BLAST aligns 50% more bases than STAR long or
STAR and 70% more than HISAT2. Magic-BLAST also
aligns the most bases on the other longer sets.

Additionally, we performed some preliminary tests
on Minimap2 and Subread shown in Additional file 1:
Table S7. We briefly discuss the matching and aligned
bases columns from that table here, concentrating on
Minimap2, Subread, and Magic-BLAST. For the iRef-
Seq sets, both Magic-BLAST and Minimap2 align
more than 99% of the bases, though Minimap2 does
slightly better. Subread is only able to align around
22% of the bases, performing worse than STAR long
or HISAT2 relaxed. In general, the percentage of
bases aligned by Subread is much lower than Minimap2
or Magic-BLAST. For PacBio (SRR5009494), Minimap2
aligns substantially more bases (96.5%) than Magic-
BLAST (73.5%). For the two hybrid PacBio runs
(SRR5189652 and SRR5189667), both Minimap2 and
Magic-BLAST can align 70-78% of the bases, though
Minimap2 aligns more in both cases. For the Illumina
300 +300 (SRR5437876) and 250 +250 (SRR5438850),
Magic-BLAST and Minimap2 both align around 74-77%
of the bases, with Magic-BLAST aligning slightly more. In
experiments with truncated versions of the Illumina
250 + 250 set (with lengths 150 + 150, 120 + 120, 100 +
100, 75 + 75, and 50 + 50), Magic-BLAST consistently out-
performs Minimap2. Minimap2 returned no results for
the 75 + 75 and 50 + 50 truncated sets. Minimap2 did not
produce proper SAM output for paired-reads.

It is also worthwhile to examine the percentages of
bases aligned for all aligners with the truncated Illumina
250 + 250 reads (Additional file 1: Table S7). Most
aligners were able to align around 95% of the shorter
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reads with Magic-BLAST and Minimap2 aligning rela-
tively more bases for the longer reads.

We can combine information about the number of
bases aligned with the mismatch rate. The mismatch
rate depends on the sample and sequencing quality, its
true level is unknown for experimental sets, but mis-
mapping by the aligner will tend to increase the appar-
ent rate. We assume that the lower the mismatch rate,
the better. In Fig. 9, we plot the number of matches
against the number of mismatches summed over all ‘pri-
mary alignments (maximum one alignment per read).
The most efficient aligner will align the largest number
of bases — hence be most to the right - yet limit its mis-
match rate to a minimum — hence be higher than other
aligners with a similar number of matching bases. We
indicate next to the aligner that maps the most bases,
and in the same color, the number of mismatches per
kilobase, which is our best estimate of the true level of
mismatches in the sample (Fig. 9 and Additional file 1:
Figure S7.1). Again, it is apparent that Magic-BLAST
(red) has the largest number of matching bases in all
cases where read length is larger than 101 bases. Add-
itionally, Magic-BLAST has either the lowest mismatch
rate, or clearly maps more bases. For Illumina 101 + 101,
STAR 2-pass (green) aligns 1% more matching bases,
but with a very high level of mismatches by Illumina
standards, 9.3 per kb in STAR to be compared to 5.7 in
Magic-BLAST. In general, the STAR family of programs
tends to align with a much higher level of mismatches
than Magic-BLAST, and as this is often coupled with a
lower number of matches, one may suspect more sub-
optimal mappings in STAR compared to Magic-BLAST.
TopHat2 (light blue), and to a lesser extent HISAT2
(yellow) allow fewer mismatches hence stay near the left
top corner.

Additional file 1: sections 6 and 7 provide more details
on all these aspects.

Run times

Figure 10 presents the CPU times and peak memory re-
quirements for the alignments. A priori, the comparison
seems straightforward, however, in presenting a fair as-
sessment, the quality of the results matters. The table is
colour coded by the percentage of matching bases rela-
tive to the best aligner for the dataset. For example,
TopHat2 fails on PacBio (red) and only marginally suc-
ceeds on Roche (beige, 30 to 50% of top). Similarly,
HISAT?2 nearly fails on PacBio and Malaria T3 (brown, 5
to 10% of top). In such conditions, the speed of the code
is less relevant. Looking at the colours in the table,
Magic-BLAST is most often in the top aligner category
(within 1% in 13 of 15 cases); it is less than 3% below
the top in the two remaining cases, human benchmark
T1 100 + 100 (- 1.2%), and T2 (- 1.1%). The second best
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Fig. 9 Number of matches (X-axis) versus mismatches (Y-Axis) for iRefSeq and seven experimental sets. The aligner with the highest number of
matching bases is most to the right and is the most sensitive. Preferably, it should be more to the top, as mis-mappings will increase the
mismatch rate and pull the aligner downwards. For each set, the number of mismatches per kilobase for the best aligner is shown in the color of
the aligner. It likely reflects the actual mismatch rate in the sample. The iRefSeq sequences match the genome exactly, so the truth (dark blue
square) is in the top right corner. The Magic-BLAST red square overlaps the truth. HISAT2 relaxed (grey) is the second most sensitive aligner
(second most to the right) but has over 60,000 mismatches. STAR long has less mismatches but is by far the least sensitive. In all runs with long
reads (3 PacBio, Roche and 2 long lllumina), Magic-BLAST has the most matching bases yet keeps a controlled mismatch rates. In lllumina 101 +
101, STAR long has slightly more matching bases but with a much higher mismatch rate. Notice that the PacBio brain and testes runs had been
edited by the submitters using Illumina runs, which explains their low mismatch rate

aligner overall is STAR long 2-pass, which, as we discov-
ered, can be used on any read length, but is slower on
short reads than STAR 2-pass and less efficient than
Magic-BLAST for long reads, from Illumina 250 + 250
paired ends to PacBio and iRefSeq. HISAT2 and
Tophat2 rarely achieve top category (3 cases for
HISAT2, none for HISAT2 relaxed, and none for
TopHat2).

The memory requirement is also important (Additional
file 1: Table S1.2). HISAT2 uses by far the least memory
(maximum 7 GB of memory in human, 0.1 GB in malaria)
while STAR is the most greedy (27 to 42 GB). As a result,
on an 8 core machines with 64 GB of RAM, one can run
eight human samples in parallel using HISAT2, but only
one using STAR long. Magic-BLAST uses slightly less mem-
ory than STAR on human but requires as much memory
when aligning on malaria than on human. TopHat2, like
HISAT?, generally uses little memory (less than 5 GB).

Consider now the speed of the programs and let us
limit the comparison to good aligners (>90% of the top
aligner, green and light green classes). On the bench-
mark human T1 or T2 reads, 100 + 100, STAR 2-pass or
STAR long (and HISAT2 for T1) are the top aligners

and the fastest codes, an order of magnitude faster than
Magic-BLAST in human and three times faster in mal-
aria. For the T3 cases which mimics cross-species map-
ping, Magic-BLAST is the only top aligner. Compared
to STAR 2-pass, it is 3 times slower on human T3 and
10 times faster in malaria T3. STAR on malaria T3 con-
sumed 24 times more CPU than on malaria T1 and 17
times more than on human T3. On the experimental
Mlumina 101 + 101, Magic-BLAST and STAR 2-pass are
top aligners, and STAR is 2.5 times faster than Magic-
BLAST. On datasets with longer reads, iRefSeq, PacBio,
and Illumina 250 or 300, Magic-BLAST is the only top
aligner, it is three to seven times slower than STAR long
and one to three times faster than HISAT2 relaxed.

Timings were performed on a 2.8 GHz Intel Xeon X5660
processor with 49 GB of RAM with a CentOS7 LINUX op-
erating system. The time was measured with the LINUX
time command by summing the reported user and system
times. Before each run, the database and index files were
cached in memory, to minimize influence of network and
disk access on run time. Additional file 1: section 1.1 dis-
cusses how to control the memory requirements when
treating very large datasets with Magic-BLAST.
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Average |[Size of
read dataset |Magic- HISAT2
Sample length (Mb) BLAST HISAT2 |relaxed
iRefSeq 3427 154.6 69 2
PacBio 1854 15.4 6 1
PacBio brain 1323 349.5 90
PacBio testes 1300 531.4 129
Roche 454 348 144.7 39 1
Illumina 300+300 300+300[ 9880.7 2204 127, 1935
Illumina 250+250 250+250| 11654.4 2253 86| 1322
Illumina 101+101 101+101| 21967.4 3015 288|- 233 746 1170 4475
Human T1 100+100 2000, 499 18- 20 52 83 573
Human T2 100+100 2000 497 24}- 26| 68 98 625
Human T3 100+100 2000, 469 29/- 44 114 150, 847
Malaria T1 100+100 2000 140 9- 29 82 83 154
Malaria T2 100+100 2000 135 14}- 95 285 149 211
Malaria T3 100+100 2000 107-- 644 1999 1274-
Peak RAM on human (GB) 3to28 |[5to7 5to033] 27to33| 29to35 35t042| 4to30
Peak RAM on malaria (GB) 23 to 24 0.1 - 3 5.5 - 2.9
% bases aligned and matching, relative to the best aligner for each dataset
I
100%- below 5% or
99% 90% 70% 50% 30% 10% 5% no results Not tested
Fig. 10 CPU (user plus system) time in minutes. The cells are color coded from dark green to red to show the percentage of matching bases
relative to the best aligner(s) (dark green). Time is not given when there were no results. A blank cell indicates that the search was not
performed. The last two rows show the range of peak memory usage for human and for malaria

Discussion

We have examined the performance of four aligners
(Magic-BLAST, HISAT2, STAR, and TopHat2) with a
wide variety of read lengths between 100 bases and
100 kilobases. First, we examined the performance of
all programs with several experimental test sets from
different platforms, with different lengths and charac-
teristics. Second, we presented a new benchmark de-
signed to test the ability of the programs to align
very long sequences that have no mismatches to the
genome. Finally, we looked at an artificial benchmark
of short 100+ 100 base Illumina type reads, for hu-
man as well as a 100-fold deeper malaria runs, with
three levels of mismatches. Owing to time constraints,
we did not try longer simulated read sets. The
aligners have different strengths and weaknesses,
which reflect in part the strategic choices of the au-
thors (e.g. favoring complete alignments or limiting
the number of mismatches per read) and the charac-
teristics of the implementations (e.g. second pass in-
tron validation). Additionally, we looked at a more

limited set of tests for two aligners, Minimap2 and
Subread, optimized for long reads.

Magic-BLAST works for all datasets, produces good
results on introns, long read alignments, and high-
levels of mismatches, and is stable. It tries to align all
reads, preferring a partial alignment to an unmapped
read. As a consequence, some short alignments may
be reported. For reads longer than 100 bases, it is a
winning strategy. It aligns more bases and with less
mismatches, and reliably discovers more introns. It is
more exhaustive and more precise.

As demonstrated by the iRefSeq set, only Magic-
BLAST, HISAT2 with non-default parameters, STAR
long and Minimap2 could align very long sequences,
even if there were no mismatches. Magic-BLAST,
HISAT?2 relaxed, and Minimap2 were able to align all
reads in the set while STAR long aligned 82%. In
terms of bases aligned, Magic-BLAST and Minimap2
aligned around 99% of the bases, while HISAT2 re-
laxed and STAR long aligned 94 and 82% respectively.
While we expect zero mismatches, Magic-BLAST had
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68 to 130 times less mismatches than HISAT2 relaxed
and STAR long.

The same general trends were found for the long ex-
perimental runs. For one PacBio run, Minimap2 aligned
96.5% of the bases while Magic-BLAST aligned 73.5%,
but Minimap2 and Magic-BLAST aligned comparable
numbers of bases (70-77%) for the two hybrid PacBio
runs and the long Illumina runs. The next best aligner
aligned 65 to 68% of the bases. Minimap2 did not per-
form as well for shorter reads and did not report which
alignments belonged to paired reads. Subread did not
perform well for the longest reads.

We truncated the Illumina 250 + 250 run to a variety
of shorter lengths (down to 50 bases) and found that
most aligners could align most of the bases in the trun-
cated runs, though Minimap2 was unable to align the 50
and 75 base reads at all.

Intron discovery posed different challenges for the
aligners. We looked at ROC curves, using the provided
results for the benchmark sets and the annotations on
the human genome as a guide for the experimental sets.
As discussed, the representation of introns in the RefSeq
annotation may be uneven. Certain tissue types may be
underrepresented, while highly expressed genes from
other tissues are certain to be included. This remark ex-
plains the need to measure the performance of an
aligner on real data, with all the messiness of biology,
but also on benchmark data with known results. It is
clear from the ROC curves that our cautious approach
to intron discovery pays dividends: Magic-BLAST is the
best intron finder in all datasets, with far fewer false pos-
itives produced for a given number of true positives. The
intron discovery F-score tells a similar story. Magic-
BLAST has the best results in all datasets and its results
are trustworthy, even at very low coverage. For the T1 or
T2 human Illumina type reads with few mismatches, the
difference in ROC curves between Magic-BLAST and
HISAT?2 was relatively small, but Magic-BLAST excelled
for more distant matches or the compositionally biased
malaria sets. For the T3 sets, Magic-BLAST had much
better intron-finding F-scores than the other programs,
consistent with its read mapping F-scores. For the iRef-
Seq, PacBio, Roche and long Illumina sequences, Magic-
BLAST produced the best introns results.

We also found that the intron discovery ROC curves for
STAR 2-pass were worse than STAR 1-pass for deep sets
such as the malaria sets or the Illumina 101 + 101, even
though STAR 2-pass is expected to improve upon STAR
1-pass. For the Illumina run (zoom in Additional file 1:
Figure S3.1), the 1-pass curve lies just below Magic-
BLAST, but the 2-pass curve is strongly shifted towards
the unannotated/false positive. HISAT2, which also uses a
2-pass technique, is twice further than STAR 2-pass to-
wards the noise. One could argue that most introns
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discovered by HISAT2 or STAR 2-pass in Illumina are real
and missing from the annotation. However, our design
contains seven controls where the true curve is vertical: in
iRefSeq and in the Baruzzo sets, especially malaria, there
is no doubt that the highly covered unannotated introns
of STAR and HISAT? are false positives, despite their high
coverage. Both STAR 2-pass and HISAT2 perform better
for the shallow T1 human set than the deep malaria T1.
The optimal F-scores (Additional file 1: Figure S4.1), cal-
culated for the different aligners and experiments, are
consistent with the ROC-curves in this regard. We have
shown by subsampling that in both aligners, the second
pass reinforces the false discoveries of the greedy first
pass, and this tendency is also visible in all PacBio runs
and Roche. Sadly, this type of noise cannot be erased, and
if used in a gene reconstruction project, as was done in
[20], those well supported but false positive introns will
generate alternative splice variants that do not exist in the
biological sample and will durably pollute reference gene
models.

In Fig. 10, we presented the run times for Magic-
BLAST, HISAT2, STAR and TopHat2 and their relative
performance on each dataset. For the longer sequences
(first seven rows), from Illumina 250 + 250 to iRefSeq,
Magic-BLAST was consistently in the best category. In
some cases, Magic-BLAST could be 3-7 times slower
than the next best aligner (STAR long or HISAT2 re-
laxed), but the quality of the results, both in terms of
the alignments and intron finding, made it the best
choice. For shorter sequences, such as Illumina 101 +
101 or the Baruzzo 100 base T1 and T2 benchmark sets,
most aligners performed relatively well. The other
aligners did not perform as well for the more distant T3
Baruzzo sets and STAR slowed down dramatically for
the T3 malaria case, becoming 10 times slower than
Magic-BLAST.

For the shorter Illumina reads or the 100 + 100 simu-
lated datasets with few mismatches (T1 or T2), other
programs produced alignments comparable to or better
than those of Magic-BLAST. Here, STAR 2-pass aligned
the largest number of bases and reads and maintained
an excellent alignment F-score. HISAT2 was memory ef-
ficient and did rather well on short reads with few mis-
matches. We also truncated the human T1 sequences to
50 bases and found that Magic-BLAST produced a lower
intron discovery F-score than the other aligners (Add-
itional file 1: Figure S4.3). For sequences that are 100
bases or shorter, similar to the target, most other
aligners were faster than Magic-BLAST and therefore a
reasonable choice even though Magic-BLAST would
also produce reasonable results for these shorter reads.

The Magic-BLAST procedure is different than the
other aligners (HISAT2, STAR, and TopHat2) in a num-
ber of ways. Magic-BLAST creates an in-memory index
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of reads and scans the target genome, where the target
genome can be in the form of a BLAST database,
FASTA file or NCBI accession. The other programs cre-
ate an index of the genome. It has a new alignment ex-
tension algorithm, based on a simple state machine,
where each alignment operation requires a specific num-
ber of matching bases to follow it in order to succeed.
The extensions stop quickly when read and target se-
quences diverge, which prevents extending an alignment
into an intron or an adapter. This procedure provides a
good tradeoff between the expensive dynamic-program-
ming-based optimal alignment methods in STAR and
TopHat2 and heuristic approach used in HISAT2, which
is fast but locked to specific read lengths and error
levels. Magic-BLAST does not penalize splice sites when
computing alignment scores, whereas HISAT2, STAR,
and TopHat2 use a splice penalty. Its alignment scoring
system is universal with respect to introns. This means
that Magic-BLAST produces the same score for either
the spliced alignment of a read to a genomic region or
the corresponding pseudogene or transcript, facilitating
score-by-score comparisons of these alignments. Magic-
BLAST also identifies introns based on high quality
alignments and the presence of known splice signals, in-
stead of using a splice site as an alignment operation
when computing an optimal alignment. This approach
can reduce the number of false positive introns caused
by misaligned read segments or too many errors in the
read.

Magic-BLAST produced reliable results for a wide var-
iety of sequence lengths, from 100 bases to 100 kilo-
bases, compositions, or error rates without changes to
the command-line whereas the standard options of other
programs are often suboptimal [6]. We also field-tested
Magic-BLAST in several hackathons, allowing us to
identify problems, hear user suggestions, and improve
usability.

It is finally instructive to examine how the standard
BLASTN algorithm handles spliced alignments. We search
an mRNA (u00001.1) against the human genome reference
assembly (GRCh38.p12) with BLASTN and find two prob-
lems. First, BLASTN identifies (apparently) strong matches
on chromosomes 2, 14, 17, 20, 21, and 22 as well as two un-
placed genomic scaffolds. A quick examination of the
BLASTN alignments shows that all the matches are proc-
essed pseudogenes, except for the one on chromosome 17.
Second, BLASTN does correctly identify the genomic exons
on chromosome 17 but gives an imprecise result as shown
in Fig. 11. A spliced aligner, like Magic-BLAST, aligns this
read only on chromosome 17 and correctly finds that the
first exon ends at 85 on the query, and the second exon
starts at 86 on the query. Additionally, BLASTN has no fa-
cility for recognizing paired reads so that it aligns and scores
each read independently.
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BLAST toolkit integration

Magic-BLAST takes full advantage of the BLAST
Toolkit. It uses a BLAST database for reference se-
quences that compresses sequences 4-to-1, saving disk
space and memory. The same database can also hold
reference sequence metadata such as taxonomy, length,
identifiers, and titles. The sequences and the metadata
can be retrieved with the blastdbcmd executable (see
https://www.ncbi.nlm.nih.gov/books/NBK279690/). Add-
itionally, the databases can also hold user-supplied
masking information for the reference sequences that
can be selectively enabled. Similar to the BLAST+ pro-
grams, one can use the -seqidlist option to map se-
quences only to selected reference sequences in a larger
BLAST database. There is a caveat though: not mapping
the reads competitively on the entire genome will gather
all the reads coming from the selected target, but also
some from its cognate genes, homologous sequences
and eventual pseudogenes.

For bioinformatics workflows, a significant advantage
of Magic-BLAST is the flexibility in obtaining the se-
quence reads and the ease of setting up the reference
set. It can map both RNA and DNA sequencing runs to
a reference genome or transcriptome. Reference se-
quences can be given as FASTA, BLAST database, or as
a list of NCBI accessions, but searches with a BLAST
database are the fastest. Magic-BLAST has been used in
several rapidly prototyped workflows (https://github.
com/NCBI-Hackathons). Examples provided on project
web pages show how users can download NCBI refer-
ence genomes, create BLAST databases and map SRA
experiments with Magic-BLAST. For instance, Magic-
BLAST was used for the fast estimation of the expres-
sion of a selected transcript in an SRA run (https://
github.com/NCBI-Hackathons/deSRA).  This  project
compared the expression of the transcripts in two NGS
sets by quickly creating a small BLAST database for se-
lected transcripts. Magic-BLAST then searched the two
NGS projects against the BLAST database.

Conclusion
We presented Magic-BLAST, a new tool for mapping
next generation RNA-seq runs with read length between
100 nucleotides and 100 kilobases against a genome or a
transcriptome. Its performance was compared with that
of similar popular programs: HISAT2, STAR, and
TopHat2. Magic-BLAST was the best intron finder on
all tested sets, real or simulated, and the good aligner for
all long reads, including Illumina 250 + 250 or 300 + 300,
Roche 454, PacBio and full-length mRNA sequences.
We also performed some preliminary comparisons with
Minimap2 and Subread.

Magic-BLAST integrates very well with other NCBI
tools and services and is convenient to use since it
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Homo sapiens chromosome 17, GRCh38.p12 Primary Assembly
Sequence ID: NC_000017.11 Length: 83257441 Number of Matches: 21

Range 2: 47181562 to 47181640 GenBank Graphics

Range 1: 47189145 to 47189224 GenBank Graphics ¥ Next Match

Score Expect Identities Gaps Strand
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Sbjct 47189224 GCTACAGGGGGGGCCTGAGGCACTGCAGAAAGTG! CTGAGCCTCGAGGATGACGGT 47189165
smemy o7 T
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Features: cell division cycle protein 27 homolog isoform 4
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Sbj ct 47181640 GGCTGCTATATGGCAAGCACTAAACCACTATGCTTACCGAGATGCGGTTTTCCTCGCA 47181581
R .

Sbjct 47181580 GAACGCCTTTATGCAGAAG 47181562

Fig. 11 The first two BLASTN alignments of U00001 on human chromosome 17. U00001 is the query and is shown on the top of each row. The
first exon really ends at base 85 of the mRNA, but BLASTN aligns the mRNA query to the first exon as well as an extra base in the intron. The
second alignment starts three bases before the beginning of the second exon. BLASTN is not splice aware and aligns beyond the splice site and

recognizes NCBI accessions for SRA runs, mRNA or
genomic sequences, and uses BLAST databases.

We are exploring ways to improve Magic-BLAST, such
as exporting lists of introns and support, improving
adapter detection, shortening the required exon length,
and identifying repeats. Additionally, we are examining
how to eliminate very short alignments, how to further
extend alignments for long reads, and improve the speed
of Magic-BLAST. We are also working closely with users
to address their needs.

Additional file

Additional file 1: The supplement consists of a document with seven
sections, successively 1- Bioinformatics (aligners and analysis programs),
2- datasets and length histograms, 3- introns discovered per coverage
(ROC curves), 4- introns precision and recall, 5- iRefSeq results, 6-
alignment mapping precision and recall measured by comparison to the
benchmark, 7- alignment statistics and quality control. Additionally, a
number of excel spread sheets with underlying data have been provided.

All comments are welcome. (ZIP 3341 kb)
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