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Abstract

experiments.

Background: Contemporary biological observations have revealed a large variety of mechanisms acting during the
expansion of a tumor. However, there are still many qualitative and quantitative aspects of the phenomenon that
remain largely unknown. In this context, mathematical and computational modeling appears as an invaluable tool
providing the means for conducting in silico experiments, which are cheaper and less tedious than real laboratory

Results: This paper aims at developing an extensible and computationally efficient framework for in silico modeling
of tumor growth in a 3-dimensional, inhomogeneous and time-varying chemical environment. The resulting model
consists of a set of mathematically derived and algorithmically defined operators, each one addressing the effects
of a particular biological mechanism on the state of the system. These operators may be extended or re-adjusted,
in case a different set of starting assumptions or a different simulation scenario needs to be considered.

Conclusion: In silico modeling provides an alternative means for testing hypotheses and simulating scenarios for
which exact biological knowledge remains elusive. However, finer tuning of pertinent methods presupposes
qualitative and quantitative enrichment of available biological evidence. Validation in a strict sense would further
require comprehensive, case-specific simulations and detailed comparisons with biomedical observations.
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Background

Introduction

Cancer is one of the main causes of mortality in the
world. Statistics estimate that about one fifth of the
population will suffer from cancer at some point in their
lives [1]. Cancer is a category of diseases, which share
several common features including sustained and uncon-
trolled cell proliferation, resistance to cell death, induc-
tion of angiogenesis, and activation of invasion and
metastasis mechanisms [2].

The exact mechanisms that initiate cancer develop-
ment remain largely unknown. However, it is widely ac-
cepted that cancer originates from cells which, due to
various gene mutations, escape the body’s natural mech-
anisms of controlling the balance between cell
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proliferation and cell death [3]. These cells create a
clump which grows faster than host cells. However, this
small tumor grows with a decreasing rate; as the tumor
grows, disorganization of the host vasculature and lim-
ited diffusion of nutrients to the center of the tumor
lead to the formation of an internal necrotic core [4, 5].
Cells in the outer rim of the tumor proliferate, while
cells in the interior die. For the tumor to grow large and
become malignant, it needs to establish its own blood
supply network, a process called angiogenesis. Angiogen-
esis results in a highly disorganized, tortuous and dilated
vasculature, [4, 6-8] which however, provides the nutri-
ents needed for further tumor growth. Evidently, during
both the avascular and vascular phase of tumor develop-
ment, the provision of nutrients to tumor cells through
the blood supply network is highly inhomogeneous and
time varying [4, 9-11]. In fact, many studies have shown
that tumors contain hypoxic and hypoglycemic regions,
particularly near the center, which affect local cell
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proliferation and death rates [4, 12, 13] and references
therein.

Contemporary medical and biological literature on the
subject shows that the vast majority of observations and
results are conclusive only up to a point. In fact, there
are still many qualitative and quantitative aspects of
tumor progression that remain largely unknown. In this
context, in silico modeling appears to be an invaluable
tool for simulating scenarios and testing hypotheses per-
taining to the aforementioned biological phenomena. To
this end, this work describes an extensible and computa-
tionally efficient framework for in silico modeling of
tumor growth in a 3-dimensional, inhomogeneous and
time-varying chemical environment.

Related literature

During the last few decades, mathematical and computa-
tional modeling of tumor growth has received a lot of at-
tention from the scientific community. However, as
noted in [14], there are no established first principle the-
ories in cell-tissue modeling, and this seems to be the
case even for today. Furthermore, there is still no gener-
ally agreed consensus on which modeling approach is
the most suitable for modeling tumor growth. Scientists
with different backgrounds have employed a variety of
methods to attack the problem, in an effort to provide
tools for conducting in silico experiments, which are sig-
nificantly cheaper and less tedious than real laboratory
experiments. Inspection of the literature shows that pa-
pers on the particular subject fall into two categories.
Papers in the first category aim at an at least partial val-
idation of a model against actual measurements. Such
works include [15-18]. Papers in the second category
aim at proposing new modeling methods or advancing
already existing ones. Our work belongs in the second
category.

In this section, we will review the main methods which
have been most commonly employed in the pertinent
literature.

Population models were probably among the first, sim-
plest and yet effective of these approaches and utilize
both deterministic and stochastic mathematics [19].
These models neglect tissue spatial structure and focus
on the dynamics of the involved cell populations. They
can address a variety of phenomena such as tumor
clonal heterogeneity [20-22], tumor-host cell interac-
tions [23-25] and response to therapy [26—29].

Despite the usefulness of population models, the
spatial structure of tumors and the tissues they grow in
appears to play an important role in tumor growth. To
address this, several models have been proposed, with
discrete entity, cell-based models forming a concrete
class of such approaches. In these models, each tumor
cell is treated as a discrete agent reacting to changes in
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its environment according to its own internal decision
mechanism. Partial differential equations are most usually
employed to model the background chemical environ-
ment. Most common approaches include lattice-based
[30-42], lattice-free [14, 43—45] and Potts models [46—
50]. Discrete agent models can address pertinent cellular,
biochemical and biomechanical phenomena in consider-
able detail. However, they are computationally expensive
and thus can simulate tumor sizes ranging in the order of
at most 10° cells, often considered in 2 dimensions.

Another popular approach is modeling the concentra-
tions of both cells and chemical substances as continu-
ous, spatially distributed quantities. Reaction-advection-
diffusion equations are most commonly employed to
model multicellular tumor spheroids [51-54]. Mainly for
(but not limited to) the case of gliomas, the reaction dif-
fusion equation is invoked to model the infiltration of
tumor cells in the surrounding healthy tissue [55-61].

In [62, 63] the authors simulated the temporal evolu-
tion of non-necrotic, 2- and 3- dimensional tumors
modeled as a continuum using a moving boundary.
Using level set methods, this approach was extended in
[64—68]. These papers demonstrate 2-dimensional simu-
lations which additionally considered angiogenesis, ne-
crosis and features of the tumor microenvironment.

A different approach, employing diffuse interface,
multiphase mixture models was taken in [69, 70]. In
these works, tissue is modeled as a multiphase mixture
of solid components (e.g. dead tumor cells, viable tumor
cells, host tissue) and water. Their temporal evolution is
derived by mass equations and thermodynamic constitu-
tive laws. Further work on this approach includes [71-
73] where the authors consider additional phenomena
like angiogenesis and biomechanical effects.

Miscellaneous approaches include the spatially aver-
aged cellular automata developed in [74-76] where
space is discretized in voxels, each one containing a
number of cells. The resulting cubic grid is treated as a
cellular automaton, with specified rules governing the
transition of cells through the cell cycle phases within
each voxel, the expansion of the tumor and the effects of
various treatment modalities. In [77, 78] a hybrid ap-
proach was taken; cell distributions were modeled as
continuous quantities except for the proliferating regions
at the tumor boundary, where cells were treated as
discrete entities. For a recent collection of articles on
multiscale cancer modelling we refer to [79].

Results

This paper develops a method for modeling 3-dimensional
tumor growth with an emphasis on macroscopic
variables. More specifically, we focus on variables quanti-
fying the spatial distribution of cells and molecules, the
provision of nutrients by the vascular system, tumor cell
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proliferation and invasion, the effects of tumor-induced
vascular remodeling and how they affect each other as
the tumor grows. Inspired by the aforementioned litera-
ture, our work aims at providing an additional useful
tool for in silico experimentation with the following
properties:

a) The resulting model is modular; that is, it consists
of several discrete mathematical/algorithmic
modules, each one addressing a particular biological
phenomenon. This allows keeping track of the
assumptions made for each module. Furthermore, it
facilitates model readjustment in case a new set of
hypotheses needs to be considered. As we will show
in the following sections, this can be done by
extending or even completely redesigning the
modules pertaining to the new hypotheses.

b) Although some of the models mentioned in the
literature can address phenomena even at the single
cell level, they are in general computationally
intensive. For some of them, simulation times in the
order of 10-24 h have been reported [39, 69]. This
imposes restrictions on the shape and size of the
simulated tissue; therefore, many models consider
only 2-dimensional tumors or spheroids with max-
imum size in the order of a few mm? However,
realistic tumors can grow up to several cm® in vol-
ume. Besides that, as demonstrated in [40], results
obtained from simulated small tissue areas generally
cannot be extrapolated to larger domains. This im-
plies that a balance between consideration of micro-
scopic details and the ability of simulating larger
regions of tissue must be kept. The methods devel-
oped in this paper aim at a resulting model that can
simulate large (in the order of cm®) areas of tissue
in 3 dimensions, with a spatial resolution in the
order of 1-2 mm?, i.e. the voxel size of contempor-
ary imaging techniques.

¢) Tumor growth consists in a complex interaction of
phenomena evolving in different time scales. From
the macroscopic point of view we adopt, the
shortest time scale concerns the diffusion of
molecules (seconds) and the largest one the overall
tumor expansion (months). It is definitely a
challenge to choose an appropriate simulation time
step, i.e. one that addresses all the involved
mechanisms in a sufficient amount of temporal
detail, while keeping the simulation computationally
tractable. Therefore, some models focus solely on
cell proliferation and neglect the local availability
and diffusion of nutrients [50, 54—61, 74—76].
Another common approach is to choose a time step
in the order of minutes or hours, and solve the
resulting (quasi-) steady state equations for the
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diffusion of nutrients [30-32, 41, 45, 52, 62—64, 66,
68, 70, 71, 73]. The methodology proposed in this
work aims at time steps in the order of the shortest
time scale, i.e. in the order of seconds.

d) We also aim for computational efficiency, meant in
a twofold sense.

e First, in conjunction with (b) and (c) above. The
simulations we present here consider tissue areas
in the order of 4.2 x 4.2 x 4.2 cm®, with a spatial
resolution of 2 mm? and a time step of 10's for a
time period of 3 months. The average simulation
time on a standard desktop computer is about
10-12 min. The model is implemented in
MATLAB; implementation in a precompiled
language like C is expected to significantly
decrease this time.

e Second, for scalability reasons, the resulting
model should be able to exploit multicore
computation. We will show in part VII of the
methods section that the collection of all model
variables at each time instant (i.e. the state
vector) essentially evolves in a dynamical systems
fashion. Given the current state, the next state
can be calculated by a sequential application of
algorithmically defined operators. Each one of
these operators is perfectly eligible for
parallelization, thereby enabling implementations
considering larger tissue areas with finer spatial
and temporal resolutions.

Discussion

In this paper we present a novel methodology to ap-
proach the still open problem of modeling tumor
growth. The presented modeling framework casts the
problem in the realm of spatially distributed, stochastic
dynamical systems by placing all pertinent spatial vari-
ables in a set of vectors, which collectively define the
state vector of the overall system. At each time instant, a
series of mathematically derived and algorithmically de-
fined operators, each one corresponding to a particular
biological mechanism, are applied to the state vector.
Within the proposed framework, each one of these oper-
ators may be redesigned to consider different sets of
starting assumptions, resulting generally in computation-
ally efficient implementations. This facilitates the design
of a large variety of hypothesis testing scenarios and cor-
responding in silico experiments, a process which, with
the current limited qualitative and quantitative know-
ledge on the subject, seems inevitable. Several use cases
are presented. Since we present simulations for a specific
model, we do not attempt more detailed comparisons
with biological data. Undoubtedly, there is still a lot of
ground to be covered. Enrichment of both biological
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measurements and pertinent qualitative observations is
necessary for further improvement of such methods. Fu-
ture work should include much more case-specific and
detailed comparisons between simulation results and
available biological evidence.

Conclusions

We have developed an extensible and computationally
efficient framework for modeling tumor growth in a
three-dimensional inhomogeneous and time-varying
chemical environment, which constitutes an in silico al-
ternative for testing different hypotheses and simulation
scenarios. The model has been applied in the context of
several use cases in order to visualize various aspects of
tumour expansion and a multivariate analysis of the ef-
fects of model parameters on the number of live cancer
cells of a growing tumor has been performed. Since
many aspects of the pertinent biological mechanisms re-
main still largely unknown, finer tuning and validation
of the simulation system in a strict sense presupposes
qualitative and quantitative enrichment of the available
biological evidence.

Methods

The rest of the paper is organized as follows. In section I
we present the main ideas used to model the diffusion of
particles. In section II, we discuss boundary conditions.
Sections III and IV specialize the ideas of the previous
sections in the cases of chemical and cellular diffusion.
Section V discusses tumor cell metabolism and con-
sumption of nutrients, and how they affect proliferation
and necrosis. In section VI we model the macroscopic
effects of tumor-induced vascular remodeling. Section
VII presents the complete model architecture. In section
VIII we present some use cases, including a multivariate
study on the effects of various model parameters on the
number of viable tumor cells after a period of free
growth.

I. Modeling the diffusion of particles

The diffusion of particles is a natural phenomenon
present in a vast variety of models regarding tumor
growth. To model such phenomena, the diffusion partial
differential equation is most commonly invoked:

dc

Py V- (DV¢) (1)
where c(x, ) is the concentration of the species under
consideration (cells or molecules) at time ¢ and location
x, and D the diffusion tensor of the species in the sur-
rounding material. This equation has been widely used
to model cell diffusion, particularly in the case of glio-
blastoma, as well as diffusion of molecules in tissue. In
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the case of isotropic diffusion D is a constant scalar, and
equation (1) reduces to
dc

— = DA,c 2
ot * )
where A, is the Laplace operator in R3. In [80] we elabo-
rated on the observation that (2) is the Fokker-Planck
equation corresponding to the stochastic differential
equation

dx; = /2D - dB, (3)

where B, denotes the standard Brownian motion in &>.
Given the initial position x, of a particle, the distribution
of the random variable x;, (i.e. the solution of (3) at time
t) provides ¢ (x,t), i.e. the probability distribution over
all possible locations of this particle at time £. The initial
position of the particle may also be given in terms of a
probability distribution ¢ («, 0). In this case, the probabil-
ity distribution ¢ («,¢) can be found by either of two
equivalent ways: By solving (2) as a partial differential
equation with initial value ¢ (%, 0) to find the timely evo-
lution of this distribution, or equivalently, by solving the
stochastic differential equation (3) with initial distribu-
tion c¢(«, 0) to find the probability distribution of the ran-
dom variable x,.

To consider the collective movement of a population
of particles, that is, molecules or cells located within a
specified anatomic region, this notion of distribution can
be utilized as follows: integration of c(x, ) over a region
A of R? provides the fraction of the total particle popula-
tion that is located in A at time ¢.

To model anisotropic diffusion, i.e. the preferential
stochastic movement of particles along locally specific
unit directions, the notion of the local diffusion ellipsoid
(i.e. the diffusion tensor) is needed [59]. This notion cor-
responds to defining an ellipsoid in each point of the 3-
dimensional space under consideration. Mathematically,
this is made explicit by defining, in each point, a 3 x 3
positive definite symmetric matrix:

Dxx ny sz
D= ny Dyy Dyz
sz D yz Dzz

This matrix can be decomposed in the following form:

A0 O
D=(u; ug us]| 0 Ay O |[n w2 u3]T
0 0 A3

where A;, A5, A3 are the eigenvalues of D and u; u,, us
are the corresponding orthonormal eigenvectors. We
note that D is positive definite, hence A3, 1, and A3 are
positive numbers. The eigenvalues and eigenvectors of D
define an ellipsoid whose principal axes lie on the
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directions of u;, u, and uz. The principal axes have
lengths 2v/1;, 24/1; and 2+/A3, respectively. The diffu-
sion ellipsoid is depicted in Fig. 1.

The anisotropic diffusion of particles as dictated by
the (local) diffusion ellipsoid can be modelled as follows;
let p(x, x,, dt) denote the probability of a particle starting
at x, to be at x after time dt. Then

p(x,x,,dt) = 3 ! 4 (—%(x—x,,)TLIL;IUT(x—x(,))
(2m) /2 det(UuL,UT) /2
(4)
Where
La O 0 ha 1
Ly=] 0 ha 0 |[L}'=]|0 iz © U=[w uy us]
0 0 /13(1 20 1
0 Taa

Note that the right-hand side of (4) is essentially an
anisotropic Gaussian in R>. The parameter «a is a positive
scalar, specific to the particles under consideration
which in our case, will be tumor cells. This parameter
rescales the eigenvalues, thereby rescaling conformally
the axes of the diffusion ellipsoid. This reflects the fact
that different kinds of particles may tend to move along
the axes of same ellipsoid, but may do so with different
velocities. Of note, since we are considering a local diffu-
sion ellipsoid, in the most general case both eigenvalues
and eigenvectors are functions of the position x. After
some mathematical elaborations detailed in [80], equa-
tion (4) leads us to model anisotropic diffusion by

AV 0.’/11 0 0
Xepar—xy = U 0 v ady 0 b
0 0 a/lg

where b is a 3-dimensional, normally distributed random
vector with zero mean and covariance matrix the iden-
tity matrix times dz:

Fig. 1 The diffusion ellipsoid
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1 b'b
b~ ———————— exp| ———
o2 @l p( 2dt>

_ 1 exp(_an)
o 3 3
()2 (ar)’/2 2dt
or equivalently, by the stochastic differential equation

dx, = \/a - U(x)L' 2 (x)dB, (5)

For a given initial distribution c¢(x,0) the solution of
(5) provides the probability distribution of the random
variable &, which can be interpreted exactly as described
for the isotropic case. In the case of brain tumors, mea-
surements concerning the diffusion tensor are obtained
through the Diffusion Tensor Imaging (DTI) technique
[56, 59].

In our approach, equations (3) and (5) will constitute
the theoretical basis for modelling chemical and cellular
diffusion.

Let us now assume that the diffusion of the particles
(molecules or cells) under consideration takes place in a
cubic lattice consisting of Nx N x N geometrical cells
(voxels). Each voxel is a cube of dimensions As x As x As.
We fix a temporal discretization step equal to Az. Voxels
in that cubic lattice can be classified into 4 categories,
depending on the number of their neighboring voxels
within the lattice. Voxels in the interior of the lattice
have 26 neighbors. Voxels at the outer faces of the lat-
tice have 17 neighbors. Voxels at the outer edges of the
lattice have 11 neighbors and voxels at the outer vertices
of the lattice have 7 neighbors. Furthermore, for each
particular voxel, its neighboring voxels fall into 3 cat-
egories: the ones that share a common face, the ones
that share a common edge and the ones that share a
common vertex with the particular voxel.

For the remaining part of this section, let us adopt the
assumption that, at each discrete time point, the distri-
bution of the particles under consideration within each
voxel is uniform. This is somewhat oversimplifying, and
we will further elaborate on this assumption in the fol-
lowing sections, where we specifically consider chemical
or cellular diffusion. For the moment, this assumption
will render the presentation of the main ideas more
straightforward.

Under the uniformity assumption, at any discrete time
point ¢ and for any pair of voxels A and B (not necessar-
ily different) we can calculate the probability for a par-
ticle to lie within B at time ¢ + Az, given that its position
at time ¢ is a uniformly distributed (u.d.) random vari-
able supported in A. Numerical integration of equations
(3) and (5) for a uniform initial distribution provides the
means for a Monte Carlo calculation of this probability,
which we will denote by Pr(A — B).
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Let A denote a voxel not lying on the boundary of the
lattice nor being adjacent to it, and B;, i=1, ..., 26 its
neighbors. A key step to our discretization process is to
choose the voxels’ edge length As and the time step At
such that, from one time instant to the next one, the
particles lying in each voxel diffuse at most into its
neighbors. Mathematically, this means that As and Ar
should be chosen such that

Pr(A—A) + 3" Pr(A—B) =1 (6)

If (6) holds then, for a spatially constant, isotropic dif-
fusion like the one implied in (3), for each voxel A not
lying on the boundary of the lattice nor being adjacent
to it, these probabilities consist of essentially 4 numbers:
one for the particles that are in A and will remain in A
(i.e. Pr(A— A)) and three more, one for each of the
common face, common edge and common vertice
neighbors of A. Furthermore, for any two voxels A and
B it holds that Pr(A — B) = Pr(B— A). For a spatially
varying, anisotropic diffusion like the one implied in (5),
these symmetries do not hold; the respective probabil-
ities should be precalculated independently for any par-
ticular voxel.

Thus, under the uniformity assumption, for any voxel
A not lying on the boundary of the lattice nor being ad-
jacent to it, knowing the particle population of the voxel
Q4(A) and its neighbors Q(B;), i=1, ..., 26 at a time in-
stant ¢, allows us to calculate the population within A at
the next time instant ¢ + Az by

Qt+AT(A) = Pr(A—A)Q,(A)
+ 3 Pr(B—A)Q(B) )

Apparently, this equation does not hold as such when
the voxel under consideration lies on the boundary of
the lattice. We will deal with these voxels (and their
neighbors) in detail in the next section, where we discuss
boundary conditions.

In what follows, it will come in handy to represent
particle quantities within the voxels in vector form. Let
us make this representation explicit by the following
construction. Let the coordinates of each voxel in the
lattice be given by a triad of integers, (i,j, k) where i, j,
k=1, ..., N. We define a mapping L: N’ — N as follows:
L(i,j, k) =i + (j — 1)N + (k- 1)N?. This mapping is a bijec-
tion from the set of triads (i,/, k), i, j, k=1, ..., N to the
integers from 1 to N°. Let Q(i,}, k) denote the quantity
of particles in the respective voxel. We define the
vector g of N° elements by q(L(i,}, k)) = Q(i, j, k). By
this construction, the elements of the 3d matrix Q are
explicitly mapped to the elements of the one-dimensional
vector 4.
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Il. Dirichlet and Neumann boundary conditions

Knowing the particle population within each voxel of
the lattice at a time instant, equation (7) allows us
to calculate the population within each voxel at the
next time instant for all the voxels, except the ones
on the boundary of the lattice and their neighbors.
Each of the boundary voxels has less than 26 neigh-
bors. In fact, each of these voxels would have 26
neighbors in an infinite lattice, but not all of them
are included in a bounded, N x N x N lattice. Unless
we specify boundary conditions, the calculation in
(7) cannot be carried out neither for those voxels
and consequently, nor their neighbors. There are
two types of boundary conditions that can be im-
posed in a classical diffusion problem, those of the
Dirichlet type and those of the Neumann type. In
this work, we consider two specific types of such
boundary conditions, namely, the time-independent
Dirichlet and the homogeneous Neumann boundary
conditions.

Time-independent Dirichlet boundary conditions
express the requirement that on the boundary of the
region under consideration, the quantity of interest
does not change with time. In the framework pre-
sented here, this is expressed mathematically by the
following: If a voxel A lies on the boundary of the
lattice, to calculate its population at the next time in-
stant, instead of equation (7) simply apply Q;, 4,(A)=
Q(A). Additionally, if a voxel is adjacent to the
boundary, simply apply (7) by using the respective
probabilities as they are calculated from the numerical
integration of (3) or (5).

We note that in the case of tumor growth, some au-
thors have also considered time-dependent, periodic
Dirichlet boundary conditions [40]. This is also feasible
in the proposed framework, and can be implemented as
follows. For any boundary voxel A, at any time instant ¢,
apply Qg A)=g;, where g, is the desired periodic
function.

Homogeneous Neumann boundary conditions ex-
press the requirement that the flux of the quantity of
interest across the boundary of the region under con-
sideration should be zero, i.e. the boundary is non-
permeable. In terms of calculus this is expressed by
the requirement, at any time instant and at any point
of the boundary, the projection of the gradient of the
quantity on the outward normal of the boundary at
that point to be zero. In the stochastics literature, a
non-permeable boundary within which a random mo-
tion takes place is often referred to as a reflecting
boundary [81]. In the framework presented here, this
is expressed mathematically as follows.

As previously mentioned, any voxel A lying on the
boundary has 17, 11 or 7 neighbor voxels which we
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denote by B;, where i is an integer from 1 up to 17, 11
or 7, depending on the position of the voxel. For each
such voxel A, and its neighbors B; we calculate the prob-
abilities Pr(A — B;) as described in the previous section,
but only for the voxels that are contained in the lattice.
Specifically, if A lies on the boundary, we calculate the
probabilities Pr(A — A), Pr(A — B;) where i is an integer
from 1 up to 17, 11 or 7. We then normalize these prob-
abilities to sum to one. By this calculation we acquire
the probabilities we need, in order to apply equation (7)
for any voxel in the lattice. Using these normalized prob-
abilities when applying equation (7) for either boundary
voxels, or their neighbors, ensures that every particle
lying in a voxel on the boundary, will remain within the
lattice, that is, within the region of interest, thereby cap-
turing the notion of a reflecting boundary.

In our case, the region of interest is a cube. It is
apparent that these methods of imposing Dirichlet or
Neumann boundary conditions apply to more com-
plex shapes, as long as space is properly discretized
[82]. The case of brain tumors, where the skull natur-
ally imposes a reflecting boundary to the diffusion of
tumor cells is an example where this approach may
be useful.

lll. Diffusion of glucose and oxygen

In this section we will use the ideas presented previ-
ously to develop a model for the diffusion of chemical
molecules (glucose or oxygen) in the region of inter-
est, that is, the cubic lattice of dimensions N x N x N.
For the moment, we will assume that the diffusion is
isotropic and that the distribution of molecules within
each voxel is uniform. Let ¢, denote the N°x 1 vector
whose entries are the quantities of the molecule
under consideration within each voxel at time t. As-
suming time-independent Dirichlet boundary condi-
tions, equation (7) implies that if we know ¢, we can
calculate ¢;, 5, by performing a linear calculation.
This means that there is a N°>x N® square matrix T
such that q;, 4, =Tq, .

We remind the reader that due to the symmetries
holding for isotropic diffusion, for each voxel A not on
the boundary, we can apply equation (7) by using only
four numbers. We denote these numbers by Pr(4A — A),
Pr(F— A) (for common face neighbors), Pr(E — A) (for
common edge neighbors), and Pr(V— A) (for common
vertex neighbors). These numbers can be precalculated
by numerically integrating (3) for a uniform initial distri-
bution, where in each case, D is taken to be the diffusion
coefficient of the respective molecule. We subsequently
use these values and the mapping L defined in section I
to construct the matrix 7 according to the following
algorithm:
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Algorithm 1
T = N3 x N3 zero matrix
for each triad (i,j,k) i,j,k=1,..,N
if the voxel with coordinates (i, j, k) is on the boundary
T(L(®,j, k), L(i,j, k) =1 // Dirichlet boundary condition
else
for di = -1,0,1 dj = —-1,01dk =-1,0,1
if  |di| +|dj| + |dk| =0
T(L(i,j, k), L(i,j, k) = Pr(A — A)
elseif |di| + |dj| + |dk| = 1 //lcommon face neighbor
T(L(, j, k), L(i + di, j + dj, k + dk)) = Pr(F - A)
elseif |di| + |dj| + |dk| = 2 //common edge neighbor
T(L(i,j, k), L(i + di,j + dj, k + dk)) = Pr(E - A)
elseif |di| + |dj| + |dk| = 3 //common vertex neighbor
T(L(i,j, k), L(i + di,j + dj, k + dk)) = Pr(V - A)
end
end
end
end

//initialization

Note that, in view of the mapping L, each row i of T
corresponds to a specific voxel A, i.e. to a specific pos-
ition i of the vector g;. 4, The nonzero entries of the
particular row correspond to the probabilities Pr(A — A)
and Pr(B; — A), where B; are the neighbors of A, as indi-
cated by (7). Furthermore, each column j of T corre-
sponds to a specific voxel B, i.e. to a specific position j of
the vector g;. The nonzero entries of the particular col-
umn correspond to the probabilities Pr(B— B) and
Pr(B — A;), where A; are the neighbors of B. Probabil-
ities of the type Pr(A — A) lie in the main diagonal of T.

In our model, we will use two such matrices, one for glu-
cose and one for oxygen, denoted by Ty, T, respectively. Each
of the respective N° x 1 vectors will be denoted by g, o,.

The matrix constructed by Algorithm 1 has an inter-
esting property. For sufficiently large N and due to the
assumption implied in equation (6), it is a sparse matrix:
in each row, at most 27 elements are nonzero. This pro-
vides a significant relief of the computational burden of
the entire model.

Note that all arguments in this section, resulting in the
simple model ¢, , 4, = Tq, for molecular diffusion, rely on
the uniformity assumption as it was stated in section 1.

We mentioned that this assumption is somewhat over-
simplifying. Indeed, in vivo measurements in tumor
areas show that chemical gradients can be spatially non-
uniform and time varying. Reportedly, oxygen profiles
can vary locally up to 50% within an hourly time frame
[83]. The highly irregular tumor vasculature may further
complicate things and pertinent biological mechanisms
remain largely unknown [6, 7]. Inherent stochasticity is
also expected to play a role. Consequently, detailed
quantification of the inflicted macroscopic effects such
as time evolution of chemical fields seems currently in-
feasible. Therefore, we broaden our perspective as
follows.

First, we note that our calculations showed that for
both oxygen and glucose, it holds that Pr(A — A)>
Pr(F — A)> Pr(E — A)> Pr(V— A) and that each of these
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numbers is one order of magnitude greater than the next
one. Therefore, we will use the precalculated numbers
Pr(A — A), Pr(F— A), Pr(E — A), and Pr(V— A) only as
estimates for the (relative) orders of magnitude of these
probabilities. To take the largely stochastic, collective ef-
fect of the aforementioned complex mechanisms and
uncertainties into consideration, we will choose a time
step At in the order of seconds (i.e. the time scale of
chemical diffusion) and introduce a certain degree of
randomness to the matrices Ty and T, Specifically,
every some time steps, each column of these matrices
corresponding to a voxel in the interior or in the vicinity
of the tumor will be randomly perturbed, such that its
nonzero entries retain their relative orders of magnitude
and their sum remains one. We provide the respective
implementation details in the appendix.

Introducing stochasticity implies that for each simula-
tion scenario, several simulations will be required. None-
theless, the results of these multiple simulations will
enable a more comprehensive consideration of possible
outcomes.

IV. Diffusion of tumor cells
To model the diffusion of cancer cells, we make the fol-
lowing assumptions:

i. There are four types of cells within each voxel; live
normal (host) cells, necrotic normal cells, live
tumor cells and necrotic tumor cells.

ii. For any voxel, there is an average cell population
capacity (tumor +normal) which we denote by M
and a maximum cell population capacity which we
denote by M,,,,..

ili. As the tumor grows, live normal cells become
either dislocated by invading tumor cells or
necrotic.

iv. When the sum of living cancer, necrotic cancer and
necrotic host cells in a voxel exceeds M,,,,,, living
cancer cells in excess of M,,,,, invade neighboring
voxels according to equation (5).

v. Both tumor and normal necrotic cells remain in the
voxel they became necrotic, that is, they do not
“invade” neighboring voxels.

Our model will be based on equations (5) and (7).
Since we assume that in each voxel, only tumor cells
in excess of M,,,, diffuse to neighboring voxels, the
probability Pr(A — A) is not needed. For each voxel A
and its neighbors B; we calculate the probabilities
Pr(A — B;) and normalize them to sum to 1. We then
place these probabilities in the respective rows and
columns of a matrix T, similar to the matrices Ty
and T, of the previous section. Of note, the main di-
agonal of the matrix 7, consists of zeros, and not of

Page 8 of 36

probabilities Pr(A — A), as is the case with T, and
T,. Apparently, the matrix 7, is also sparse, lightening
thereby the computational burden. Furthermore, by
construction, the matrix 7, implies homogeneous
Neumann boundary conditions for living tumor cells.

The tumor cell diffusion algorithm has a quite simple
implementation. Let /;, nc;, nn, denote the N3 x 1 vectors
whose entries are respectively the live tumor, necrotic
tumor and necrotic normal cells within each voxel at
time ¢ (we use this notation throughout the text, please
see also the first paragraphs of the following section).
Let w, denote the sum of these vectors. Let M,,,. denote
the N° x 1 vector whose entries are all M,,,.. We also
adopt the following notation: for a vector x and a number
U, the vector (x = y) is the binary vector with elements set
to 1 if the corresponding element of x is >y and O other-
wise. Finally, for any two vectors x and y let x. =y denote
their element-wise product. The resulting algorithm boils
down to a simple vector algebraic representation:

Algorithm 2

So = Myqy — ncy — nn,

s1 = (s = 0).x s

Sy = ((Wt > Mgy )-* 51) + ((Wt < Mypgyx )-* lt)
livar = S2 + Te * (I — s2)

Vector s; contains, for each voxel, the total number of
live (tumor and normal) cells that the particular voxel
can hold additional to its necrotic cells. In view of as-
sumptions (ii), (iv) and (v), s, entries are numbers of live
cancer cells which already exist in each voxel that can
also remain in the respective voxel. In view of assump-
tions (iii) and (iv), the vector (I, -s,) contains the num-
bers of live tumor cells that lie within each respective
voxel in excess of M,,,,, and therefore invade neighbor-
ing voxels by dislocating live normal cells. The popula-
tions of live tumor cells at the next time instant, i.e.
after their diffusion to neighboring voxels is given by the
sum of s, and T, = (I, — $5).

Of note, the entire approach again relies on the uni-
formity assumption, but this time for tumor cells. Ap-
parently, this is a simple, and definitely not the only way
to model the invasion of tumor cells. For the simulations
presented below, we will rely on it. More sophisticated
approaches could introduce randomness in the matrix
T, exactly as described in section III; probabilities in 7.
could be dynamically readjusted by taking into account
nutrient quantities within each voxel, thereby introdu-
cing some at least rough, phenomenological notion of
chemotaxis in the model. However, our aim for the mo-
ment is to keep the presentation of the main ideas as
simple as possible. We will provide some suggestions for
further elaboration and implementation of this module
in the appendix.



Antonopoulos et al. BMC Bioinformatics (2019) 20:442

V. Proliferation/necrosis according to cell metabolism and
local availability of oxygen and glucose

In this section, we will study the proliferation of cells within
a voxel A. For a time interval equal to the time step Az, we
will neglect diffusion phenomena, and study the prolifera-
tion and necrosis of cells within A as they are dictated by
the cells’ consumption needs and the local availability of
oxygen and glucose. Although special effort has been made
in order for the proposed approach to be founded on a
consensus of biological evidence, it is definitely not the only
one possible; somewhat different assumptions may lead to
different approaches. In section VII, where we present the
complete model architecture, it will become apparent that
the approach adopted here can be completely readjusted,
in order to consider different assumptions.

For any voxel A, we will need the following variables:

- 1,(A): number of living cancer cells within A at time ¢.

- ncA): number of necrotic cancer cells within A at
time ¢.

- nn,(A): number of necrotic normal cells within A at
time ¢.

The number of live normal cells within A at time ¢ is
given by s(M - [(A) — nc,(A) - nn (A)) where s(-) is the
known function s(x) =x if x>0 and 0 if x < 0.

- 04A): Oxygen quantity (pmols) within A at time t.
Initial value 0y(A) is the same for every voxel, denoted
by 0g. 0g is calculated such that the initial concentration
of oxygen in each voxel equals the concentration of dis-
solved oxygen in the blood (see section VI).

- gl(A): Glucose quantity (pmols) within A at time ¢. .
Initial value gly(A) is the same for every voxel, denoted
by gl,- gl,, is calculated such that the initial concentration
of glucose in each voxel equals the concentration of glu-
cose in the blood (see section VI).

- 0_b,(A): Oxygen supply rate (pmols/sec) by the local
vascular network within A during the previous time
interval £ — At — ¢

- gl_b,(A): Glucose supply rate (pmols/sec) by the local
vascular network within A during the previous time
interval £ — At — ¢

The variables o_b/(A) and gl_b«(A) quantify macroscopic-
ally the role of the local vascular network in the provision
of oxygen and glucose within each voxel. We will assume
that their values remain constant during each time interval
t— t+ Ar. In fact, these variables are too subject to a dy-
namic time evolution due to the effects of local vascular re-
modeling induced by the tumor. We will discuss this
matter in detail in the next section. In this section, we will
focus on the time interval £ — ¢ + A7, and aim at calculating
the aforementioned cell populations and chemical quan-
tities at the next time instant, i.e. £+ A7. We note that the
adopted notation implies that o_b,, 4(A), gl_b,, 4,(A) de-
note the oxygen and glucose supply rates during the time
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interval under consideration, i.e. £— ¢+ Ar. In this sec-
tion, these quantities are assumed to be (pre)calculated
by the algorithm described in the next section.

We will further need the following parameters:

- M: average cell population capacity for each voxel.

- K,: oxygen consumption rate (pmols/sec) of a normal
cell.

- Ky glucose consumption rate (pmols/sec) of a nor-
mal cell. Typically, for a normal cell acquiring its energy
mainly through combustion of glucose, K, is 4 to 6 times
larger than K, [36, 37, 84].

- Kyrp: ATP consumption rate (pmols/sec) of a nor-
mal cell.

- A: The product AK,7p defines the ATP consumption
rate of an actively proliferating tumor cell. Since prolifer-
ating tumor cells consume much more resources than
normal cells, A should be >1 [39, 46, 85]. For quiescent
tumor cells, A is assumed to be 1.

- cc: Cell cycle duration (sec).

- G4 Maximum mitosis rate that tumor cells can
achieve, when they are not limited by local oxygen and
glucose levels. (mitoses/cell/ time step in secs).

Of note, concerning the initial values of o_b,(A) and
gl_by(A) i.e. 0_by(A) and gl_by(A), we will make the fol-
lowing assumption. For every voxel at time t=0 the
provision of oxygen and glucose by the local vascular
network and their consumption by normal cells should
balance each other, such that the respective background
concentrations remain constant, i.e. 0_by(A) = MK, and
gl_bo(A) = MKy [69, 71].

A normal cell's ATP consumption is dictated by K,
Ky and the stoichiometry of clean combustion and
glycolysis:

Gl + 60, — 36 ATP

(1 / 6)1«, + K,—6K,

GI—-2 ATP
1 1
1<g,—( / 6)1<n—>21<g,—( / 3)1(0

Thus, knowing K, K allows us to explicitly determine
Karp= (17 / 5) Kot 2Ky

The stoichiometry of the clean combustion of glucose
requires that the glucose/oxygen uptake ratio is 1:6. It is
well documented that for cancer cells, due to increased
utilization of glycolysis, this is not the case [2]. Experimen-
tal measurements and estimations report that the ratio of
glucose /oxygen consumption in tumors can vary up to 1:
1 or even more [14, 46, 86—88]. Compared to clean com-
bustion, glycolysis is 18 times less efficient in ATP pro-
duction and cancer cells compensate this deficiency by
upregulating glucose transporters, thereby increasing
glucose import in the cytoplasm. Considerably increased
glucose uptake and utilization has been reported in a

clean combustion :

glycolysis :
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variety of tumors by the use of positron emission tomog-
raphy (PET) [2]. It has been also reported that local levels
of oxygen and glucose have an effect on this ratio [86, 89].
Quantitative details of these phenomena are still unclear.
The possibility that a single cell may employ both glycoly-
sis and normal aerobic metabolism is not excluded. Quali-
tatively it seems evident that when oxygen falls below a
certain threshold, cells tend to switch to a glycolytic
phenotype. However, this observation does not tell the
whole story, since cancer cells switch to glycolysis even
when oxygen levels are abundant [90, 91].

To take account of this evidence from a modeling per-
spective, we take the following approach. We assume
that tumor cells within a voxel may obtain the energy
they need (i.e. AK47p pmols/sec) by acquiring a fraction
S of it by glycolysis and the remaining fraction by com-
bustion. This fraction will depend on the local availabil-
ity of oxygen and glucose, plus, we will introduce a
degree of randomness in it. Two additional, case-specific
parameters are the minimum and maximum values of
this fraction, which we respectively denote by f3; and j,.
Apparently, 0< ;<< S <1

We have assumed that a quiescent tumor cell needs
K,rp pmols ATP/sec to stay alive. From this amount
and according to the stoichiometry, SKs7p pmols/sec
should come from glycolysis of BK,47p/2 pmols/sec glu-
cose. The remaining (1 - 8)K47p pmols/sec should come
from combustion of (1-B)K47p/36 pmols/sec glucose
with (1 — f)K47p/6 pmols/sec oxygen. Thus, to stay alive,
a quiescent tumor cell needs

178+ 1
36

1-
'T/))K 4rp pmol oxygen/sec.

Karp pmol glucose/sec and

(8)

On the other hand, an actively proliferating tumor cell
needs AK,7p pmols ATP/sec. From this amount, SAK,7p
pmols/sec should come from glycolysis of BAK,7p/2
pmols/sec glucose. The remaining (1 — f)AK,47p pmols/
sec should come from combustion of (1 - S)AK,7p/36
pmols/sec glucose with (1 - S)AK47p/6 pmols/sec oxy-
gen. Thus, an actively proliferating tumor cell needs

17 1
. /)3)2_ AK 47p pmol glucose/sec and
9)
1-
‘?ﬁ/‘J(ATp pmol oxygen/sec.

With the above evidence and assumptions in mind, we
devise the following algorithm, which will be executed
for each voxel A at each time step. The involved calcula-
tions require a detailed analysis, consisting of several
steps and subcases.

Step 1. In this step, we will calculate the following
quantities:

Page 10 of 36

O,,: available oxygen for tumor cells in A during Ar.

Gl,,: available glucose for tumor cells in A during Az.

nn, . 2.(A): number of necrotic normal cells in A at the
next time instant.

First, we calculate the amount of oxygen and glucose
that will be available for tumor cells, by subtracting the
consumption of normal cells:

O1 = 0:(A) + 0.1 4:(A) Ar—s(M—1(A)-nc:(A)-nn,(A)) KA
Gl = glz(A) +gl-bryar(A) Ar—s(M~1,(A)-nc, (A)—””t(A))KglAT

Case 1.1: O; 20 and G/; 20. In this case, oxygen and
glucose suffice for all normal cells in A to stay alive,
hence,

Oav = Ol
Gl,, = Gl
g (A) = nng(A)

Case 1.2: O; <0 or GI; <0. This means that either oxy-
gen and/or glucose do not suffice for all normal cells in
A to stay alive. We calculate

N, = 0e(A)+0_briar (A)AT gl (A)+gl_beiar(A)AT

KAt J KaAt
many living normal cells in A will stay alive.

N, = s(M~l;(A)-nc;(A)-nn;(A))-N,, i.e. how many
normal cells in A will become necrotic.

In this case, the aforementioned quantities O,,, Gl,,
and nn, , 4(A) are

min( ), ie. how

Om/ = Ot(A) + O_bt+AT(A)AT—NnKDAT
Glyy = gl,(A) + gl_bia: (A) AT-N,KgAr
nngar(A) = nn(A) + N,

Step 2. In this step, by taking into account the results
of Step 1, we will study the proliferation/necrosis of
tumor cells. Eventually, we will calculate the quantities
Ly adA), nceypA), 0p12:(A), gliy a-(A). The quantity
nny . 2,(A) has been calculated in step 1.

Case 2.1: If [,(A) =0, i.e. there are no living tumor cells
in the voxel, the calculation is simple:

livar(A) = 1, (A)
ncpyar(A) = ney(A)
or+ar(A) = Oy
8liyar(A) = Glay

Case 2.2. If [,(A) > 0 the calculation is more elaborate.
Let a be the mitosis rate of tumor cells per time step Ar,
i.e. the fraction of tumor cells within A that will divide
during A7 and cc the duration of their cell cycle. The
duration of their cell cycle in time steps is cc/A7. Assum-
ing a uniform distribution of proliferating cells at all
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time steps of the cell cycle, we estimate a total number

al,(A)(cc/At) of actively proliferating tumor cells. Some

stochasticity may be introduced in this estimate, but to

keep the presentation simple we will not go into details.
In view of (8) and (9), we define

0. = l,(A)l%‘ﬁKATpAT + (A=1)aly(A)(cc/AT) l%fxmm

178 +1
36

178 +1

Glc = lt (A) 36

KarpAt + (A-1)al,(A)(cc/AT)

KyrpAT

The quantities O, and GI, are the amounts of oxygen
and glucose that will be needed by tumor cells in A in
order to proliferate with mitosis rate a. Those quantities
should be limited respectively by O,, and Gl,,, calcu-
lated from Step 1. Mathematically, this is expressed by
the inequalities O, < O,, and Gl < Gl,,. These inequal-
ities require a closer examination and can be equiva-
lently written in the form

Ou—l:(A) %[))KATPAT
as< 13 (10)
(A—l)ﬂlt(A) (CC/AT) TI(ATPAT

1 1
Glav—lt(A) 7ﬁ6+ 1<ATPAT
as< (11)
A-Daly(A) (ce/a7) P ki rpar

The inequalities (10) and (11) involve the -up to now
undetermined- variables a and . They reflect the fact
that, for the tumor cells in A to proliferate with mitosis
rate 4, a number f3 € [31, B2] should exist, such that a >0,
and (10), (11) are satisfied.

Investigation of (10): For each Be[f;, 2] we define
the function

1-
Om,—lt (A) TﬁI(ATpAT

a,(B) =
A-1)1:(A)(cc/AT) %KATPAT

For each given 8 € [1, -], we observe the following:

10a) If a,(B) = 0: a,(B) is the maximum mitosis rate
that the tumor cells can achieve for the specific 5, sub-
ject solely to the limitations imposed by the available
oxygen in A.

10b) If a,(B) <0, it is implied that Og,—l(A)E
KurpAr < 0. This means that for the specific 5, no
positive mitosis rate can be achieved. In fact, avail-
able oxygen does not suffice for all tumor cells in A
to stay alive.

Furthermore:

10c) B =1 means that tumor cells can acquire the en-
ergy they need relying solely on glycolysis. Note that
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B — 1 implies a,(8) — + oo, reflecting the fact that in this
case, the proliferation of tumor cells is not limited by
the available oxygen.

10d) For each €0, 1), a,(f) is an increasing function
of .

10e) If a S € [B1, B2] such that a,(S) = 0 exists, it should
also satisfy

60,,

B2l o K agmar P

Since a,(p) is increasing, 5 is actually the lowest num-

ber for which a,(f) > 0. Hence,

e If f > f3,, we have that for each 5 € [S;, 5,] it holds
that a,(B) < 0. According to (10b), this means that
the available oxygen in A does not allow
proliferation and that not all tumor cells in A can
stay alive. Since f is the percentage with which
tumor cells rely on glycolysis, in this case, for any
proliferation to happen, the available oxygen
imposes greater reliance on glycolysis than the
maximum, i.e. 5.

o If B<p,, we have that for each e[ max(8,f3,),5,] it
holds that a,(8) >0 -

Investigation of (11): For each Be([f;, 2] we define
the function

Glav_lt(A) 17/)) s !

K A TpA T

17+ 1
36

ag(p) =
(A-1)l:(A)(cc/AT)

KATPAT

For each given S €[S, -], we observe the following:

11a) If ay(B) 20: ay(p) is the maximum mitosis rate
that the tumor cells can achieve for the specific f3, sub-
ject solely to the limitations imposed by the available
glucose in A.

11b) If ayu(B) <0, it is implied that Gl —I,(A)7E"
K4mpAt < 0. This means that for the specific 5, no posi-
tive mitosis rate can be achieved. In fact, available glu-
cose does not suffice for all tumor cells in A to stay
alive.

Furthermore,

11c) For each S €0,1], ay(p) is a decreasing function
of .
11d) If a B € [B1, 2] such that ay(B) 2 0 exists, it should
also satisfy

1 36Gl,, .
B= 17 <lt(A)KATpAT_ ) =

Since ag(p) is decreasing, B is actually the highest
number for which a(f) > 0. Hence,
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o Iff< B, then for each € [B, 5] it holds that
ag(pB) < 0. According to (11b), this means that the
available glucose in A does not allow proliferation
and that not all tumor cells in A can stay alive. Since
B is the percentage with which tumor cells rely on
glycolysis, in this case, for any proliferation to
happen, the available glucose imposes lower reliance
on glycolysis than the minimum, ie. §;.

e If B>, we have that for each Be[B,, min(B,B,)] it
holds that a,(8) >0

We are now ready to complete Step 2:

Case 2.2.1. If B>pB, or B<fB, or min(Bp,)
< max(f,f), the_analysis above implies that for each
Belpy /3;], the available resources in A (oxygen and/or
glucose) do not suffice for all tumor cells in A to stay alive.
We proceed as follows:

We pick a random ﬁ €[B1, Bal-

If ﬁ::l, the number of tumor cells that will remain
alive is given by

Ouw Glay

1-B (178 +1
— | KspA KrpA
( 6 ) ATPAT < 36 ) ATPAT

If =1, the number of tumor cells that will remain
alive is given by

N, = min

Gl 2Gl 4y

NC = — =
17 1 KarmpAtT
< /)J + >I(ATPAT

36

In any case, the number of tumor cells that will be-
come necrotic is given by

]\Tc - lt (A)—NC
Hence, for the next time instant we have
lt+Ar (A) =N c

nee 4 (A) = ney(A) + N

1B
0t+Ar(A) = Oy -N, (Tﬂ> KyrpAT

178+ 1
36

Case 2.2.2. If B<p,, B>, and min(B,,)> max(B,f,),
i.e. the complement of the condition in Case 2.2.1
holds, according to the preceding analysis we have
that for each pe[ max(B,f3,), min(B,p,)] there exists a

ngAT (A) = Glav_Nc( )]<ATPAT
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nonnegative mitosis rate a such that the inequalities
0.<0,, and Gl < Gl,, are satisfied. Again, we pick a

random B in [ max(B, ), min(B, 8,)].

If [?::1, the corresponding mitosis rate is

1-B 178 +1
Ou—1i(A) —BKA AT Glay—1:(A) Bt KarpAt
a= min 6 6 — S Amax

O-1)l(A) (ce/ A7) %KW,AJ (-1)1(A) (ce/ A7) 17/’;; Ly

If [~§ = 1, the corresponding mitosis rate is

17+ 1
36 _
17+ 1

Glm,—lt(A) I<ATPAT

? amﬂx

(A-1)L,(A)(cc/AT) KarpAt

1
Glav— Elt(A)I(ATPAT
1 aammc
5 (A-1)I;(A)(cc/AT)K arpAT

= min

Hence, for the next time instant we have
livar(A) = 1,(A) + al,(A)
nepar(A) = ne(A)
0rrar(A) = Oav—lt(A)%/}KATPAT—(A—l)Zzlt(A)
x (cc/AT) %/))I<ATPAT
178+ 1

36
17, 1
ﬂ + KATPAT

glt+Ar(A) = Glm,—lt(A) KATPAT—(A—I)ZZI,;(A)

X (cc/Art)

This concludes our analysis. To summarize, tumor
cells may be able to rely on glycolysis within certain
limits, i.e. 5; and f3,, but these limits may become nar-
rower by the available quantities of glucose and oxygen;
in that case, the ability of tumor cells to proliferate with
high mitosis rates is impaired. Mathematically, this is
reflected by the decreased probability to attain high mi-
tosis rates, or even the inability of tumor cells to stay
alive.

We note that the calculation of O,, and G/, in Step 1
implies that normal cells are the first to fulfill their
needs by the existing resources. This is certainly not ac-
curate; again, a more realistic approach would be to
introduce some randomness in the percentage of re-
sources that would be available for normal versus tumor
cells. A random number roughly proportional to the ra-
tio normal/tumor cells in the voxel may be a reasonable
choice.



Antonopoulos et al. BMC Bioinformatics (2019) 20:442

VI. The effects of tumor-induced vascular remodeling

In this section, we will propose a method to quantify the
effects of tumor-induced vascular remodeling, in terms
of how it affects the local provision of oxygen and glu-
cose by the vascular system. The quantification we
propose is based on the basic physiology of the vascular
network plus additional biological observations regard-
ing how it is affected by tumor growth.

Ideally, the vascular network works like a buffer of nu-
trients, in our case, oxygen and glucose. If, at a specific
time instant, the concentration of a substance dissolved
in the blood is higher than the respective concentration
in the surrounding tissue, the substance diffuses through
the vessel walls towards the tissue until the two concen-
trations are equal, and vice versa. The speed of this dif-
fusion process as well as the capability of the local
vascular network to quickly balance these concentrations
is limited by the vessel density and total surface of the
blood vessel walls in the region under consideration
[92].

In our model, we will assume that the concentrations
of dissolved oxygen and glucose in the blood are con-
stant. In a voxel A of specific volume, these concentra-
tions correspond to quantities of oxygen and glucose
within A, which we denote by 9, and gl,,. If at a specific
time ¢, the quantity of say, oxygen in A i.e. 0(A) is lower
(higher) than og, this implies that the concentration of
oxygen in A is lower (higher) than the concentration of
dissolved oxygen in the blood. Hence, the provision of
oxygen in A i.e. o_b,(A) should increase (decrease) to
level this imbalance. We model this increase (decrease)
during each time step by a random fraction of the quan-
tity ((09-0,(A) )/At). The respective quantity (( gl,~gl,(
A))/Ar) is used for glucose. This results in the follow-
ing equations:

0-biipr(A) = 0.b(A) + r1((09-0:(A) ) /A7)

& briar(A) = gl by (A) + o (( glo-gl,(A) ) /A7)

where 0_b;, 4,(A), gl_b;, ,(A) are the oxygen and glu-
cose supply rates (pmols/sec) by the local vascular net-
work within A during the time interval t— ¢+ Az. The
quantities o_b,(A) and gl_b,(A) are the respective supply
rates during the previous time interval, ie. t-Ar— ¢
The numbers r; and r, are random numbers uniformly
distributed in the interval [0, 1].

We note that o_b,(A) and gl_b(A) may take negative
values. This simply reflects the fact that when the re-
spective substance concentration in A is higher than the
one in the blood and the consumption of the substance
within A is low enough, diffusion may happen towards
the vessels, decreasing thereby the substance quantity in
the surrounding tissue.
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It is clear, however, that o_b,(A) and gl_b,(A) cannot
grow unboundedly neither towards positive nor towards
negative values. As previously mentioned, they are lim-
ited by the local vessel density and total surface of the
blood vessel walls in A. A detailed quantitative analysis
addressing the pertinent mechanisms would render the
model extremely complex. We therefore opt for a more
macroscopic approach.

In [93] a maximum value of oxygen consumption for
normal mammalian cells is given. From this, an upper
bound for the absolute value of o_b,(A) can be deduced.
Assuming that in the tissue under consideration, normal
cell metabolism does not change and utilizes oxygen and
glucose in a steady ratio, we can deduce a similar bound
for the absolute value of gl_b,(A). We denote these two
constant numbers by o_b_max and gl_b_max. In normal
tissue, these numbers remain constant and are the same
for each voxel. In our case, however, these bounds may
be different for each voxel and are subject to a temporal
evolution, inflicted by the tumor-induced vessel regres-
sion and angiogenesis. To address this in our model, we
introduce the N® x 1 vectors o_b_max, and gl_b_max,.
Consistent with our previous notation, o_b_max;(A) and
gl_b_max,(A) denote the aforementioned bounds for the
voxel A during the time interval t- A7 — ¢ For each
voxel A, the initial values of o_b_max,(A) and gl_b_
max,(A) at time ¢ = 0 are respectively the constants o_b_
max and gl_b_max. Essentially, o_b_max,(A) and gl_b_
max,(A) quantify the capacity of the vascular network
within A to provide/absorb molecules to/from the sur-
rounding tissue, leveling thereby the concentration im-
balances between blood and tissue. A disorganized and
regressed vascular network in A implies lower values for
o_b_max,(A) and gl_b_max,(A), as is usually the case in
the interior of a tumor. A robust, dense vascular net-
work in A implies higher values for o_b_max,(A) and gl_
b_max,(A), as is the case for the outer proliferating rim
of a tumor.

In what follows, we will use the temporal evolution of
these quantities in each voxel to quantify the effects of
tumor-induced vascular remodeling on the local
provision/absorption of nutrients. We start from some
basic biological background.

It is well documented, that as tumors grow, they co-
opt and affect the pre-existing host vasculature by a
number of ways, for which the collective term tumor-
induced vascular remodeling is commonly used. Tumor-
induced vascular remodeling consists in several mecha-
nisms, including vessel occlusion, disintegration, and
new vessel creation. The latter is most commonly re-
ferred as tumor-induced angiogenesis, and results in a
tortuous, highly irregular vascular network [4, 6, 7].

In [94, 95] the authors observed that cancer cells ini-
tially co-opt host existing vasculature and grow as well
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vascularized tumors for several days, up to 2mm in
diameter. No evidence of angiogenesis is observed
during this period. Progressively, blood vessels near
the tumor core start to regress and/or become oc-
cluded, while tumor periphery displays robust angio-
genesis. Later work in [96, 97] demonstrated that
this pattern repeats itself during later stages of
tumor growth; once the tumor grows over a well
vascularized region, local vasculature starts to re-
gress. At the same time, tumor periphery displays
high angiogenic activity, thereby further promoting
tumor growth.

The exact biological mechanisms pertaining to these
phenomena are not well understood. Generally, they are
attributed to a variety of complex molecular and bio-
mechanical interactions between existing vasculature
and tumor cells. It is evident, however, that tumor-
induced vascular remodeling affects the local supply of
nutrients in tumors and this is where we are going to
focus. Taking into consideration the aforementioned evi-
dence, we will try to quantify the spatiotemporal evolu-
tion of local oxygen and glucose provision, i.e. the
vectors o_b, , gl_b, , o_b_max, and gl_b_max,

Since tumor-induced vascular remodeling occurs ei-
ther in the interior or in the close vicinity of a tumor,
at each time step we consider only the voxels that
have already been reached by the tumor, that is,
voxels for which [,(A) + nc{A) >0. Let A denote such
a voxel.

According to the aforementioned evidence, vessel re-
gression should decrease o_b_max,(A) and gl_b_max,(A).
As the occupation of A by tumor cells (live or necrotic)
increases, the vessel regression rate should also increase,
and hence, o_b_max,(A) and gl_b_max,(A) should de-
crease at a higher rate.

On the other hand, angiogenesis should increase
o_b_max,(A) and gl_b_max,(A). A lower occupation
of A by live tumor, necrotic tumor and necrotic
normal cells, implies a higher angiogenesis rate and hence,
a higher rate by which o_b_max,(A) and gl_b_max,(A)
increase.

Furthermore, tumor angiogenesis is most commonly
associated with nutrient deficit, i.e. when oxygen or glu-
cose quantities fall below certain thresholds known re-
spectively as hypoxia and hypoglycemia thresholds.
Typical values for these thresholds are 0.30* 0y and 0.50*
gl [5, 37, 98]. We introduce an additional Nx1 logical
vector, denoted by sw, with the following use: at the end
of each time step, for each voxel A, the quantities 0,(A)
and gl,(A) are compared with their respective thresholds;
if either of them is below its threshold and the voxel
contains live tumor cells, sw,(A) is set to 1, indicating
that angiogenesis is on for this voxel. Otherwise, sw,(A)
is set to 0.
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Let v, and v, denote the maximum rates by which
the capacity of the vascular network in A to provide/
absorb molecules to/from the surrounding tissue (as
modeled by o_b_max,(A) and gl_b_max,(A)) de-
creases or increases, respectively. The orders of mag-
nitude of the corresponding half- and doubling times
can be deduced from [94, 95] and are in the order
of days.

According to the aforementioned biological evidence
and assumptions, a general way to quantify the timely
evolution of the macroscopic variables under consider-
ation is

O_b_maxt+AT (A) =

(1=, (L(A), nei(A))ve + swi(A) £ (1(A), nei(A),
nny(A))ve) - o_b_max;(A)

gl_b_max; 5, (A) =

(1=f,(L:(A), ner(A))vr + swi(A)f (L (A), nei(A),
nng(A))v,) - gl_b_max;(A)

where f,(l,(A), nc,(A)) and f.(I,(A), nc(A), nn,(A)) are
functions taking values in [0,1]. Function f(/,(A),
ncA)) is increasing in both of its arguments. Func-
tion f,({,(A), nc,(A), nn,(A)) is decreasing in all three of
its arguments.

These deterministic equations constitute only a
rough approximation of the involved dynamics. For a
more robust approach, we introduce randomness in
them in the following way. Since v, and v, are the
maximum rates of vessel regression/expansion, at
each time step, and for each voxel A which has been
reached by the tumor, we pick two random numbers
rs and 7, in the interval [0, 1] and introduce the more
general, stochastic equations

O_b_maxt+Ar (A) =

(1-f,(le(A), nee(A))rsvy + swi(A) [ (I(A), nce(A),
nng(A))rav,) - o_b_max;(A)

gl_b_maxt+AT (A) =

(1=f,(le(A), ne,(A))ravy + swi(A)f (L (A),
nei(A), nny(A))rave) - gl_b_max,(A)

It remains to choose the functions f, and f,. Since the
monotonicity of these functions is determined, it re-
mains to choose their shape, i.e. linear, convex or con-
cave. For the simulations presented below, we have
chosen functions of linear shape. Putting everything to-
gether, to calculate o_b_max,, 4,(A) and gl_b_max,,
2:(A) we will use the equations
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O_b_maxt+AT(A) =
(1- I,(A) —jﬁ—V[nct(A) v,
M-I, (A)-nc,(A)-nn,(A)

+ swi(A) A

-o_b_max;(A)

TaVe)

gl_b_max; z,(A) =

_l(A) + ne(A) rav
M r
M-I, (A)-nc,(A)-nny(A)
M

1

+ swi(A)
-gl_b_max,(A)

ave)

We note that algorithmically, before each such cal-
culation, a sanity check should be performed for the
Ii(A)+nc(A) and M-1,(A)-nc,(A)-nn,(A)

M M

each of the quantities
ensuring that their values stay respectively below 1
and above 0.

To summarize, to model the effects of tumor-induced
vascular remodeling, we introduced two additional vec-
tors, that is, two additional variables for each voxel A,
namely o_b_max/A) and gl_b_max,(A). These variables
quantify the maximum values the local provision/ab-
sorption of oxygen and glucose may attain, i.e. the max-
imum absolute values of o_b,(A) and gl_b,(A) reflecting
thereby the capacity of the local vascular network to
provide/absorb molecules to/from the surrounding tis-
sue. The spatiotemporal evolution of these variables re-
flects the effects of vessel regression and angiogenesis
induced by the tumor. The resulting algorithm applied
at each time step for each voxel A follows:

Note: For any positive number g and xe R we will
make use of the function

—H,x < {4
X, ~USX<U

Hx > p

B, (x) =

Case 1: If [(A) = nc(A) =0 that is, the tumor has not
yet reached A. In this case, the maximum absolute
values of oxygen and glucose provision/absorption dur-
ing the time step £ — ¢ + At simply equal the ones during
the previous time step, t — At — &

0-b_ max, 4 (A) = 0-b_ max,(A)
gl.b_max, 4,(A) = gl -b_ max,(A)

We pick two random numbers ry, r,, uniformly dis-
tributed in [0,1]. The actual provision/absorption for
oxygen and glucose by the vascular system during time
interval £t — ¢ + At is calculated by
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o—bt+AT(A) = Ba,b, muxHA,(A)( O—bt(A) + 7'1(( %_ol(A) )/AT) )
gl_beir(A) = Byt by mav,,ar(a) ( 81-be(A) + 12 (( glo-gl,(A) ) /A7) )

Case 2: If [(A)+nc (A)>0 that is, the tumor has
reached A. We first pick two random numbers 7y, ry,
uniformly distributed in [0, 1] and calculate

0.bipr(A) = 0.b(A) + r1((09-0:(A) )/AT)

gl biiar(A) = gl-by(A) + ra((glo-gl,(A) ) /A7)

Again, we pick two random numbers r3, r4 uniformly
distributed in [0, 1]. The upper bounds for the absolute
values of o_b, , o,(A) and gl_b, , 4,(A) are given by

o_b_max; ;. (A) =

(1- I(A) + ne(A) rav
M r

M-I, (A)-nc,(A)-nny(A)

+ swy(A) jvi

-o_b_max,(A)
gl_b_maxt+AT (A) =

FaVe)

(1- I(A) + nc (A)
7]\/[ r3vy
M-I, (A)-nc,(A)-nn,(A)

M

+ swi(A)
- gl_b_max,(A)

FaVe)

The provision/absorption for oxygen and glucose by
the vascular system during time interval t — ¢ + A7 is cal-
culated by

O—bt+AT(A) = Bo_h_ max;;(A) ( O—bt+AT(A) )

gl—bt+AT(A) = Bgl_b_ maxea.(A) (gl—bt+Ar(A) )

VII. The complete model architecture. Modularity and
adjustability
The model we propose can be seen as a discrete time
dynamical system. The state of the system consists of
the nine N x 1 vectors [, nc,, nn,, o, gl, 0 b, gl b, o b_
max, and gl_b_max,

In sections I-VI we have defined the following operators.

o The operator defined in section VI, which we
denote by F,,. Applying this operator to the state
vector consists in applying the algorithm described
in the last section for each voxel. This operator
calculates the supply rate of oxygen and glucose
during the time interval ¢t — ¢ + A7 from the
respective values during the previous time interval, ¢
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- At — ¢, as it is dictated by the effects of tumor-
induced vascular remodeling.

e The operator defined algorithmically in section V,
which we denote by F,,,. Applying operator F,, to
the state vector, consists in checking all cases
described in section V and performing the respective
calculations for each voxel in the lattice. This
operator calculates the proliferation/necrosis of cells
in each voxel, as they are dictated by the
voxels” oxygen and glucose levels and supply rates.

e The operators defined in section III, which we
denote by F,, F,; . Applying each of these operators
to the state vector consists in multiplying the
matrices (7, or Ty;) with the respective vector o, or
gl,, thereby calculating how chemical fields change
due to diffusion.

e The operator defined algorithmically in section IV,
which we denote by F.. Applying the operator F, to
the state vector consists in executing Algorithm 2,
calculating thereby how cancer cell populations
within each voxel change due to cell diffusion.

Knowledge of the state vector at time ¢ allows us to
calculate the state vector at time ¢+ Az, by applying the
algorithm depicted in Fig. 2.

Phenomena pertaining to tumor-induced vascular re-
modeling, nutrient consumption, cell proliferation and
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cellular or molecular diffusion are modeled by separate
operators (i.e. algorithmic modules), applied sequentially
to the state vector. Within the proposed methodology,
the algorithmic modules corresponding to operators F,,,
F,. are completely re-adjustable. This facilitates the
simulation of scenarios based on different hypotheses
concerning the effects of tumor-induced vascular re-
modeling on nutrient supply rates, cell proliferation, ne-
crosis and metabolism of chemical species. A variety of
choices is also available for re-adjusting F.; we provide
some suggestions in the appendix. Introduction of add-
itional diffusion operators like F, and F, and extension
of operators F,, and F,, enables the consideration of
additional chemical species such as lactate, growth fac-
tors and chemotherapeutic agents. Gradual removal of
necrotic cells from the tumor mass may (and should)
also be considered. Introduction of additional cellular
species is also feasible, by considering additional cellular
diffusion operators and appropriate readjustment of F,,.

Of note, there is a large disparity between the time
scales of chemical and cellular diffusion, with the latter
evolving much more slowly. The diffusion coefficients of
oxygen and glucose are in the order of 107> cm?/sec
while the respective coefficient for tumor cells is in the
order of 107® cm?/sec. Furthermore, tumor cell diffusion
in neighboring voxels is also affected by their prolifera-
tion. This allows applying F, to the state vector every

le le
ne, ne;
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O¢ Ot
gle  |E, gl Eon
o_b, 0_biyar
gl b, 9l brsar
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Fig. 2 The complete model architecture
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several time steps x; for the simulations presented in the
next section, we used a time step Ar= 10s and x= 30
(i.e. 5 mins).

The methodology we described in the previous sec-
tions essentially casts the problem of modeling tumor
growth in the realm of spatially distributed, stochastic
dynamical systems. The state of the system evolves ac-
cording to a law of the form x; . ; = flxy) where the tran-
sition xx — g, 1 is stochastic and x has an additional
spatial structure.

The model was implemented by making extensive use
of MATLAB’s vectorized approach to coding. We note
that apart from the operators F,, Fy and F,, this vector-
ized implementation is feasible also for the operators F,,
and F,,. However, to keep the code readable, in this
work we have opted to implement F,. and F,, using
loops. Although in the present work we did not exploit
multicore computation, it is clear that each of the afore-
mentioned algorithmic operators is eligible for parallel
implementation. Furthermore, vectorized implementa-
tion of the resulting algorithmic modules opens the road
for exploiting the capabilities of modern tools like Py-
thon’s Numba compiler or TensorFlow for computation
on GPUs. This will facilitate simulations over larger tis-
sue areas with finer spatial and temporal resolutions,
plus, importantly, a comparative analysis of the
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numerical error induced by the discretization parame-
ters. We note that such an analysis has not been per-
formed vyet, since it requires the consideration of more
and smaller values for As and Az. This, however, in-
creases significantly the computational burden of each
simulation, and requires a completely different imple-
mentation of the model in terms of programming. It is
therefore left for future work.

VIII. Simulations and use cases

In this section, we use the model developed in the previ-
ous sections for a theoretical study of tumor growth,
consisting of two parts. First, we use the model to
visualize various aspects of tumor expansion. The result-
ing images are qualitatively compared with pertinent
biological observations. We then perform a multivariate
analysis regarding the effects of a subset of model pa-
rameters on the number of live cancer cells after a cer-
tain period of free growth.

The proposed model can be used for visualizing vari-
ous phenomena encountered during the expansion of a
tumor. Figures 3, 4, 5, 6,7, 8, 9, 10, 11 and 12, which we
explain below, depict a series of such examples. These
images are snapshots of a simulation with the following
parameter values (see also sections about metabolism
and tumor-induced vascular remodeling above).

20

20

Fig. 3 Visualization of tumor growth at the 70th day

18 20
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20

Fig. 4 Visualization of tumor growth at the 90th day

Fig. 5 Visualization of tumor growth at the 70th day, vertical section
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Fig. 6 Visualization of tumor growth at the 90th day, vertical section
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Fig. 7 Oxygen levels per voxel at the 70th day. Darker color implies lower oxygen
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Fig. 8 Oxygen levels per voxel at the 90th day. Darker color implies lower oxygen

Fig. 9 Glucose levels per voxel at the 70th day. Darker color implies lower glucose
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Fig. 10 Glucose levels per voxel at the 90th day. Darker color implies lower glucose

Fig. 11 Capacity of the vascular network per voxel to provide/absorb nutrients to/from the surrounding tissue, 70th day

.
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Fig. 12 Capacity of the vascular network per voxel to provide/absorb nutrients to/from the surrounding tissue, 90th day

Maximum mitosis rate for cancer cells a,,,, was set such
that their minimum doubling time is 5 days. Parameter
lambda is set 1 = 10.

Maximum vasculature regression rate (v,) was set such
that the corresponding minimum halftime time is 5 days.
Maximum vasculature expansion rate (v,) was set such
that the corresponding minimum doubling time is 1 day.
A spatially constant, synthetic diffusion tensor was used
for the diffusion of live cancer cells, defined by the
orthonormal vectors

() (o) (o 5, )

The corresponding quantities +/ali, valy and valds
appearing in equation (5) were calculated from the equa-

tion 2D = al derived in [80]. The value range for the cell
diffusion coefficient D was chosen according to the esti-
mations made in [99]. The quantity v/al; was set much
higher than \/al, and v/al3, such that the diffusion of
live cancer cells occurs primarily along the first vector.
Table 1 summarizes parameter values used for the simu-
lations of this section. An initial population of 5 - 10°
live cancer cells was placed in the center of the simu-
lated region.

Figs. 3 and 4 depict the tumor at the 70th and 90th
day of the simulation, respectively. A general observa-
tion, holding for all performed simulations was that the
chosen cell diffusion tensor affects the overall tumor

shape in a noticeable way. This is depicted in Fig. 3,
where the tumor shape is roughly similar to the ellipsoid
of the diffusion tensor defined above. It can also be seen
in Fig. 4, where the depicted tumor appears to be an ap-
proximately conformal expansion of the tumor in Fig. 3,
although markedly distorted by the underlying
stochasticity.

In Figs. 5 and 6, vertical sections of these tumors are
shown, taken at the central (11th) voxel plane of the lat-
tice. All colored voxels have been reached by the tumor,
i.e. they contain a nonzero population of live plus nec-
rotic cancer cells. We do not show voxels containing
only host necrotic cells, something that was often ob-
served in the near vicinity of the tumor periphery. We
remind the reader that M is the average cell population
capacity per voxel. The color code is as follows. Cyan
voxels contain a total population of live tumor, necrotic
tumor and necrotic host cells that does not exceed 50%
of M. Where this quantity is above 50% of M, voxels are
colored blue, gray or black, depending on the amount of
necrotic cells they contain. Specifically, in blue voxels,
the total necrotic (tumor+host) cell population is below
65% of M. In gray voxels, the total necrotic cell popula-
tion is between 65 and 95% of M. In black voxels, nec-
rotic cells are above 95% of M. Note that in both Figs. 5
and 6 necrosis is higher towards the tumor center. This
is in agreement with the general observation that after
some period of growth, due to vasculature
disorganization and limited diffusion of nutrients near



Antonopoulos et al. BMC Bioinformatics (2019) 20:442 Page 23 of 36
Table 1 Simulation parameters
Parameter Symbol Value References and remarks
Lattice size N 21
Time step At 10s
Voxel edge As 2mm
Average cell population capacity for each voxel M 8. 10° cells [74]
Maximum cell population capacity for each voxel Moo 1.02M Assumed (see also appendix)
Oxygen Diffusion Coefficient D, 18107 cm?/sec (14, 52, 53]
Glucose Diffusion Coefficient Dy 1.05 - 107° cm?/sec (14, 52, 53]
Cell diffusion Coefficient D, 15-10°%t015-107°  [56, 9]
cm?/sec
Maximum mitosis rate Omax 16 - 10~ ° mitoses/cell/  Corresponding to a doubling time of 5 days in
10s ideal chemical conditions
Cell cycle duration cc 24h [36, 371
Quiescent host cell Oxygen consumption K, 250-107° pmol/sec [36, 37, 84]
Quiescent host cell Glucose consumption Kq1 50 - 10 ° pmol/sec [36, 37, 84]
Maximum absolute value of oxygen provision/absorption by o_b_  28-10%pmol/sec Estimated by values given in [93]
local vasculature in normal tissue max
Maximum absolute value of glucose provision/absorption by gl b_ 560 pmol/sec Estimated by values given in [93]
local vasculature in normal tissue max
Maximum vasculature expansion rate Ve 16-107°-8-107° Corresponding to minimum doubling time
ranging from 5 to 1 days
Maximum vasculature regression rate v, 16-107-8-107° Corresponding to minimum halftime ranging
from 5 to 1days
Hypoxia threshold percentage h, 30% of oxygen level in  [5, 37]
normal tissue
Hypoglycemia threshold percentage hgi 50% of glucose level in  [37, 98]
normal tissue
Oxygen per voxel in normal tissue 0o 12-10° pmol [45, 92] corresponding to concentration in
capillary blood.
Glucose per voxel in normal tissue agly 40 - 10° pmol [45, 92] corresponding to concentration in

capillary blood.

the tumor center, a necrotic core is formed; viable prolif-
erating cells are located mainly at the outer rims of a
tumor.

Figs. 7 and 8 depict a profile of the oxygen levels per
voxel, corresponding to the vertical sections shown in
Figs. 5 and 6, respectively. The darker the voxel shade,
the lower the oxygen quantity in the specific voxel. The
lightest shade indicates a voxel whose oxygen level is at
least equal to normal. The darkest shade indicates a
voxel whose oxygen level is below 15% of normal tissue
level. The same color code holds for Figs. 9 and 10,
which depict the respective glucose levels. Note that the
tumor interior contains both hypoxic and hypoglycemic
regions. From the simulations performed, hypoxic re-
gions appeared to be much more spatially inhomogen-
eous and time varying than hypoglycemic ones, which
generally tended to appear more congruent with necrotic
areas of the tumor and overall tumor shape. Other than
that, the shape of both hypoxic and hypoglycemic

regions appeared to be largely random, and no pertinent
spatial patterns were detected.
Similarly, Figs. 11 and 12 depict a similar profile of o_

b_max, for each voxel, corresponding respectively to the
vertical sections shown in Figures 5 and 6. We remind
the reader that, for a voxel A, o_b_max,{A) quantifies
the capacity of the vascular network within A to pro-
vide/absorb oxygen to/from the surrounding tissue,
thereby reflecting the regressed or expanded vasculature
in A (see also section VI). The color code for Figs. 11
and 12 is as follows: The darkest grayscale shade indi-
cates that for the respective voxel A, the value of o_b_
max,(A) is below 50% of its value in normal tissue. The
lightest grayscale shade indicates that for the respective
voxel A, the value of o_b_max,(A) is equal to its value in
normal tissue. Magenta indicates that o_b_max,(A) is be-
tween 100 and 125% of its value in normal tissue. Blue
indicates that o_b _max,(A) is between 125 and 150% of
its value in normal tissue. We note that since o_b_max,



Antonopoulos et al. BMC Bioinformatics (2019) 20:442

and gl_b_max, evolve temporally in the same way (see
section VI), using the same color code yields identical
figures for gl b_max,. Figures 11 and 12 depict that to-
wards the tumor center, o_b_max, is lower, i.e. vascula-
ture appears to be more regressed. Tumor periphery
displays values larger than normal, reflecting the fact
that at the outer rims of the tumor, angiogenesis takes
place at a much faster rate than vessel regression.

As a more general use case, we performed a multivari-
ate analysis on the effects of certain tumor growth re-
lated parameters on the number of viable tumor cells
after a period of free growth. Specifically:

e Maximum mitosis rate for cancer cells a,,,, was
fixed such that the corresponding minimum
doubling time is 5 days.

e Parameter A was varied in the set {2,4,6,8,10}. We
remind the reader that AK,p is the ATP
consumption rate of an actively proliferating tumor
cell, where K, 7p is the ATP consumption rate of a
normal host cell.

e The parameters 8; and /3, i.e. the minimum and
maximum values of the energy fraction cancer cells
acquire by glycolysis were varied in the set [ f5,]
={[0 0.1], [0.1 0.2], [0.2 0.3], [0.3 0.4], [0.4 0.5]}

e Vasculature regression minimum halftime (in days)
was varied in {1,2,3,4,5}.

e Vasculature expansion minimum doubling time (in
days) was varied in {1,2,3,4,5}. The case where no
angiogenesis occurred throughout the entire
simulation was also considered.

The initial tumor population was 5 - 10° live cancer
cells. The evolution of these tumors was simulated for a
time period of 90 days. Due to the stochasticity of the
model, for each set of parameter values a total of 20 sim-
ulations was performed. The results of these simulations
are shown in Figs. 13, 14, 15, 16, 17, and 18.

In each of the Figs. 13, 14, 15, 16, 17, and 18, the col-
umns ‘lambda’,'Vasculature regression minimum half-
time’ and ‘Vasculature expansion minimum doubling
time’ are self-explanatory. Each row of the column ‘Live
cancer cells after 90 days’ depicts the respective numbers
of live tumor cells for each one of the 20 simulations
performed for the parameters specified in the previous
columns of the same row. In each row, these 20 num-
bers are drawn as horizontal lines, each one with length
proportional to the resulting number of live cancer cells
after 90 days. These 20 lines are drawn in sorted order
with regard to their length, from longest (top) to short-
est (bottom), and form the skewed bar observed in each
row of the ‘Live cancer cells after 90 days’ column. We
note that due to the smaller final populations observed
absent angiogenesis, the aforementioned lines in Fig. 13
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are drawn in a different scale than in Figs. 14, 15, 16, 17,
and 18. In each row of the column ‘Probability of tumor
survival’, we provide the fraction of simulations (out of
the 20 simulations performed for the parameters of the
specific row) that resulted to a nonzero population of
live cancer cells. Each row of the column ‘Expected
number of live cancer cells’ provides the expected num-
ber of live cancer cells after 90 days, conditioned on the
survival of the tumor. This is essentially the mean of the
resulting final populations, calculated by taking into ac-
count only the simulations that resulted in a nonzero
final population of live cancer cells.

As explained above, each row of the ‘Live cancer cells
after 90 days’ column depicts a skewed bar, formed by
the final populations of live cancer cells for each of the
20 simulations performed for the specific row. Thus, the
skewness of each such bar indicates the variance ob-
served in the results of the respective simulations. For
each such bar, a flatter right end indicates a lower vari-
ance; a more skewed right end indicates a higher vari-
ance. Visual inspection of these bars indicates that in
most cases (i.e. rows), 20 simulations can provide a rea-
sonable overview of the potential outcomes. However,
there are cases where the skewness of the aforemen-
tioned bars is quite high, indicating a higher variance in
the potential outcomes of the respective simulations. In
such cases, like for example, the case in Fig. 13 where
0.1<p<02, lambda=2 and Vasculature regression
minimum halftime = 4 days or the same case but with
lambda = 4, it is evident more simulations are needed. In
general, our analysis showed that simulation parameters
have an effect not only on the probability of survival and
expected populations of cancer cells, but also, in several
cases, on the variance of these populations. This was also
observed for intermediate time points, i.e. cell popula-
tions calculated at time points within the overall time
frame of 90 days.

Fig. 13 depicts the results of these simulations when
tumors grow without angiogenesis. We see that the
limits of the energy fraction S cancer cells can acquire
from glycolysis play a crucial role on tumor growth and
survival. For 0<f<0.1, ie. when cells employ mainly
combustion of glucose, tumors survive essentially only if
they have minimal energy needs compared to host cells,
and additionally, if vasculature regression evolves at a
minimal rate. For 0.1 <f<0.2, tumors survive in more
cases than for 0<8<0.1 and in these cases they reach
large end populations of viable cancer cells. For 0.2 < <
0.3 tumors survive in even more cases, but don’t reach
end populations as large as for 0.1 <5<0.2. For 0.3 <<
0.4 tumors survive almost like in the case where
0.2 < <0.3, although with lower probabilities and lower
end populations. The same trend is observed when mov-
ing to the last case; for 0.4<[<0.5 tumors survive in
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slightly less cases than for 0.3 < 8 < 0.4, with lower prob-
abilities and lower end populations. In each separate
case, maximum vasculature regression rate (i.e. mini-
mum halftime) and cancer cell energy requirements
affect both probability of survival and final number of vi-
able cells. In fact, in each case, the higher the maximum
rate of vasculature regression, the lower are both the
survival probability and the viable end population. Fur-
thermore, in each case, for the same maximum rate of
vasculature regression, higher energy requirements by
tumor cells imply lower survival probabilities and viable
end populations.

Figures 14, 15, 16, 17, and 18 consider additionally the
effects of vasculature expansion. Visual inspection of
these Figures shows that the limits of 5 affect the results
in a way reminiscent of the one observed for the no
angiogenesis case in Fig. 13. In Fig. 14, where 0<5<0.1,
i.e. energy is acquired mainly through combustion, tu-
mors grow only if vasculature regression evolves suffi-
ciently slower than angiogenesis. In Fig. 15 (0.1<f<
0.2), tumors survive and grow in many more cases, and
in general they reach larger end populations of viable
cells. In Fig. 16 (0.2<$<0.3), tumors survive in even
more cases, however, end populations are lower than in
Fig. 15. In terms of survival probabilities, tumors in Fig.
17 (0.3 < <0.4) tumors are slightly better than in Fig.
16, achieve, nevertheless, lower end populations. In Fig.
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18 (0.4 <f<0.5) tumors survive almost like in Fig. 17.
Again, compared to Fig. 17, survival probabilities and
end populations are lower.

A general observation is that, for the same limits of 5
and the same energy requirements A, maximum rates of
vasculature expansion and regression had monotonic ef-
fects on survival probabilities and viable end popula-
tions. Assuming other parameters equal, a higher
maximum rate of vasculature expansion generally im-
plies higher survival probability and viable end popula-
tion. Respectively, a higher maximum rate of vasculature
regression generally has the opposite effects. There are a
few exceptions in these rules; they are marked by arrows
at the left of each image and we will explain them
below.

For all of the aforementioned exceptions, the expected
number of live cancer cells was calculated for each day.
These quantities were plotted in pairs for each case
monotonicity did not hold; three such examples are
shown in Figs. 19, 20, and 21. These Figures depict the
pattern observed for all these cases. The expected behav-
ior of tumor cells growing in more favorable conditions
(blue curves) is to grow faster and larger than their re-
spective counterparts (red curves) for most of the ob-
served time period. However, they reach a maximum
and start to regress sooner than tumor cells growing in
less favorable conditions. Apparently though, on the

4 x107
p A | VRmHt|VEmDt | line color
0sp<0.1 2| 5d | 4d | —
3.5r|0sPs0.1 | 2 5d 5d — /‘\ ]
«/ 4 A\ \
[/ \
3r [/ \\ ]
[ A\
25"+ ’J," ":‘ J
/ \
/
2f "‘] :
r‘/’v’
151 / §
1 - =
N
0.5 / S N
/ \\ -
-
0 1 Il 1 1 1 1 1 1}
0 10 20 30 40 50 60 70 80 90
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90th day, the sum of viable and necrotic tumor cells is
larger for tumors growing in more favorable conditions.

The effects of A (i.e. the parameter quantifying the en-
ergy requirements of cancer cells compared to host cells)
are much more complicated. Using the abbreviations
Vasculature Regression minimum Halftime (VRmHt)
and Vasculature Expansion minimum Doubling time
(VEmDt) defined for Figs. 19, 20 and 21, we observe the
following. For 0<$<0.1, VRmHt=5days, VEmDt=1
day, A has an increasing effect on the viable end popula-
tion. Apparently, in this case, high energy requirements
induce hypoxia and hypoglycemia much more fre-
quently, thereby triggering vessel expansion more often.
Additionally, tumor-induced angiogenesis is much faster
than tumor-induced vasculature regression; this results
in higher final populations of viable cancer cells. The ob-
servation that, if angiogenesis occurs sufficiently faster
than vascular regression, higher energy requirements act
increasingly on the viable end population holds in gen-
eral for 0<f5<0.3, see Figs. 14, 15, and 16 . It is much
less pronounced for 0.4 < <0.5 (Fig. 18), and does not
hold for 0.3<pB<04 (Fig. 17). As a counterexample,
note that for 0.2 </£<0.3, VRmHt =5 days, VEmDt =3
days, A has a decreasing effect on the viable end
population.

From the analysis performed so far, no general pattern
providing a quantitative and concise interpretation of
these observations was found. Evidently, the dependen-
cies of the end population of viable cells on the parame-
ters under consideration are quite complex, and display
a rich structure of local maxima and minima. A more
detailed study of these dependencies would require more
simulations for each set of parameter values and add-
itional consideration of standard deviations; we leave this
for future work.

Appendix

IX.i The random perturbation of matrices T, and Ty de-
scribed in part III of the methods section is imple-
mented as follows. There are two parameters involved

— K, that is, the number of time steps every which the
perturbation is applied to the matrices T, and T
calculated by algorithm 2.

— u, which is a number ranging from 0 to 9.

Every x time steps, the respective columns of matrices
T, and Ty are perturbed in the following way. Each non-
zero probability of the column to be perturbed is multi-
plied by a uniformly distributed random number ranging
from 1 to 1+ u. There are 27 nonzero probabilities in
each column, hence, we use 27 such random numbers.
We then normalize these 27 products to sum to 1. Note
that every time we apply this process on a column, the
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resulting ratio of any two of the column’s 27 probabil-
ities could be anywhere between 1/(1 + ) smaller and
1+ u larger than its original value. Thus, their relative
order of magnitude is preserved.

Sample simulations were performed with time step
At = 10s, k = 30, 60 (i.e. perturbations applied every 5
or 10 min) and y# =1, 4, 9. The resulting cell populations
did not vary significantly. In fact, they displayed an al-
most exact agreement on the numbers corresponding to
their greatest order of magnitude and slight variations
on the number corresponding to their second greatest
order of magnitude. For the simulations described in
section VIII, the values x = 30 and y = 1 were used.

IX.ii In this last part, we provide some suggestions on
how the cellular diffusion module (section IV) may be
re-adjusted, in order to consider slightly different sets of
starting assumptions. We do this by discussing four spe-
cific examples, and show that each of them can be im-
plemented using the sparse matrix, vector algebraic
framework we propose. The resulting algorithmic mod-
ules were not used for a comprehensive analysis like the
one presented in the main text. In this paper, they serve
mainly as ideas on how to further elaborate on the spe-
cific module.

a) For the simulations in the main text M,,,, was
treated as a constant, and was set 2% larger than M
for all voxels. A more general assumption would be
to assume that for each voxel A the corresponding
number M,,,,(A) is a random number ranging close
to M, that also changes with time; The
corresponding implementation is straightforward:
each time before applying Algorithm 2, generate
this vector of random numbers; Then simply apply
Algorithm 2, by first substituting M,,,,, with this
vector.

Additionally to the assumptions (i)-(v) in section IV
consider the following:

(vi) Live cancer cells do not invade voxels whose
total necrotic (cancer+normal) cell population is
above M.

This is an additional scenario that can be quite
easily implemented in the sparse matrix framework
we propose; each time before applying Algorithm 2
find all (new) voxels whose total necrotic
population is above M. For each one of these
voxels, do the following:

b

=

— Find the row of the matrix T, corresponding to the
voxel.

— Find the row’s nonzero elements;

— Set all row elements to zero;

— Normalize the columns of T, corresponding to the
nonzero elements of the row;
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Subsequently, apply Algorithm 2 by using the resulting
form of the matrix T,

¢) Alternatively, instead of the previous additional
assumption, consider the following:

(vi) Live cancer cells invading voxels whose total nec-
rotic (cancer+normal) cell population is above M turn
immediately to necrotic.

The implementation of the corresponding algorithm is
a slight variation of Algorithm 2. We remind that for a
vector x and a number y, the vector (x> y) is the binary
vector with elements set to 1 if the corresponding elem-
ent of x is >y and 0 otherwise. For vectors x, y, x. =y de-
notes their elementwise product. The resulting
algorithm is:

So = M yyax—nc,—nny

$1 = (89=0).%sg

$2 = ((We > Mypax ) #81) + (We Mopax ) 4lz)
Livar = 52+ ((nce + nng) < M) .x(Tex(lp-s3))
neeiar = nce + ((nee + nng) 2 M) o+ (T o+ (l=s7))

Note that in the last two lines, invading cells are added
to the live cancer cells of the invaded voxel if its total
necrotic population is below M. If its total necrotic
population is above M, invading cells are added to the
necrotic cancer cells of the voxel.

d) Last, we informally discuss some ideas on how to
introduce some at least crude, phenomenological
notion of chemotaxis in this module. Chemotaxis
refers to the phenomenon where cells tend to move
towards higher concentrations of specific molecules,
say, for example, oxygen. We remind that each
column of the matrix T, corresponds to a voxel A.
Each nonzero element of the column corresponds
to a specific neighbor of A. In fact, each nonzero
element is the fraction of live cancer cells in A that
are in excess of M,,,,, that will invade the respective
neighbor. How can we quantify the tendency of
cells to move towards higher concentrations of
oxygen in this framework? The simplest, although
admittedly crude way is the following. Each time
before executing Algorithm 2, for each voxel that
has been reached by the tumor or is adjacent to it,
multiply elementwise the respective column with
the current vector of oxygen quantities o,. Then
normalize its resulting nonzero elements (which
remain in the same place) to sum to one. This
process rescales the probability of invading each
neighbor according to its respective oxygen content;
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We stress that this is merely a rough idea, which
however, we wanted to share. The quantitative
details and overall soundness of this idea remain to
be furtherly analyzed and improved.

Abbreviations

DTI: Diffusion Tensor Imaging; PET: Positron Emission Tomography;

VEmDt: Vasculature Expansion minimum Doubling time; VRmHt: Vasculature
Regression minimum Halftime
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