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disease associations based on miRNA
target genes using canonical correlation
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Abstract

Background: It has been shown that the deregulation of miRNAs is associated with the development and progression of
many human diseases. To reduce time and cost of biological experiments, a number of algorithms have been proposed for
predicting miRNA-disease associations. However, the existing methods rarely investigated the cause-and-effect mechanism
behind these associations, which hindered further biomedical follow-ups.

Results: In this study, we presented a CCA-based model in which the possible molecular causes of miRNA
-disease associations were comprehensively revealed by extracting correlated sets of genes and diseases
based on the co-occurrence of miRNAs in target gene profiles and disease profiles. Our method directly
suggested the underlying genes involved, which could be used for experimental tests and confirmation. The
inference of associated diseases of a new miRNA was made by taking into account the weight vectors of the
extracted sets.
We extracted 60 pairs of correlated sets from 404 miRNAs with two profiles for 2796 target genes and 362 diseases. The
extracted diseases could be considered as possible outcomes of miRNAs regulating the target genes which appeared in
the same set, some of which were supported by independent source of information. Furthermore, we tested
our method on the 404 miRNAs under the condition of 5-fold cross validations and received an AUC value of
0.84606. Finally, we extensively inferred miRNA-disease associations for 100 new miRNAs and some interesting
prediction results were validated by established databases.

Conclusions: The encouraging results demonstrated that our method could provide a biologically relevant
prediction and interpretation of associations between miRNAs and diseases, which were of great usefulness
when guiding biological experiments for scientific research.
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Background
microRNAs (miRNAs) are one category of small non-
coding RNAs that regulate gene expressions by base
pairing with 3′-UTRs of messenger RNAs (mRNAs).
Since the initial discovery in 1993 [1], the number of
currently annotated miRNAs has increased steadily. As
of November 2018, the newest version of miRBase [2]
contained > 480,000 mature miRNA sequences in 271

species. There are growing studies suggesting that
miRNAs play important roles in some essential bio-
logical processes, such as cell proliferation [3], develop-
ment [4], differentiation [5, 6] and metabolism [7].
Hence the dysfunction of miRNAs will result in aberrant
cell behaviors, and they have been associated with the
development and progression of many human diseases.
For example, Nagaraja et al. [8] revealed that the overex-
pression of mir-100 inhibited mTOR signaling in clear
cell ovarian cancer. In addition, the conserved se-
quences, specific secondary structures and the ability to
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control gene expression makes miRNAs suitable targets
for drug development [9] and recent studies [10–13]
have demonstrated their application in the therapeutic
exploitation.
Because of the wide-spread clinical implications, some

online databases [14–16] have been established for con-
taining experimentally confirmed evidence for associa-
tions between miRNAs and diseases via text mining.
These repositories serve as comprehensive resources for
studying the impacts of miRNAs on human diseases.
However, our current knowledge of the involvement of
miRNAs in diseases is far from completeness and thus
those undiscovered associations cannot be mined from
the literature. Meanwhile, experimental identification of
miRNA-induced diseases by biological technology is
costly and laborious. Therefore, computational predic-
tion of the most promising miRNA-disease associations
for further confirmation is receiving enormous attention.
The computational efforts made in this field can

mainly be divided into two groups. The methods in the
first group extensively exploited the biological evidence
that miRNAs exert their functions by regulating the ex-
pression levels of their target mRNAs [17]. They first
comprehensively collected two sets of genes, namely
miRNA target genes and disease-related genes. The
miRNA-disease associations were then inferred accord-
ing to the similarity values or the interactions between
the two sets of genes. For example, Mørk et al. [18] pro-
posed a model miRPD to explictitly infer miRNA-pro-
tein-disease associations by coupling miRNA-gene
associations with gene-disease associations. Li et al. [19]
presented a computational framework to prioritize hu-
man cancer miRNAs by calculating the functional
consistency scores (FCS) between the miRNA target
genes and the cancer-related genes. Shi et al. [20] devel-
oped a computational method to identify potential
miRNA-disease associations by mapping disease genes
and miRNA target genes onto PPI (protein-protein
interaction) networks for enrichment score calculation.
These methods widely used predicted miRNA target
genes to support miRNA-disease association inference.
Due to high false positive rate of the predicted target
genes of miRNAs, it is difficult for the above methods to
achieve stable prediction results.
The methods in the other group were based on the

conclusion that functionally similar miRNAs are usually
involved in phenotypically similar diseases [21]. For in-
stance, Chen et al. [22] developed a method RWRMDA
to infer potential miRNA-disease associations by imple-
menting random walks on miRNA-miRNA functional
similarity network. Similarly, Chen et al. [23] devised a
method to infer OMIM disease candidates related to a
specific miRNA via random walks on disease similarity
network. Afterwards, several methods [24–38] have been

presented to infer novel miRNA-disease associations by
incorporating both the miRNA similarity network and
the disease similarity network. Experimental results
demonstrated that combining the two types of similarity
networks could improve prediction performance. How-
ever, miRNA functional similarity calculation is a major
challenge needed to be properly addressed in these
methods. The functional similarity between two miRNAs
was usually measured based on their associated diseases,
which could produce overestimated validation accuracy
[37]. Moreover, these similarity-based methods do not
explicitly facilitate forming hypotheses about the pos-
sible molecular causes of the miRNA-disease associa-
tions [18].
In this paper, we presented a novel method to predict

potentially related diseases of miRNA candidates based
on their target genes on a large scale, without limiting
ourselves to similarity measurement. Experimentally
supported miRNA-gene interactions and miRNA-disease
associations were first obtained from existing databases
to build target gene profiles and disease profiles for miR-
NAs. We then applied canonical correlation analysis
(CCA) to extract correlated sets of genes and diseases
based on the co-occurrence of miRNAs in the two pro-
files. For a new miRNA, its disease profiles were inferred
based on the weight vectors of the extracted correlated
sets. Results demonstrated that the extracted sets of
genes and diseases provided meaningful explanation to
the molecular causes of the miRNA-disease associations,
and that diseases in each correlated set were outcomes
from miRNA perturbations of target genes. When ap-
plied to collected data sets for 5-fold cross-validation ex-
periments, our method obtained an AUC value of
0.84606. We finally conducted comprehensive miRNA-
disease association predictions and confirmed some
high-ranking results using independent source of
information.

Results
Extraction of canonical component sets of miRNA-
targeted genes and miRNA-related diseases
The proposed method (see Methods) was applied to the
target gene profiles and disease profiles to receive 60
canonical components (CC). The extracted genes and
diseases in each component were available at
Additional file 1. We also provided information of
miRNAs that contributed to the correlations. It could be
discovered that each component includes a small num-
ber of genes and diseases, which indicated an advantage
of adding parameters c1 and c2 to impose sparseness on
ordinary canonical correlation analysis (OCCA). It
should be noted that experiments suggested that all the
weight vectors received by OCCA were not sparse with
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the parameter K ranged from 10 to 200 by 10 incre-
ments, which prevented the extraction of CCs.

Interpretation of miRNA-disease associations through the
extracted component sets
It has been known that miRNAs exert their biological
functions by regulating the expressions of their target
genes. Our method was based on this conclusion and we
intended to interpret the cause-and-effect mechanism
behind the existing miRNA-disease associations based
on the extracted component sets. We chose CC31,
CC40 and CC54 in the extracted 60 canonical compo-
nents as examples.
In CC31, we received 3 miRNAs (hsa-miR-34a, hsa-

miR-34b and hsa-miR-34c). The numbers of target genes
for the 3 miRNAs were 139, 32 and 50, respectively. The
top-ranked target gene for the 3 miRNAs was ZAP70.
Experimental evidence indicated that tyrosine kinase
encoded by this gene plays an essential role in regula-
tion, such as immune response, thymocyte development
and cytokine expression of mature T-cells. Meanwhile,
the top-predicted disease was sarcoma, which was a
highly malignant tissue neoplasm caused by proliferation
of mesodermal cells. Records in the latest version of

CTD [39], a publicly available database curated informa-
tion about environmental factors affecting human health,
indicated that ZAP70 was one of disease genes for
sarcoma.
Two miRNAs (hsa-miR-106b and hsa-miR-93) were

included in CC40. For hsa-miR-106b, it targeted 47
genes and 34 genes were targeted by hsa-miR-93. The
top predicted genes were DAB2 and PTENP1 and the
top ranked diseases were Lung Diseases and Ovary
Syndrome. In CTD, we discovered that both genes
were related to Lung Diseases. Even though, no infor-
mation was available in CTD about the roles of the
two genes in Ovary Syndrome. Studies showed that
DAB2 was expressed in normal ovarian epithelial cells and
the down-regulation of DAB2 may lead to ovarian carcino-
genesis [40].
In CC54, 5 genes (ANAPC1, RPIA, IGF2BP2, CYP2J2

and LRIG1) and 1 disease (Cataract) were extracted as a
correlated set. Cataracts often affect old people, causing
blurry vision. It was reported that more than half of
Americans either have a cataract or have had cataract
surgery by the age of 80 (https://www.nei.nih.gov/health/
cataract/). Therefore, detecting the genetic causes of cat-
aracts is of great importance. The retrieval of informa-
tion from CTD suggested that all the 5 target genes
were genetic factors of the disease Cataract.
It should be pointed out that some records of disease

genes in CTD might be inferred. Even though, the co-
occurrence of disease genes extracted by our method
and recorded in the CTD database reinforced the reality
of such information because our knowledge of disease
genes was not complete.

Performance evaluation
To evaluate the prediction ability of our approach, we
conducted 5-fold cross validations on the benchmark
datasets. We first randomly split the 404 miRNAs
into five subsets of roughly equal size. Each subset is
then used in turn as a test set and training is per-
formed on the remaining four subsets. For the test
set, the related disease relationships of miRNAs are
removed and we calculate the prediction scores based
on the weight vectors of the components extracted
from the training set. We rank the predicted miRNA-
disease associations according to the prediction
scores. The higher a validated miRNA-disease associ-
ation is ranked, the better the prediction performance
is. To obtain robust results, we repeated the cross-
validation experiments five times.
Given a threshold δ, if the score of a predicted result is

greater than δ, it is considered as a positive sample.
Otherwise, it is deemed as a negative sample. To obtain
a receiver operating characteristic (ROC) curve, the true

Table 1 The top 10 predicted results for hsa-miR-203a

miRNA rank predicted disease confirmed

hsa-miR-203a 1 Colorectal Neoplasms

hsa-miR-203a 2 Breast Neoplasms Yes

hsa-miR-203a 3 Stomach Neoplasms Yes

hsa-miR-203a 4 Melanoma

hsa-miR-203a 5 Carcinoma, Hepatocellular Yes

hsa-miR-203a 6 Lung Neoplasms Yes

hsa-miR-203a 7 Prostate Neoplasms Yes

hsa-miR-203a 8 Heart Failure

hsa-miR-203a 9 Carcinoma, Non-Small-Cell Lung

hsa-miR-203a 10 Urinary Bladder Neoplasms

Table 2 The top 10 predicted diseases by our method

Rank Our prediction

1 Carcinoma, Hepatocellular

2 Breast Neoplasms

3 Colorectal Neoplasms

4 Stomach Neoplasms

5 Lung Neoplasms

6 Melanoma

7 Urinary Bladder Neoplasms

8 Ovarian Neoplasms

9 Glioblastoma

10 Glioma
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positive rates (TPRs) and the false positive rates (FPRs)
at various δ values are computed as,

TPR ¼ TP
TP þ FN

; FPR ¼ FP
TN þ FP

ð1Þ

where TP and TN are the numbers of correctly identi-
fied positive and negative samples. FP and FN are the
numbers of misidentified positive and negative samples.
The area under the ROC curve (AUC) is used to meas-
ure the performance of our approach.
There are three parameters in our method. The pa-

rameters c1 and c2 are to control the sparseness, and K
is the number of pairs of extracted canonical compo-
nents. They are well tuned and we obtain the best AUC
value of 0.84606 with c1 = 0.01, c2 = 0.01 and K = 60.

Prediction of novel miRNA-disease associations
After confirming the prediction performance by cross
validations, we further applied our method to the miR-
NAs, which was not included in the benchmark datasets
but whose target gene information was available, for
their disease association predictions. There were 100
miRNAs of such kind in miRTarBase. We considered
them as new miRNAs and their associated diseases
needed to be predicted. The benchmark datasets were

taken as a training set. The predicted results for each
new miRNA were listed in Additional file 2.
As we were preparing for the manuscript, the database

HMDD v3.0 [41] was released. We took HMDD v3.0 as
evidence to confirm the newly predicted miRNA-disease
associations. We selected hsa-miR-203a as an example.
For this miRNA, we chose the top 10 predicted results
from the 362 candidate diseases and discovered that 5 of
them were annotated by HMDD v3.0 (Table 1).
Furthermore, we chose the top 10 diseases (Table 2)

predicted by our method and compared them with the
top 10 diseases with the highest values of MSW (miRNA
spectrum width) [41], an indicator of complexity of
miRNA regulation, based on HMDD v2.0 and HMDD
v3.0 (Fig. 1). As there are still associations between
miRNAs and diseases undetected, the co-occurrence of
top diseases in Fig. 1 demonstrates the inference cap-
acity of our method from another way of perspective.

Discussion
Revealing the roles of miRNAs in diseases is critical for
understanding the genetic causes of human diseases.
Satisfied prediction performance could be obtained by
previous methods for inferring miRNA-disease associa-
tions. However, they seldom investigated the underlying
cause-and-effect mechanism involved. The correlated
sets of target genes and human complex diseases re-
ceived by our CCA-based method provided insights into
the functional roles of miRNAs in the development of
diseases. Three case studies also demonstrated correl-
ation between the extracted target genes and diseases.
The excellent performance of our method could be

contributed to two factors: data quality and additional
penalty imposed on the CCA model. The benchmark
datasets were received from two highly reliable databases
and the miRNA-gene interactions and miRNA-disease
associations were supported by published papers.
Furthermore, adding more penalties on ordinary CCA

Fig. 1 Comparison of the top 10 diseases inferred by our method and the top 10 diseases with the highest values of MSW in HMDD v2.0 and
HMDD v3.0

Table 3 Statistics of the datasets used in our manuscript

Name Statistics

# miRNAs 404

# target genes 2796

# diseases 362

# miRNA-gene interactions 7999

# miRNA-disease associations 5117

average number of target genes for each miRNA 19.8

average number of related diseases for each miRNA 12.7
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produced sparse weight vectors, which facilitate reason-
able interpretation of the results.
As the data features used in our method were different

from those in other computational models, a direct per-
formance comparison was hard to implement. It is sup-
posed in our method that a new miRNA’s target gene
information is available, but not disease information. In-
deed, it is not practical in a real situation that the de-
tailed target gens profile is known for a miRNA
candidate molecule, which is a disadvantage in our
method. However, advance in biological assays is bring-
ing increasing information regarding miRNA-gene inter-
actions. In this context, we expect that our proposed
method presents itself as an informative tool for discov-
ering the pathogenesis of diseases.

Conclusions
In this paper, we developed a novel method based
on CCA with sparseness constraints for inferring
and interpreting miRNA-disease associations. The re-
sults received from cross validations confirmed the
excellent prediction power of our method. Experi-
mental results also indicated that imposing the
sparseness characteristic on CCA contributed to the
improvement of interpretation of miRNA-disease as-
sociations. The extracted pairs of genes and diseases
offered biological guidance for investigating how
miRNA-disease associations were formed. When ap-
plying our method for predicting associated diseases
for new miRNAs, some high-scoring results were
supported by HMDD v3.0.

Fig. 2 The degree distributions of miRNAs in miRNA-disease association dataset

Fig. 3 The degree distributions of miRNAs in miRNA-gene interaction dataset
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Methods
Data preparation
Two datasets, namely miRNA-gene interactions and
miRNA-disease associations, were used in our method.
We downloaded miRNA-gene interactions from miRTar-
Base [42], which was built by manually surveying pertin-
ent literature to retrieve experimentally confirmed
miRNA-gene interactions. For these interactions, we
constrained the miRNA species into Homo sapiens. The
interactions supported by weak experimental evidences
were not taken into consideration. miRNA-disease asso-
ciations were received from HMDD v2.0 [14] whose ex-
perimentally validated associations between miRNAs

and diseases were manually retrieved from literature.
For both datasets, we merged the records of different
miRNA copies that produce the same mature miRNA.
Diseases with synonyms in HMDD v2.0 were also
merged and invalid disease names were filtered out. Re-
dundant records in the two datasets were kept only
once.
In total, 404 miRNAs had both target gene and disease

information. We finally received 7999 miRNA-gene in-
teractions containing 2796 target genes and 5117
miRNA-disease pairs containing 362 diseases (Table 3).
Intuitively, we could model each of the two datasets as a
bipartite graph. The degree distributions of miRNAs,

Fig. 4 Description of the algorithm SCCA

Fig. 5 Schematic of our proposed model. First, we extracted miRNA-gene interactions and miRNA-disease associations from miRTarBase and
HMDD, respectively. Then, target gene profiles and disease profiles for miRNAs were constructed. Third, canonical correlation analysis was
performed to obtain correlated sets. Finally, novel miRNA-disease associations were predicted based on the weight vectors of the correlated sets.
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which indicate the numbers of target genes or the num-
bers of associated diseases of miRNAs, in each graph
were listed in Fig. 2 and Fig. 3, respectively. The two sets
of data were regarded as benchmark datasets and were
used for performance evaluation in the following cross-
validation experiments as well as training data for novel
miRNA-disease association predictions.

Method description
Construction of gene profiles and disease profiles for
miRNAs
Suppose that we have a set of n miRNAs which included
p target genes and q related disease features. Each
miRNA can then be denoted by a target gene profile
t = (t1, t2, t3,…, tp)

T and by a disease profile d = (d1, d2,
d3,…, dq)

T, where ti (or dj) is represented for the pres-
ence or absence of gene (or disease) by 1 or 0,
respectively.

Canonical correlation analysis (CCA)
Two linear combinations for target gene profiles and
disease profiles are defined as ui = αTti and vi = βTdi (i =
1,2,3,…,n), where α = (α1, α2, α3,…, αp)

T and β = (β1, β2,
β3,…, βq)

T are weight vectors. Our goal is to find weight
vectors α and β which maximize the following canonical
correlation coefficient:

ρ ¼ corr u; vð Þ ¼
Pn

i¼1α
T ti•β

Tdi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 αT tið Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 βTdi

� �2
q ð2Þ

where u and v are centered, respectively.
Let X denote the n × p matrix and Y denote the n × q

matrix. Then the maximization problem can be formally
rewritten as follows:

maximize αTXTYβ
� �

subject to αk k22≤1; βk k22≤1:
ð3Þ

Canonical correlation analysis (CCA), developed by
Hotelling [43], provided a solution to the problem. We
consider it as ordinary canonical correlation analysis
(OCCA). However, OCCA usually results in vectors α
and β that are not sparse. We are interested in finding a
linear combination of the variables in X and Y that has
large correlation but is also sparse in the variables used.
We therefore choose to add penalties in (2) and recon-
sider the maximization problem as:

maximize αTXTYβ
� �

subject to αk k22≤1; βk k22≤1; αk k1≤c1
ffiffiffi
p

p
; βk k1≤c2

ffiffiffi
q

p

ð4Þ
where c1 and c2 are parameters to control the sparsity.

We refer to this as sparse canonical correlation analysis

(SCCA).We applied a strategy of penalized matrix de-
composition (PMD) [44] on the matrix Z = XTY to ob-
tain the weight vectors α and β.
To compute multiple canonical variates, we performed

PMD on the following Zk iteratively.

1. Let Z1 = XTY
2. For k∈ 1, 2, …, K − 1

Zkþ1 ¼ Zk−dkαkβ
T
k (αk and βk are the weight vectors,

and dk is singular value obtained in each step).
Similar to [45], we selected genes and diseases in the

K pairs of weight vectors with the highest values as cor-
related sets.

Novel miRNA-disease association predictions
To predict the related disease profile ynew of a new
miRNA with a known target gene profile xnew, we calcu-
late the prediction scores based on the K pairs of weight
vectors received above according to the following
equation:

ynew ¼
XK

k¼1

βkρkα
T
k xnew ð5Þ

The elements in ynew with the highest scores are
chosen as the potential diseases for the new miRNA. We
outlined the complete steps for inferring potential
miRNA–disease associations in Fig. 4, and the workflow
of our model was illustrated in Fig. 5.

Additional files

Additional file 1 The extracted 60 canonical components. (TXT 25 kb)

Additional file 2 The predicted scores of diseases for the 100 new
miRNAs. (XLS 427 kb)
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