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Abstract

Background: Internal ribosome entry sites (IRES) are segments of mRNA found in untranslated regions that can
recruit the ribosome and initiate translation independently of the 5’ cap-dependent translation initiation mechanism.
IRES usually function when 5' cap-dependent translation initiation has been blocked or repressed. They have been
widely found to play important roles in viral infections and cellular processes. However, a limited number of confirmed
IRES have been reported due to the requirement for highly labor intensive, slow, and low efficiency laboratory
experiments. Bioinformatics tools have been developed, but there is no reliable online tool.

Results: This paper systematically examines the features that can distinguish IRES from non-IRES sequences. Sequence
features such as kmer words, structural features such as Qure, and sequence/structure hybrid features are evaluated as
possible discriminators. They are incorporated into an IRES classifier based on XGBoost. The XGBoost model performs

differential gene expression.

better than previous classifiers, with higher accuracy and much shorter computational time. The number of features
in the model has been greatly reduced, compared to previous predictors, by including global kmer and
structural features. The contributions of model features are well explained by LIME and SHapley Additive
exPlanations. The trained XGBoost model has been implemented as a bioinformatics tool for IRES prediction, IRESpy
(https://irespy.shinyapps.io/IRESpy/), which has been applied to scan the human 5" UTR and find novel IRES segments.

Conclusions: IRESpy is a fast, reliable, high-throughput IRES online prediction tool. It provides a publicly available tool
for all IRES researchers, and can be used in other genomics applications such as gene annotation and analysis of
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Background

Internal ribosome entry sites (IRES) are segments of the
mRNA, found in untranslated regions, that can recruit
the ribosome and initiate translation, especially when
the conventional cap-dependent translation initiation
mechanism has been blocked or repressed. They have
been found to play important roles in viral infection, cel-
lular apoptosis, cellular differentiation and response to
external stimuli such as hypoxia, serum deprivation and
heat shock [14, 19, 39, 40]. IRES have been identified as
potential therapeutic targets for antagonists that can
interrupt IRES function and control the expression of
viral proteins [23]. Such drugs could be small-molecule
inhibitors such as peptide nucleic acids (PNAs), short
hairpin RNAs (shRNAs), small interfering RNAs,
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antisense oligonucleotides, and ribozymes [23, 30, 35].
An improved understanding of cellular IRES function
under different physiological conditions will increase our
understanding of the response of cells in proliferation,
apoptosis and tumorigenesis.

IRES are widely found in both viral and cellular mRNA.
They were first discovered in the Poliovirus (PV) and En-
cephalomyocarditis virus (EMCV) RNA genomes in 1988
using a synthetic bicistronic assay [36]. The assay places
potential IRES sequence segments between two reporter
genes, and measures the expression of the reporter genes
in comparison to a non-IRES control construct. The bicis-
tronic assay is considered to be the best experimental
method to confirm the presence of IRES. However, this
method is time consuming and labor intensive, and in the
past 30years, only a few hundred IRES have been con-
firmed. The difficulty of identifying IRES is complicated
by our incomplete understanding of the mechanism(s) of
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IRES function. In the simplest case, that of Dicistroviruses
such as cricket paralysis virus (CrPV), IRES function with-
out the help of eukaryotic initiation factors (elFs) or IRES
trans-acting factors (ITAFs), but in other viruses, and in
most cellular IRES, elFs and ITAFs are required. Various
lines of evidence implicate RNA structure in IRES func-
tion [7, 26, 31, 37], especially in IRES that do not require
additional protein factors, but the relative importance of
RNA structure, ITAFs, and (possibly unidentified) RNA
binding proteins remains unclear. Whether all IRES share
a common mechanism, and therefore common sequence
and structural features, has not been determined, and uni-
versal features shared by all IRES have yet to be identified
[22, 28]. This substantial gap in our knowledge can be
largely attributed to the relatively small number of con-
firmed IRES, which has made identification of common
features difficult.

It has been estimated that about 10% of cellular and
viral mRNA may use IRES to initiate translation [41], but
the limited number of confirmed IRES has prevented
study and understanding of IRES function. Alternative ap-
proaches to IRES identification, such as comparative ana-
lysis of IRES primary/secondary/tertiary structure, have
been tried, but little commonality has been found across
all IRES [7, 12]. Small sequence motifs have been reported
to be conserved within specific viral IRES groups, for in-
stance, a GNRA sequence is shared in picornavirus IRES
[5]. The SL2.1 stem/loop contains a U rich motif that has
been found to be important for ribosome binding in the
Dicistrovirus intergenic region (IGR) IRES [4, 38].

The absence of universally conserved features across
all IRES makes their prediction difficult from a bioinfor-
matics perspective, but several systems have been imple-
mented. For example, the Viral IRES Prediction System
(VIPS) predicts the secondary structure of an RNA from
its sequence, and uses the RNA Align program to align
the predicted structure to known IRES to predict
whether the sequence contains an IRES [12]. However,
VIPS predictions are limited to viral IRES, and although
the accuracy rate of VIPS was assessed as over 80% for
four viral IRES sub-groups, the prediction accuracy was
assessed only on the training dataset and is substantially
overestimated. The ability of VIPS to find novel viral
IRES is low in our hands (note that the VIPS server is
no longer available). A more recent method, IRESPred,
uses 35 sequence and structural features and the prob-
abilities of interactions between RNA and small subunit
ribosomal proteins to predict IRES [21]. IRESpred was
trained using a non-IRES negative training set that in-
cluded viral protein coding and cellular protein coding
mRNA sequences; unfortunately some of these se-
quences were later found to contain IRES [46]. In
addition, IRESpred incorporates features such as UTR
length and the number of upstream AUGs. Such features
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are dependent on the length of the query sequence, and
most of the positive training set is substantially longer
than the negative training set. The overall false positive
rate for IRES prediction with IRESPred is high: in a test
of 100 random 400 base sequences, 98 were predicted to
be IRES (results not shown). This high false positive rate
has been confirmed by other investigators, as well [50].

Instead of using features common to all IRES to deter-
mine for prediction, recent results suggest that machine
learning approaches that combine multiple weak learners
to predict IRES may be effective [25, 44]. In 2016, Wein-
garten-Gabbay et al. developed a high-throughput IRES
activity assay and employed it to identify thousands of
novel IRES in human and viral genomes [46]. The identifi-
cation of many new IRES improves the likelihood that a
machine learning model can be successfully implemented.
Based on the Weingarten-Gabbay et al. dataset, Gritsenko
et al. built a stochastic gradient-boosting decision tree
model (GBDT) [8, 48] to predict IRES using 6120 kmer
features [10]. However, the large feature set leads to pos-
sible model overfitting and slow model fitting time.

IRESfinder, the most recent method, uses only the hu-
man genome part of the Weingarten-Gabbay et al. data-
set and implements a logit model with framed kmer
features to predict cellular IRES [50]. The IRESfinder
logit model was trained only on cellular IRES, and, as a
transformed linear model, may not work well for non-
linear relationships. In addition, the independent testing
dataset is very small (only 13 sequences), possibly lead-
ing to overestimation of the AUC.

In this manuscript, we describe a machine learning
model that combines sequence and structural features to
predict both viral and cellular IRES, with better perform-
ance than previous models. In order to make the predict-
ive model widely available, it has been implemented as a
simple to execute R/Shiny app. The optimized model,
IRESpy, is very fast, and can be used to make genome
scale predictions.

Results

In a typical scenario, one has only the sequence of the
RNA available and does not have additional information
(such as experimentally determined secondary and ter-
tiary structure). In this work, we focus on features that
can be obtained from the sequence alone, rather than on
comparative information, which requires a curated com-
parative database. We consider three kinds of features:
sequence features, structural features, and sequence-
structural hybrid features.

Sequence features

Sequence features are the tabulated frequencies of kmer
words in the target sequences. Given the four base RNA
alphabets, there are 4° words of length &, yielding four
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1mer, sixteen 2mer, sixty-four 3mer, and two hundred
and fifty-six 4mer features (total =340). It is possible
that sequence features, which might correspond to pro-
tein binding sites, could be localized with respect to
other features in the IRES. To incorporate this possibil-
ity, we consider both global kmers, the word frequency
counted over the entire length of the sequence, and local
kmers, which are counted in 20 base windows with a 10-
base overlap, beginning at the 5" end of the sequence of
interest. In all cases, the kmer count is divided by the se-
quence length to give the kmer frequency. An example
of kmer calculation for the Cricket Paralysis Virus inter-
genic region (CrPV IGR) IRES is shown in Fig. 1.

Structural features
The predicted minimum free energy (PMFE) is highly
correlated with sequence length [42]. This is undesirable
as could lead to false positive predictions based on the
length of the query sequence. While this effect is re-
duced using Dataset 2, in which all training sequences
are the same length, sequence length is clearly a conflat-
ing variable that should be excluded.

Quviee, the ratio of the PMFE and the PMFE of random-
ized sequences [1], is much less dependent on sequence
length (see methods). It is believed that the stability of
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RNA secondary structure depends crucially on the stack-
ing of adjacent base pairs [15, 43]. Therefore, the frequen-
cies of dinucleotides in the randomized sequences are an
important consideration in calculating the PMFE of ran-
domized sequences [3]. In calculating Qprg, @ dinucleo-
tide preserving randomization method has been used to
generate randomized sequences.

Quiee can be used to compare the degree of predicted
secondary structure in different sequences regardless of
length. This length independent statistic indicates
whether the degree of secondary structure is relatively
lower or higher than that of randomized sequences, re-
spectively. Viral IRES have been found to have highly
folded secondary structures that are critical for their
function. The structures of Dicistrovirus IRES, in par-
ticular, are conserved and comprise folded structures
with three pseudoknots. Cellular IRES typically need
ITAFs to initiate translation, and the binding between
ITAFs and cellular IRES has been proposed to activate
the IRES structure by changing it from a relaxed status
to a rigid status [7]. Cellular IRES are therefore likely to
have a less extensively base-paired secondary structure.
The 5" UTRs of housekeeping genes, in general, do not
require highly folded structures because they use the
cap-dependent translation initiation process.
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Fig. 1 Calculation of Kmer features. An example of kmer features in the Cricket paralysis virus (CrPV) intergenic region (IGR) are shown. From
Tmer to 4mer examples are shown. The red and green boxes show examples of the observation window used to calculate local kmers. 340
global kmers and 5440 local kmers have been tested in this research
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Average Qyee values clearly differ in viral IRES, cellu-
lar IRES and the UTRs of housekeeping genes (Fig. 2).
We expect that Qye also should be different in IRES
and non-IRES regions of the same mRNA. Figure 2a
shows the observed differences in Qg of selected viral
IRES, cellular IRES, and a housekeeping gene 5’UTR.
The Queg of the viral IRES is the lowest, indicating the
presence of a more stable folded structure. The cellular
IRES Qe is about 0.5, which indicates this sequence
has an intermediate degree of secondary structure, but
still more than would be expected for randomized se-
quences, and the 5'UTR of the ERH housekeeping genes
has the highest Qurg, indicating a relatively low degree
of secondary structure. These results suggest that the
Quiee can indicate the degree of base-paired secondary
structure in various sequence classes, and may be useful
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in distinguishing IRES and non-IRES sequences. Figure
2b shows the Qye of 200 base segments of CrPV. Two
of the low Qg regions exactly match the regions of
the known the 5’"UTR IRES (bases 1-708) and intergenic
(IGR) IRES (bases 6000—6200), again indicating that
Qe may be a powerful discriminatory feature that can
be used to identify IRES positions mRNA sequences.

Hybrid features

Triplet features, which combine the primary sequence
and predicted base-paired structure, have been used in
miRNA prediction [45]. The first successful application
of this kind of feature was in a support vector machine
algorithm for classifying pre-miRNAs [47]. The defin-
ition and calculation of triplet features are shown in
Fig. 3. Triplet features encode the local predicted
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Fig. 2 Q¢ calculation examples of IRES and non-IRES sequences. a PMFE of randomized sequences (density plot) and PMFE of the CrPV IGR
IRES (viral IRES, PMFE =-47.5, Quee = 0.001), the ERH 5" UTR (housekeeping gene, PMFE =-12.7, Quee = 0.99), Apaf-1 cellular IRES (PMFE =-76,
Quiee = 0.66), and CrPV non-IRES regions (position: 6200-6399, PMFE =-22.2, Quee = 0.94). b Qe of 200 base segments across the whole genomic
CrPV mRNA. The Que shows minimal values in the regions of the known the 5'UTR IRES (bases 1-708) and IGR IRES (bases 6000-6200)
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Fig. 3 Calculation of triplet features. An example of triplet features in the Cricket paralysis virus (CrPV) intergenic region (IGR) are shown.

The secondary structure of the candidate sequence was predicted using UNAfold [29]. For each nucleotide, only two states are possible, paired or
unpaired. Parenthesess “()" or dots “" represent the paired and unpaired nucleotides in the predicted secondary structure, respectively. For any 3
adjacent bases, there are 8 possible structural states: “(((", “((", “(.","(.("/((",".("".(", and” ...". Triplet features comprise the structural states plus the identity
of the central base, A, C, G, or U, so there are 32 (8*4 = 32) triplet features in total. Triplet features are normalized by dividing the observed number of

each triplet by the total number of all the triplet features

secondary structure as a series of characters indicating
the predicted structure (where the symbols ‘(‘ and “ in-
dicate base-paired and unpaired bases, respectively) and
the base at the center of the triplet. The triplet feature
“A((( “thus indicates a sequence where three bases are
base-paired, and the center base is an ‘A’.

Approach

In this work, we focus on an ab initio classification ap-
proach for IRES prediction. All the features considered here
are sequence length independent - kmer words, Qurg, and
triplets, and thus should be equally appropriate for scanning
long (genomic) or short (specific target) sequences.

Two existing databases have been created to systemat-
ically study IRES, which provide useful background in-
formation for this study. The first database, referred to
as Dataset 1 in this work, comprises confirmed IRES
drawn from IRESite [33] and includes selected 5UTRs
of housekeeping genes. Fifty-two viral IRES and 64 cellu-
lar IRES from IRESite are labeled as IRES in Dataset 1.
Housekeeping genes principally utilize the 5" cap-
dependent mechanism for initiation, and 51 of them
were randomly selected as the non-IRES group used for
comparison in Dataset 1 [24]. Dataset 2 is derived from
a high-throughput bicistronic assay that has increased

the number of known IRES by more than 10-fold [46].
This large increase in the number of examples of IRES
provides an opportunity to better learn the relationship
between sequence and structural features and IRES
mechanism. We primarily rely on the Dataset 2 to build
the machine learning model due to its large size and
semi-quantitative measure of IRES activity. Dataset 2
only contains only human and viral IRES, and all se-
quences share the same length. To explore all other
IRES from other species and with various lengths, and to
provide an independent test set, Dataset 1 is used.
Dataset 2 has been randomly divided into a training
partition (90%) and a validation partition (10%). The
training dataset was used in a grid search to optimize
the XGBoost model parameter: learning rate, maximum
tree depth, subsample ratio of the training instances, and
subsample ratio of the features, used when constructing
each tree (Additional file 1: Figure S3). Each combin-
ation of parameters was evaluated using 10-fold cross
validation, in which the training partition is equally di-
vided into 10 sets; one set is used for testing, and the re-
mainder used for training in each run. In successive
runs, different partitions are held out for testing. In the
end, the best fit parameters are summarized to generate
the final set of model parameters. The data in the
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validation is not included in either hyperparameter or
parameter training and thus provides an unbiased evalu-
ation of the final trained model. The whole nested cross
validation process is described in detail in section 1 of
the Additional file 1.

XGBoost stands for eXtreme Gradient Boosting. It com-
bines weak learners (decision trees) to achieve stronger
overall class discrimination [2]. XGBoost learns a series of
decision trees to classify the labelled training data. Each de-
cision comprises a series of rules that semi-optimally splits
the training data. Successive trees that “correct” the errors
in the initial tree are then learned to improve the classifica-
tion of positive and negative training examples. Compared
with gradient boosting, XGBoost can be more efficiently
parallelized, and incorporates regularization and tree prun-
ing to reduce over-fitting. A variety of hyperparameters
must be optimized in the XGBoost method, including the
learning rate, maximum tree depth, subsample ratio of the
training instances, and subsample ratio of the features.

A succession of decision trees are generated where each
tree, metaphorically, corrects the errors made in the previ-
ous trees. Due to the nature of this process, it is often dif-
ficult to map the importance of the features directly onto
biological importance since each individual “rule” in the
decision tree is likely to be noisy.

Training on kmer features

Machine learning models, including GBDT, and extreme
gradient boosting (XGBoost), have been compared for
IRES prediction. The approach used here, XGBoost ex-
hibits higher AUC performance, and substantially lower
training time than the GBDT model. As shown in Fig. 4a,
XGBoost requires 75% less training time, but improves
AUC by 5% compared with GBDT, without any
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hyperparameter tuning. With the same features, but dif-
ferent model and parameter tuning, the XGBoost model
can reach a testing AUC of 0.793 and training AUC
0.947. This is substantially better than the GBDT which
showed a testing AUC of 0.77, and training AUC of 1.0
(Fig. 4b). To investigate the relative importance of global
and local kmer features, the XGBoost model was run
with the same parameter settings, but incorporating only
global kmer features. In this case, the testing AUC is
0.771 and training AUC is 0.911 (Fig. 4b); this model
achieves the same performance as GBDT, but requires
many fewer features. The final model includes 1281 indi-
vidual trees and each tree incorporates 340 features. The
maximum depth of each tree is set to be 6.

Training on kmer + structural features

Structural features such as the number of predicted hair-
pin-, bulge-, and internal- loops; maximum loop length,
maximum hairpin-loop length, maximum hairpin-stem
length, and the number of unpaired bases have been pre-
viously studied [10, 21, 50], but none were found to have
significant predictive value. We hypothesized that Qug,
and triplet features, because they are length independent
and combine sequence and structural information, might
act as better features to classify IRES and non-IRES se-
quences. In particular, triplet features have the potential to
reveal locally conserved sequence motifs that appear in a
specific structural context. These features have been com-
bined with the previously examined global kmer features
in a sequence-structural model that is better than the sim-
ple sequence-based model. The testing AUC of the com-
bined model increases slightly, from 0.771 to 0.775
(Fig. 5). The small magnitude of the increase probably in-
dicates the presence of correlation between the global
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hyperparameter tuning. b Model performance comparison using area under the ROC curve (AUC). The XGBoost model has lower training AUC
but higher testing AUC than the GBDT model. The XGBoost model trained with only local kmers performs the same as the GBDT model, but the
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Structural Features
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kmer and structural features. When using the structural
features alone, the testing AUC is 0.741, which means that
the structural features can still capture most of the vari-
ance of the dataset with only 33 features.

The high AUC of the structural feature-based model in-
dicates that structural features alone can capture most of
the information contained in the kmer features, while de-
creasing the number of features from 340 to 33. The struc-
tural features therefore have a relatively high information
content. However, the lack of improvement in the com-
bined model compared to either the global kmer or struc-
tural model suggests that the information in kmer words
and the structural features may be largely redundant.

Biological significance of discriminative features

As mentioned previously, it is not usually straightforward
to understand the biological relevance of the selected fea-
tures. Machine learning (ML) models are often considered
“black boxes” due to their complex inner mechanism. Un-
derstanding the contribution of each feature to the model
has been recognized as a very difficult aspect of machine
learning. The SHAP (SHapley Additive exPlanations)
method assigns values that measure the marginal contri-
bution of each feature to the model [27]. It combines
game theory with local explanations and is well suited for
machine learning explanation. Unlike feature importance
measures based on weight, cover, or information gain, the
SHAP value is the only consistent and locally accurate
additive method, and it can be interpreted as indicating
which features are the most globally important for

classification. Figure 6a shows the top 20 most important
features in models trained with both global and local
kmers. Red indicates higher feature values and blue indi-
cates lower feature values. Higher frequencies of U rich
kmers, such as “U”, “UU”, “UUU”, “UUUU”", “CU”, and
“UGU”, are associated with higher predicted probability of
being IRES. This is consistent with the previous reports
that pyrimidine-rich kmers, especially U rich kmers are
important for IRES function [46]. Importance of global
kmer and local kmer features follow similar patterns, for
instance, the local kmer features U_121, U_131, U_141,
U_151, and U_161 all support classification of sequences
as IRES, as do the global kmer features. The importance
of the local region from base 121-161 may be important
as an ITAF binding site (perhaps pyrimidine tract binding
protein), as suggested by Weingarten-Gabbay et al.
Whether the CU feature is related to the poly U feature is
difficult to tell. It is worth noting that in picornaviral IRES,
one of the most conserved features is the SL3A “hexaloop”
in which a CU dinucleotide is highly conserved [6]. Figure
6b lists the SHAP values of the top important features for
the global kmer only model. The similar importance of
features in different models suggests that the models are
detecting essentially the same features. Figure 6¢ shows
the SHAP values for both the global kmer and structural
features model. Some structural features, such as ‘U.,;
‘G(((; and the Qurp, are more important than most global
kmers. Figure 6d lists the structural features, and serves as
a potential structural motif list much like a differentially
expressed genes list in the RNA-seq analysis.
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(See figure on previous page.)
Fig. 6 XGBoost model feature importance explained by SHAP values at the global scale. a The summary of SHAP values of the top 20 important
features for model including both global kmers and local kmers. b The summary of SHAP values of the top 20 important features for models including

only global kmers. ¢ The summary of SHAP values of the top 20 important features for models including both global kmers and structural features.
d The summary of SHAP value of the top 20 important features for model including only structural features

In order to understand the biological meaning of the
trained model we can examine how the response variable,
in this case classification as IRES vs non-IRES, changes
with respect to the values of the features. SHAP values
show the change in the predicted value as a specified fea-
ture varies over its marginal distribution, for each import-
ant feature. Figure 7a shows examples of two highly
ranked features. An increase in the frequency of the UUU
3mer, from 0.01 to 0.03, increases the probability that a se-
quence is an IRES, while an increase in the frequency of
the GA 2mer from 0.04 to 0.08 decreases the probability
that the sequence is IRES.

For novel sequences, instead of simply predicting the
probability that a sequence is an IRES, we want to know
which features can explain the prediction. Local Interpret-
able Model-agnostic Explanations (LIME) analysis ex-
plains the contribution of individual features to the overall
prediction [20, 49]. The assumption of LIME is that every
complex model has a linear or explainable relationship in
the local space of the dataset. It is possible to fit a simple
model around a sequence by slightly permuting its feature
matrix. In LIME, a similarity matrix that measures the

distance between a query sequence and a certain number
of permutations is constructed. Each permutation is clas-
sified by the XGBoost model, and the predicted class,
IRES or non-IRES, is classified by a simple model. The
simple model uses the same features as the XGBoost
model, and mimics how the XGBoost model behaves in
the local space defined by the permutations. Figure 7b
shows, for instance, why the predicted probability of CrPV
IGR IRES is high (p = 0.861), but the predicted probability
of an IRES in the CrPV protein coding sequence is very
low (p =0.067). The green bars, which represent the posi-
tively weighted features, are more prominent in the CrPV
IGR IRES, than in the CrPV protein coding sequences
(non-IRES).

We use importance ranking plots to analyze the im-
portance of triplet features in IRES prediction. Figure 6b
shows that triplets “U ...” , “A ...” , “A..(” are important
in the model including both global kmers and structural
features, as well as in the model including only struc-
tural features. In particular, the triplet “U ...”, a loop
with a central U base, can be seen to be important. This
feature may correspond to the conserved U rich loop
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motif found in the SL2.1 region of Dicistrovirus IGR
IRES. The SL2.1 stem/loop has been found to be import-
ant for ribosome binding [4, 38], and in the Cryo-EM
structure of the CrPV IRES, it is complexed with the
ribosome, with the SL2.1 region positioned at the inter-
face of the IRES and the ribosome [16, 38], in direct
contact with the ribosome. Mutations in the SL2.1 re-
gion result in loss of IRES function [11, 17, 28].

Prediction probability vs IRES activity

The IRES activity of the sequences in Dataset 2 was
measured by inserting them into a lentiviral bicistronic
plasmid, between mRFP and eGFP reporter genes, and
transfecting H1299 cells, which results in integration of
a single oligonucleotide construct in each cell [46]. The
cells were sorted with FACS and assigned to 16 fluores-
cence intensity bins on the basis of eGFP expression.
IRES activity, in the range 206 to 50000, is defined by
those expression levels. The correlation between the
IRES probability predicted by our XGBoost model and
the quantitative IRES experimental activities has been
explored, and the result shows that the predicted IRES
probability is significantly higher for high-activity (> 600)
IRES, than for those where the IRES activity is close to
the base level (<600) in Fig. 8. This suggests that the
predictive accuracy of the XGBoost model is higher for
high activity IRES than for marginally active sites, and
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implies that, when high precision is a priority, precision
can be increased at the expense of recall.

Scan of human UTRs

IRESpy has been applied to scan human 5UTRs (124315
UTR sequences listed in UTRdb). Figure 9 shows the dis-
tribution of IRES prediction probability for the positive
and negative training sets in Dataset 2, and all human
UTRs. The distribution of probabilities in the human
UTR dataset strongly resembles the Dataset 2 negative
class, but has a larger tail. This suggests that IRESpy is
successfully distinguishing IRES from non-IRES in the
uncharacterized human UTRs. When a prediction thresh-
old of 0.1 is used for both datasets, 13.47% of the human
IRES are predicted to contain IRES which is close to the
10% value cited in previous reports [41].

IRESpy prediction tool
The XGBoost model based on global kmer features, has
been implemented as a shiny application, IRESpy. It is
available online: https://irespy.shinyapps.io/IRESpy/. Com-
pared with IRESpred (Table 1), IRESpy shows better pre-
dictive performance, with both higher sensitivity (recall)
and higher precision on the validation dataset (not in-
cluded in parameter or hyperparameter training).

To further test the predictive ability of IRESpy, it has
been applied to 202 highly structured non-IRES RNAs
(see methods) [13], to Dataset 1, which includes the
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Distribution of predicted IRES probability in human 5’UTR
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Fig. 9 The density distribution of predicted IRES probability in
Dataset 2 and human UTR scan

reported sequences of IRES from IRESite (positives)
[33], and to housekeeping gene 5UTRs (presumed nega-
tives). IRESpy clearly distinguishes IRES and non-IRES
sequences in Dataset 1. The low predicted IRES prob-
ability for all highly structured RNA groups suggests that
IRESpy is not simply detecting relatively structured
RNA. Since a relatively high amount of secondary struc-
ture is widely considered to be a hallmark of IRES, the
test against highly structured RNAS represents an espe-
cially difficult test (Fig. 10).

Discussion

Clearly, both the selected features and the models are im-
portant for predicting the existence of IRES. A limitation of
VIPS and IRESPred are the inclusion of length dependent
features such as the length of UTRs, and the number of up-
stream AUGs. This is a serious drawback when predicting
IRES in UTRs, which vary greatly in length. IRESpy per-
forms better than the GBDT method, using a smaller
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number of features. Using the same datasets and features
(global and local kmer features), but switching from the
GBDT model to XGBoost, increases the validation AUC by
5%, and the decreases the training time by 75%.

Global kmer and local kmer features are highly corre-
lated. The XGBoost model achieves the same model per-
formance as the GBDT model incorporating only global
kmer features. The modest increase in classification per-
formance, accompanied by a 94% decrease in the num-
ber of features, suggests that the IRESpy model shows
better generalization. The reduced number of model fea-
tures results in a decrease in both training time and clas-
sification time (making the XGBoost model more
appropriate for genome wide scanning).

Surprisingly, incorporation of structural features such as
Quiee and triplet features, has relatively little effect on
model performance, although some of the highly ranked
features such as “U ...” can be directly related to known
mechanistic features of some IRES. The reason for this
lack of improvement are not obvious. Several explanations
seem possible. The extensive nature of the Qu g, while it
provides an overall measure of the degree of secondary
structure, may not be sensitive enough to particular struc-
tural and topological features that are important to IRES
function, i.e. a high degree of structure may not be suffi-
cient — specific structures may be required. This seems
likely. Alternatively, while the prediction MFE RNA struc-
tures is relatively good, generally estimated to be about
80% accurate [32, 51] at the base pair level, it may not be
good enough to reliably detect structural motifs. Further-
more, the RNA structure prediction approach used here
does not predict pseudoknots which, based our knowledge
of viral IRES, may be highly important to IRES function.
On the other hand, triplet features take a very local view

Table 1 Comparison between IRESpy and IRESpred model performance. IRESpy performs better than IRESpred in accuracy, sensitivity

(recall), specificity, precision and MCC

IRESpred
Accuracy(%) 52.5%
Sensitivity(%) 62.5%
Specificity(%) 42.5%
Precision(%) 52.1%
McCC 0.0510

IRESpy

77.8% ACC=(TP +TN)/ (P +N)
79.6% TPR=TP / (TP + FN)
61.8% SPC=TN / (FP +TN)
94.8% PPV =TP / (TP + FP)
0.2900 TP*TN - FP*FN /

sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))
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of structure and sequence, and may be too detailed to cap-
ture the important larger structural motifs. Another ex-
planation may be that, in fact, IRES function involves
many different mechanisms [37] — the XGBoost decision
tree models can capture the fact that different features are
important for different IRES, but unfortunately, teasing
this information out of the trained model is difficult — the
interpretation of the importance of features in machine
learning models is a topic of high interest in the machine
learning community. The SHAP feature importance plots
shown in Fig. 6 can serve as a potential motif list for re-
searchers to test in laboratory experiments. In particular,
the triplet “U ...” may indicate the importance of a con-
served U rich loop motif similar to that found in the SL2.1
region of the Dicistrovirus IGR IRES. The CU kmer is part
of a known tetraloop motif (CUYG) which may be import-
ant in stabilizing the IRES structure [34]. The combination
of global kmer features and structural features increases
the validation AUC compared with that of the model in-
corporating global kmer features alone, but only modestly.
Using structural features alone achieves relatively high
classification performance, and at the same time, reduces
the number of features from 340 to 33. From one point of
view, this indicates that the structural features are rela-
tively powerful, providing higher performance per feature,
but why these features do not greatly increase predictive
performance remains unclear.

Conclusion

In summary, IRESpy is a high-throughput online tool for
IRES prediction. Its prediction quality is better than previ-
ous tools, and it is able to predict both viral and cellular
IRES with good performance. IRESpy uses only length-in-
dependent features in its prediction making in appropriate

for analyzing RNAs of different lengths. The computa-
tional time is low making IRESpy appropriate for genome
wide comparisons and for use in genome annotation. The
IRESpy application is freely available as an R/shiny app
making it easily available to both computationally sophis-
ticated and more computationally naive users.

Methods

Training data (dataset 2)

We use the same training data as was used for the IRE-
SPredictor model ([10], downloadable at https://bitbucket.
org/alexeyg-com/irespredictor/src/v2/data/). This dataset
is derived from Weingarten-Gabbay et al. [46] and com-
prises selected from reported IRES, UTRs of human
genes, UTRs of viral genes, and sequences complementary
to 18S rRNA. From the original dataset of 55,000 we
retain sequences labelled as ‘CDS_screen, ‘Genome_Wide_
Sceen_Elements; ‘High_Priority_Genes_Blocks, ‘High_Pri
ority_Viruses_Blocks, ‘Human_5UTR_Screen, ‘IRESite_
blocks, ‘Viral 5UTR_Screen, and ‘rRNA_Matching
5UTRSs’ to obtain 28,669 native (non-synthetic) sequences.
The removed sequences are mostly synthetic sequences
introduced to test the effect of specific mutations on IRES
activity. Weingarten-Gabbay et al. screened the sequence
fragments in a high-throughput bicistronic assay using a
consistent 173 base insert size, removing any length ef-
fects. Based on the reported replicate measurements of
IRES activity, promotor activity, and splicing activity, we
further filtered the dataset to retain only sequences with
splicing scores greater than - 2.5 and promoter activity
less than 0.2. The final training dataset, referred to as
Dataset 2, comprises 20872 subsequences: 2129 sequences
with IRES activity scores above 600 are defined as IRES,
and the other 18743 as nonIRES. The ratio of IRES to
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nonlIRES is about 1:8.6. This is similar to the ratio of IRES:
nonlIRES in the human genome, which has been estimated
at about 10%.

The similarity of the insert sequences in the 20872 na-
tive sequences in Dataset 2 have been checked using
Blastn. The results show 7.56% sequences have more
than 80% identity, 15.3% sequences have more than 50%
identity, and 17.02% sequences have more than 30%
identity. There are no sequences with 100% identity. Al-
though the number of high identity sequences is low,
the XGBoost model has been retested excluding se-
quences with higher than 50% identity. We found the
model performance is similar (not shown).

Highly structured RNA data

The highly structured RNA group includes 202 examples
of 16S RNA, 23S RNA, 5S RNA, gl and g2 self-splicing
introns, RNaseP, tmRNA and tRNA [13]. The sequences
have been carefully screened to remove any sequences
with greater than 40% sequence identity.

Dataset 1

Dataset 1 is composed of sequences from IRESite [33] and
selected 5'UTRs of housekeeping genes. Fifty-two viral
IRES and 64 cellular IRES from IRESite are labeled as
IRES in Dataset 1. Housekeeping genes principally utilize
the 5" cap-dependent mechanism for initiation and 51 of
were selected as the non-IRES group in Dataset 1 [24].

Human UTRs
124315 human 5'UTR sequences were collected from
UTRdb [9].

Kmer features

The frequency of each kmer is calculated as the count of
the kmer divided by the sequence length. Global kmer fea-
tures are counted over the entire length of the sequence.
Local kmer features are counted in 20 base windows, with
a ten-base overlap between adjacent windows (Fig. 1).

Predicted minimum free energy (PMFE) and Qe
The predicted minimum free energy is calculated by
UNAfold-3.9 [29].

Quviee is calculated as follows:

(1) Calculate the predicted minimum freedom energy
of the secondary structure from the original
sequence by RNAfold.

(2) The original sequence is randomized while
preseerving the dinucleotide frequenciess. Then the
MEE of the randomized sequenceis calculated.

(3) Step 2 is repeated many times (for example 2000) in
order to obtain the distribution of the predicted
MEE values.
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(4) If N is the number of iterations and n is the
number of randomized sequences with MFE value
less than or equal to the original value, then QMFE
is calculated as:

n
N-+1

Quiee =

The Ushuffle program [18], which is based on the Euler
algorithm, is used to randomize the sequences used in cal-
culating the Qupp. Ushuffle uses an exact method that
produces randomized sequences with exactly the same di-
nucleotide composition as the original sequences.

XGBoost software and parameters

The XGBoost model is fitted under R (Version 3.5.0) with
the xgboost package (Version 0.71.2). The parameters used
in the XGBoost model include: eta=0.01, gamma =0,
lamda =1, alpha =0, max_depth =5, min_child_weight =
19, subsample = 0.8, colsample_bytree = 0.65). IRESpy is
deployed online as a shiny package (Version 1.2.0). It is
available on line: https://irespy.shinyapps.io/IRESpy/.

Additional file

Additional file 1: Detailed information on 1. nested cross-validation
procedure, 2. hyper-parameter tuning, 3. sequence similarity filtering, 4.
Performance of VIPS, IRESPred, IRES-Interpreter, and IRESfinder, 5.
Genomic scan of Human UTRs for IRES, 6. Feature importance plots, 7.
comparison of other ML approaches: Random forest, extremely
randomized forest, GLM grid, deep neural net and stacked ensemble
models. (DOCX 1300 kb)
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