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Abstract

Background: Principal components analysis (PCA) is often used to find characteristic patterns associated with
certain diseases by reducing variable numbers before a predictive model is built, particularly when some variables
are correlated. Usually, the first two or three components from PCA are used to determine whether individuals can
be clustered into two classification groups based on pre-determined criteria: control and disease group. However, a
combination of other components may exist which better distinguish diseased individuals from healthy controls.
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Genetic algorithms (GAs) can be useful and efficient for searching the best combination of variables to build a
prediction model. This study aimed to develop a prediction model that combines PCA and a genetic algorithm
(GA) for identifying sets of bacterial species associated with obesity and metabolic syndrome (Mets).

Results: The prediction models built using the combination of principal components (PCs) selected by GA were
compared to the models built using the top PCs that explained the most variance in the sample and to models
built with selected original variables. The advantages of combining PCA with GA were demonstrated.

Conclusions: The proposed algorithm overcomes the limitation of PCA for data analysis. It offers a new way to
build prediction models that may improve the prediction accuracy. The variables included in the PCs that were
selected by GA can be combined with flexibility for potential clinical applications. The algorithm can be useful for
many biological studies where high dimensional data are collected with highly correlated variables.

Background

Association between the human gut microbiome and a
diverse range of health issues has been reported in a
number of studies [1, 2]. Knight and colleagues [3]
reviewed the methodological approach in microbiome
studies, including: experimental design, choice of mo-
lecular analysis technology, methods for data analysis,
and the integration of multiple -omics data sets.
Different methods for surveying microbial communities
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include 16S ribosomal RNA, and metagenomic and
metatranscriptomic sequencing. Next-step data analyses
are needed to search for overall patterns in microbiome
variation. The association between obesity and the gut
microbiome from the phylum level to the species level has
been studied and various results have been reported [4—6].

Several well-known sequence data analysis pipelines
for microbiota study have been published, for example
Quantitative Insights into Microbial Ecology (QIIME)
[7], MetaGenome Rapid Annotation using Subsystem
Technology (MG-RAST) [8] and mothur [9]. These
packages include the functions of sequence alignment,
operational taxonomic unit (OTU) identification,
taxonomy classification, and alpha and beta diversity
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calculation. They have been widely used for different
biological and medical research purposes, such as associ-
ating gut microbiome diversity with diseases [10-13]. It
is important to recognise that due to some possible pit-
falls in sample processing, the abundance of specific bac-
terial species and overall community composition can be
distorted, thus hampering the analysis and threatening
the validity of the research findings [14]. In addition, a
key limitation of using 16S rRNA gene analysis for genus
and species level classification is that related bacterial
species may be indistinguishable due to near identical
16S rRNA gene sequences [15]. The potential for differ-
ent data analysis approaches to produce different out-
comes has also been recognised. Plummer et al. [15]
compared three pipelines commonly used for 16S rRNA
gene analysis: QIIME, MG-RAST and mothur.
Favourably, their results showed that the three pipelines
produced comparable results for analysis of faecal sam-
ples, in terms of alpha diversity and usability. Although a
difference was observed between the pipelines in terms
of taxonomic classification of genera from the Entero-
bacteriaceae family, the three pipelines detected the
same phylum in similar abundances. D’Argenio et al.
[16] also compared QIIME and MG-RAST, and ob-
served a statistically significant difference between these
two bioinformatics pipelines with regards to beta diver-
sity measures.

Despite the effort from researchers to develop high
quality analytical pipelines, it is recognised that the com-
plexity and variability of the human microbiome can be
sensitive to various environmental factors [17]. Improve-
ment of analytical pipelines has been complicated by the
limitation of available sample material and the relatively
high cost of the sequence analysis necessary for micro-
biome profiling. As a result, most microbiome studies
have used limited sample sizes, raising questions regard-
ing the accuracy of their findings. In addition to efforts
to improve the accuracy of OTU detection and taxo-
nomic classification, especially at the genus and species
levels, researchers have been studying ways to character-
ise diseases based on microbial composition. Rather than
simply associating diseases and individual microbial fea-
tures, such as a phylum or species, studies have started
looking at defining microbial signatures for specific dis-
eases. This includes the application of computational
modelling and variable selection techniques. For ex-
ample, Rivera-Pinto et al. [18] presented a greedy step-
wise algorithm for selection of microbial signatures that
preserves the principles of compositional data analysis.
Sze and Schloss [19] performed a meta-analysis on asso-
ciations between specific microbiome-based markers and
obesity, concluding that although there was support for
a relationship between human faecal microbial commu-
nities and obesity status, this association was relatively
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weak and its detection is confounded by large interper-
sonal variation and insufficient sample sizes. The same
study also tested random forest models for classifying in-
dividuals as obese on the basis of microbiome compos-
ition and did not find obvious patterns that could
separate the obese and healthy groups. Random forest
models were also used by Peters et al. [20] to identify
taxonomic signatures of obesity. These models were
evaluated with Receiver Operator Characteristic (ROC)
curves and the area under the curve (AUC) value pro-
duced by the optimal model, which included 49 OTUs,
was 0.81. When the repeated cross-validation was per-
formed, the AUC value decreased to 0.65. Other ma-
chine learning methods used for microbiome studies
have been reviewed by Knights et al. [21].

With the potential for large numbers of microbial spe-
cies to be identified in human faecal samples and the
high correlation between many of the species detected,
principal components analysis (PCA) is often used. Stud-
ies use PCA to find characteristic patterns associated
with certain diseases by reducing variable numbers based
on their correlation with a principal component (PC),
before a predictive model is built. The first two or three
principle components account for the greatest propor-
tion of the variance in the dataset. Usually, these compo-
nents are then used to determine whether individuals
can be clustered into one of two classification groups,
control or diseased, based on pre-determined criteria.
However, we have asked the following questions: (i) Is it
possible that the proportion of variance captured by the
first two or three PCs is unrelated to the disease groups,
and that the variance explained by other components is
able to better distinguish disease individuals from
healthy controls? (ii) Are there different groups of bac-
terial species associated with individual obesity?

With these questions in mind, we developed a predic-
tion method that combines PCA and a genetic algorithm
(GA) for microbial biomarkers identification. We applied
this approach to faecal microbial data collected from our
obesity study, to identify potential sets of bacterial spe-
cies that may be associated with obesity with metabolic
syndromes (MetS). The preliminary work has been pre-
sented in the 2018 IEEE International Conference on
Bioinformatics and Biomedicine [22].

Methods

Principal components analysis

PCA is often used as a tool in exploratory data analysis
for variable dimensionality reduction prior to building
predictive models. It can be used to reduce a large num-
ber of predictor variables to a few PCs, particularly in
datasets that are noisy or have strongly correlated ex-
planatory variables. The PCs can then be used to build
predictive models. The PCs are the linear combinations
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of the original variables that account for variance in the
data. PCA can be performed using either eigenvalue de-
composition of a data covariance matrix or singular
value decomposition of a data matrix. The coefficients
corresponding to each variable in the linear combina-
tions indicate the relative weight of the variable in the
component. The larger the absolute value of the coeffi-
cient, the more important the corresponding variable is
in calculating the component. To make the coefficient
value for each variable comparable, the data should be
normalized to have the same unit of measurement
before PCA is used.

Genetic algorithms

GA is a search heuristic to find optimal solutions by
mimicking Charles Darwin’s theory of natural evolu-
tion--fittest individuals are selected for reproduction for
the next generation. In GA, the potential solutions com-
pete and mate with each other to produce increasingly
fitter individuals over multiple generations.

GAs can be useful and efficient when searching for the
best combination of variables to achieve the best out-
come (e.g. accuracy of prediction). GAs have been devel-
oped and applied for biomarker profile identification in
a range of settings such as Alzheimer’s disease progres-
sion and breast cancer diagnosis [23-25]. The GAs have
also been modified and improved to adapt to different
computational environments and for different applica-
tions [26, 27]. Carter et al. [28] applied GA to their study
to select vaginal microbiome features associated with
bacterial vaginosis. However, the actual features were
not reported, as authors explained that evaluation was
needed from both microbial and clinical perspectives in
the future.

In this study, GA will be used to find the best subset
of principal components produced from a PCA using
gut microbial species data.

Proposed method

The method described here uses normalized OTU abun-
dance with taxonomy assigned across the sample as the
input for PCA. The OTUs can be identified by any of
the sequence analysis pipelines mentioned above or
other software packages, such as “DADA2” [29] in R
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(https://cran.r-project.org/). GA is then applied for selec-
tion of the set of components created from the PCA that
best predict individuals as obese or healthy weight. The
scores of selected PCs calculated for each individual are
used as the input for building a classification model.
ROC curve analysis is used to evaluate the classification
models and is used as the fitness function for the GA.
The method is shown diagrammatically in Fig. 1. In this
research, logistic regression (LR) is used for building the
classification models and more details about how to
implement the GA can be found in reference [24].

Experiments and results

In this study, faecal samples from 22 obese and 105
healthy-weight subjects were collected and sequenced
using a 16S-based approach. The obese sample here was
designed as those with body mass index (BMI) over 30
and with MetS [10]. The healthy-weight subjects in-
cluded 39 recreational individuals and 66 athletes who
were involved in rugby, football soccer, judo, rowing, tri-
athlon or weightlifting. For sequencing analysis, paired-
end reads were merged using the PEAR software (v0.9.6)
[30]. Contaminant human reads were removed by map-
ping to the hgl9 human genome using BWA software
package (v0.7.12) [31] and the remaining reads were
searched against the Greengenes 16S taxonomy database
(GG v13.5) [32] using sequence analysis tool VSEARCH
(v1.9.7) [33] to generate a single OTU raw count/abun-
dance table for all 127 subjects. Amongst the 127 sub-
jects 68,590 OTUs were identified (at all taxonomic
levels), which mapped at the level of species to 163
observations, from Greengenes total reportable content
of 3093 species. Species with low diversity across the co-
hort were filtered from future analysis, this was achieved
by removing the species with zero abundance in 80% of
both healthy and obese subjects. This excluded 126
species (77.3%) of the data leaving 37 species for further
analysis. The abundance values of each of these species
were normalized to the range of [0, 1] (highest
abundance across the individuals as 1 and the lowest as
0) before applying the proposed method which combines
PCA and GA for identifying obese from healthy subjects.
The results were compared with those produced without
GA and with those produced by using GA to select

-

| OTU _]>V
identification, i-
N Norrpah v%
taxonomy —/ zation
assignment

PCA

Ll

vn
—

PCI=f1(v)
:> Classification

! : Model (LR)
| GA

Fig. 1 A diagram of proposed method. s1, s2..sn are the 165 rRNA sequences for this study (can be from other sequencing). v1 to vn are the
abundance (normalized) of each species detected in each individual. m = number of PCs created by PCA, n = number of individuals included in the
sample. PCA is used to produce PC scores for each individual, and GA is used to select the best subset of PCs to distinguish obesity from healthy cases
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combinations of bacterial species for heathy and obese
classification without PCA in the model.

GA models to select combination of PCs for classification
For experiments, we performed PCA across three cir-
cumstances using: the whole dataset, obese only sample,
and healthy weight only sample. This approach is based
on the possibility that for different populations, the cor-
relation between species might differ. The function
“prcomp” from the “stats” package in R [34] was used to
create the PCs and calculate the scores for each individ-
ual. These scores were then used to build the classifica-
tion model with GA to select the best components for
identifying obese from healthy subjects. The algorithm
used by “prcomp” for creating the PCs can be found in
reference [35]. Essentially, the PC calculation is per-
formed by a singular value decomposition of the data
matrix. If there are n observations with p variables, then
the number of distinct PCs is min(n,p).

GA was completed with the fitness function of the
cross-validated AUC value created from the logistic re-
gression model. More explanation about AUC can be
found in Johnson et al. [24]. Constraints for GA were set
to include 1 to 6 PCs in the classification model. Ten-
times repeated five-fold cross-validation was used for
testing the classification model with selected PCs. With
each data set (all, healthy or obese), GA was run 100
times repeatedly. The PC sets that were selected the
most in the repeated runs were chosen as the final re-
sult. From the results (Table 1) it can be seen that the
selection from GA was quite consistent with slight vari-
ation from each run.

The PCA constructed from the whole data set and
healthy-weight subjects both created 37 principal
components (PC1 to PC37) while the PCA from obese
subjects created 22 components (PC1 to PC22). Table 1
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lists the sets of PCs selected by GA and the cross-vali-
dated AUC produced from each prediction model built
with the selected PC(s). The symbols “+” or “-” following
the PC numbers indicate whether the coefficient of this
PC is positive or negative in the corresponding classifica-
tion model. Positive coefficient means that an increased
score of this PC will increase the probability of the indi-
vidual being characterised as obese. For example, PC1+
represents that the first PC created from the species
abundance data will have a positive contribution to
obesity with MetS.

Table 2 lists the top five species that have the highest
contribution to each PC selected by GA. The symbols
“+” or “-” following the species names indicate whether
it has positive or negative contribution to the corre-
sponding PC. For example, Prausnitzii- within column
Compl represents that Prausnitzii has negative correl-
ation with Compl (PC1 for Whole, PC14 for obese, and
PC1 for Healthy). That suggests that increased Prausnit-
zii abundance will decrease the Comp1 value. As Compl
has a positive correlation with being overweight, it can
be speculated that increased Prausnitzii abundance leads
to decreased likihood of being obese.

From the results presented in Table 1 and Table 2 each
of the species were analysed and categorized into two
groups; positive (indicated with an asterisk (*) in Table 2)
or negative correlations with the probability of having
healthy body mass. The combination of having any one of
the microbial species from each column can be a set of
species that can have a high impact on health. For ex-
ample, based on the results from the first set of the experi-
ments which ran PCA on the whole dataset, either
“Prausnitzii, Faecis, Eutactus, Lenta, Eggerthii and Zeae”,
“Formicigenerans, Faecis, Eutactus, Lenta, Eggerthii and
Zeae” or “Prausnitzii, Formicigenerans, Faecis, Eutactus,
Lenta, Eggerthii and Zeae” can be a combination to have a

Table 1 GA selected PCs and the classification model performance (ROC)

Data for Result  Model Model Model Model Model Model
creating PCA _6PCs _5PCs _4PCs _3PCs _2PCs _1PC
All PCs PC1+, PC2—, PC7+, PC11+, PC1+, PC2—, PC7+, PC1+4, PC2—, PC7+,  PCl+, PC2-, PC1+4, PC7+ (or  PC1+
selected PC15-, PC27- PC11+, PC27- PC27- PC7+ pPC2-)
AUC 0.87 0.85 0.84 0.81 0.77 0.69
)
Obesity PCs PC2-, PC4-, PC14+, PC16- pPC2-, PC4-, PC14+, pPC2-, PC4—, PC144, PC2-, PC14+, PC14+, PC18+ PC14+
selected PC18+, PC19- PC18+ PC18+ PC18+
PC19-
AUC 0.92 0.92 0.90 0.87 0.84 0.80
(@%
Healthy PCs PC1+,PC3+, PC5—PC23+, PC1+,PC3+, PC23+,PC28— PC1+,PC23+, PC28-, PC1+,PC23+, PC1+4,PC34+ PC1+
selected PC28-PC34+ PC34+ PC34+ PC34+
AUC 0.92 0.90 0.88 087 0.83 0.72

)

+ Positive correlation coefficient in the model
- Negative correlation coefficient in the model
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Table 2 Top species included in the GA selected 1, 2, 3,4, 5 or 6 PCs produced with different data sets
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Dataset for creating PCA

High contribution variables (high coefficients in the corresponding PC) included in the most selected

components
Compl Comp2 Comp3 Comp4 Comp5 Comp6
Whole (PC1, PC7, PC2, PC27, PC11, PC15)  Prausnitzii-° Gnavus+ Eutactus+® Moorei— Eggerthii-* Zeae+®
Eutactus—* Faecis-* Prausnitzii+®  Obeum- Dispar-* Gnavus—
Formicigenerans-*  Copri+ Aerofaciens-  Lenta+° Adolescentis+ Stutzeri+?
Catus-° Muciniphila-®  Catus— Animalis— Mucilaginosa—* Bromii+®
Faecis—* Adolescentis-®  Adolescentis—  Torques-— Aerofaciens+ Fragilis+°
Obesity (PC14, PC18, PC2, PC4, PCT9, Eutactus—* Uniformis+ Dolichum- Producta-  Caccae+? Formicigenerans+*
FC16) Bromii+ Catus-* Lenta— Prausnitzii+® Parainfluenzae+®  Bromii—
Adolescents-? Dispar+ Aerofaciens+®  Aerofaciens— Formicigenerans+® Distasonis—
Formicigenerans+  Faecis+ Producta— Fragilis— Adolescentis— Eutactus+*
Producta-* Distasonis—=®  Gnavus— Faecis+° Dispar— Perfringens+°
Healthy (PC1, PC34, PC23, PC28, PC3, PC5)  Prausnitzii-* Stutzeri-* Callidus-? Ovatus— Copri+ Copri+?
Eutactus—* Zeae+ Moorei+ Longum+®  Muciniphila-* Muciniphila+*
Catus—* Gnavus+ Formigenes+  Distasonis+®  Formigenes—* Prausnitzii-
Formicigenerans—*  Dispar+ Prausnitzii+ Fragilis— Catus+ Formigenes+*
Faecis—* Lenta—" Catus-° Aerofaciens—  Biforme+ Eutactus+*

Comp1, Comp2, Comp3, Comp4, Comp5 and Compé6 represent the 6 PCs selected by GA. For experiment with whole dataset they are PC1, PC7, PC2, PC27, PC11
and PC15 respectively; for experiment with obesity sample, they are PC14, PC18, PC2, PC4, PC19 and PC16; for experiment with healthy sample, they are PC1,

PC34, PC23, PC28, PC3 and PC5

Species has a positive correlation with the probability of having healthy body mass
+ Positive correlation with the corresponding PC

- Negative correlation with the corresponding PC

potential benefit on health. On the other hand, high values
for Gnavus, Catus, Moorei and Aerofaciens together are
associated with high probability with of being obese.

A final classification model was built with each set of
PCs selected by GA or first 1 to 6 PCs (which explain

the most variance of the data) from the PCA. Again, the
PCs were calculated from the whole dataset, healthy-
weight dataset or obese dataset. The AUCs produced
from the GA-selected PCs were quite obviously higher
than the ones from the top PCs of PCA. Figure 2 shows

a ROC b ROC
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Fig. 2 ROC produced from the top PCs of PCA and from the PCs selected by GA. a: 1--PC1, 2--PC1 + PC2, 3--PC1 + PC2 4+ PC3, 4-PC1 + PC2 +
PC3 + PC4, 5-- PCT 4+ PC2 + PC3 + PC4 + PC5, 6-- PC1 + PC2 + PC3 + PC4 + PC5 + PC6; b 1--PCT, 2--PC1 + PC34, 3--PC1T + PC34 + PC23, 4--PC1 +
PC23 + PC28 + PC34, 5-- PC1 + PC3 + PC23 4+ PC28 + PC34, 6--PC1 + PC3 4+ PC5 + PC23 4+ PC28 + PC34
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the ROCs created from the models built with the se-
lected PCs and the first PCs of the PCA. The PCs in the
graph were calculated with the healthy-weight dataset
(when compared with the result from the PCs calculated
from whole dataset and obese dataset, the first PCs from
the healthy data produced the highest AUC values).

GA models to select sets of species for classification

To compare the results from the model that combined
PCA and GA and from the model where GA was applied
directly for selection of the combination of the bacterial
species, GA was implemented in conjunction with logis-
tic regression using the species abundance directly as
the input for classification.

For experiments, the number of species (number of in-
put variables for logistic regression) was restricted to
maximum six, which was the same as the maximum
number of PCs used in the earlier experiments. Table 3
shows the combinations of the bacterial species selected
by 100 repeated runs of GA, which achieved the highest
AUC values. It can be seen that some of the species were
commonly selected in different sets of the selections.
The selection frequency of each species from the 100 re-
peated GA runs was calculated and a frequency chart
showing the top 10 most selected species was drawn in
Fig. 3. Eutactus and Gnavus appeared in the final selection
of almost every run of the GA (96 out of 100 runs and 95
out of 100 runs). Muciniphila, Distasonis and Prausnitzii
were also selected frequently (> 50% frequency) in the re-
peated GA runs. These highly selected bacterial species
appeared to have relatively high contribution to the
selected PCs shown in the previous section.

Discussion

In this study, a computational method that combines
PCA and GA has been proposed to produce accurate
prediction result and to find sets of features (variables)
that contribute the most to the prediction models. The
model was applied to identify sets of bacterial species as-
sociated with high body mass. Due to the high correl-
ation between many species of the gut bacteria,
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Fig. 3 Frequencies of the species selected from the multiple runs of
GA. The GA was run with logistic regression as the classification model
and species abundance as the input. GA was used to select the
combination of the species for classification of obese individuals from
the health group. The number on top of each bar is how many times

out of 100 GA runs the corresponding species was selected

constructing PCA before the GA can improve the effi-
cacy of GA for selecting multiple sets of microbial spe-
cies associated with obesity and MetS. The result from
this study showed that the prediction models built with
the PCs selected by GA produced much higher AUC
values than the models built with the top PCs that
explained the greatest proportion of the variance in the
sample. The results were also compared with those
produced from the GA selected models with bacterial
species abundance values as the input directly, and it
showed its advantages.

In the microbiome study, the results produced from
the described method depends on the accuracy of the se-
quencing analysis. The microbial species identified here
was based on the sample of 22 obese subjects and 105
healthy-weight subjects. Assuming this result was
validated in multiple datasets with bigger sample sizes,
the results from Table 1 and Table 2 can suggest a few
combinations of microbial species groups that are

Table 3 Sets of species selected by GA using the species abundance as the input variables of logistic regression models

GA Selected Species AUC
Adolescentis Catus Eutactus Gnavus Muciniphila Prausnitzii 0.87
Adolescentis Distasonis Eutactus Gnavus Muciniphila Prausnitzii 0.87
Aerofaciens Distasonis Eutactus Gnavus Longum Muciniphila 0.88
Anginosus Distasonis Eutactus Gnavus Muciniphila Prausnitzii 0.87
Catus Distasonis Eutactus Gnavus Muciniphila Prausnitzii 0.88
Catus Eutactus Gnavus Longum Muciniphila Prausnitzii 0.86
Distasonis Eutactus Gnavus Longum Muciniphila Prausnitzii 0.88

GA Selected Species lists the set of species selected by GA, each row one set. AUC is the area under the ROC curve produced by the corresponding logistic
regression model with the selected set of species. The result was cross validated with the same cross validation set up as the earlier experiments
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beneficial to health. Some of the species in the combina-
tions can be replaced by equivalent alternative species
that are suggested by the algorithm, which gives flexibil-
ity for further intervention. As described in the previous
sections, the bacterial species detected can be different
when applying different sequencing analysis and tax-
onomy classifications. To validate the findings from this
study, the presented algorithm should be run with the
outcomes from metagenomics sequencing and with
other sequencing analysis pipelines. Different reference
databases (e.g. NCBI) can also be used for taxonomy
classification of the OTUs identified.

Conclusion

This study demonstrated the value of applying GA for
selection of subsets of PCs from PCA to improve the
performance of prediction models. The features included
in the PCs that were selected by GA can be combined
with flexibility for potential clinical applications. With
the flexible options of combining the features included
in the PCs selected by the GA, different interventions
can be recommended for different patients, which con-
tributes to the practice of personalised medicine. The
proposed algorithm was designed in a general way and
was tested in a study comparing obese individuals with
MetS and healthy-weight subjects. It can be applied for
any other classification or biomarker identification study.
The model takes into account correlations of the vari-
ables (bacteria species in this study) and the advantages
of GA for feature selection. It overcomes the limitations
of the ways in which PCAs are currently used for predic-
tion modelling. The algorithm can be useful for many
biological studies where high dimensional data are
collected with strongly correlated variables.
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