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Abstract

Background: Atomic force microscopy (AFM) allows the mechanical characterization of single cells and live tissue
by quantifying force-distance (FD) data in nano-indentation experiments. One of the main problems when dealing
with biological tissue is the fact that the measured FD curves can be disturbed. These disturbances are caused, for
instance, by passive cell movement, adhesive forces between the AFM probe and the cell, or insufficient attachment
of the tissue to the supporting cover slide. In practice, the resulting artifacts are easily spotted by an experimenter
who then manually sorts out curves before proceeding with data evaluation. However, this manual sorting step
becomes increasingly cumbersome for studies that involve numerous measurements or for quantitative imaging
based on FD maps.

Results: We introduce the Python package nanite, which automates all basic aspects of FD data analysis, including
data import, tip-sample separation, base line correction, contact point retrieval, and model fitting. In addition, nanite
enables the automation of the sorting step using supervised learning. This learning approach relates subjective
ratings to predefined features extracted from FD curves. For ratings ranging from 0 to 10, our approach achieves a
mean squared error below 1.0 rating points and a classification accuracy between good and poor curves that is above
87%. We showcase our approach by quantifying Young’s moduli of the zebrafish spinal cord at different classification
thresholds and by introducing data quality as a new dimension for quantitative AFM image analysis.

Conclusion: The addition of quality-based sorting using supervised learning enables a fully automated and
reproducible FD data analysis pipeline for biological samples in AFM.
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Background
The mechanical properties of cells and tissues are an
important regulator in development, homeostasis, and
disease [1–4]. To assess the mechanical properties of
tissues at the single cell level, atomic force microscopy
(AFM) has emerged as one of the most popular tech-
niques, as it enables the detection of forces over a wide
range (5 pN to 100 nN) at a high spatial resolution (down
to 10 nm) [5].
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In practice, the mechanical characterization of cells and
tissues is realized by bringing the AFM cantilever into
contact with the sample and recording the force while
indenting the sample. In addition to basic indentation
experiments, dynamic modes, such as time-dependent
stress relaxation, creep compliance, or oscillatory prob-
ing [6–11], have been used to assess the viscoelastic
properties of cells and tissues. Here, we focus on basic
indentation which employs AFM tips of various shapes
(e.g. spherical, conical, pyramidal) to indent the sam-
ple up to a predefined force (several nN) while record-
ing the force-distance (FD) curve. These FD curves are
then preprocessed (tip-sample separation, base line cor-
rection, contact point retrieval) and fitted with contact
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models for the given indenter geometry. For large data
sets, preprocessing and fitting is time-consuming and
needs specialized personnel. Thus, Minelli et al. pro-
posed machine-learning with a neural network approach,
bypassing FD data analysis, to obtain a diagnostic
response directly [12]. Though this approach has the
advantage of working autonomously, it does not yield
quantitative values for the Young’s modulus. To derive
a value for the Young’s modulus, the FD data is com-
monly fitted with the Hertz model, which assumes that
the sample behaves like an isotropic and linear elastic solid
[13–15]. Since most biological specimens display vis-
coelastic properties, the Young’s modulus obtained with
the Hertz model is often referred to as “apparent
Young’s modulus”. With acquisition rates of approx-
imately five curves per minute for biological tissue,
2D FD grids can be recorded, yielding quantitative
maps for various parameters such as the apparent
Young’s modulus, the maximum indentation depth, or
the axial position of the contact point between AFM
tip and sample.
Since AFM measurements can be conducted in physio-

logical buffers and at a controlled temperature range, live
biological specimens can be probed at near-physiological
conditions. Live tissues can be sectioned for analysis, e.g.
microtome sections of embedded tissue [16], or mea-
sured directly, e.g. biopsy material [17]. In both cases, the
preparation of the tissue can be challenging and requires
optimization to obtain a flat surface for probing. For
instance, the cutting procedure often yields uneven sur-
faces. In addition, damaged tissue (cell debris and fat) can
disturb the cantilever movement. The resulting artifacts
distort the FD curve and thus invalidate any model fit-
ted to it. Therefore, curves exhibiting such artifacts are
excluded from subsequent analysis steps.
Figure 1 illustrates several artifacts commonly observed

in nano-indentation experiments. An offset at the con-
tact point may be caused by an uneven surface, resulting
merely in a partial contact between the AFM tip and
the sample. Sudden spikes in the indentation part origi-
nate from slippage of or within the sample. A tilt during
the approach part can be caused by contingent contact
between the AFM tip and a sample which is insufficiently
attached to the cover slide. It is not possible to distin-
guish between good and poor curves by quantifying the
goodness of the fit (e.g. χ2 test, data not shown). Thus, in
a post-measurement step, FD curves with artifacts must
be removed manually from the subsequent analysis. How-
ever, if the number of curves is large as is the case for
densely sampled FD maps of tissue sections, this sort-
ing step becomes too time consuming when performed
manually.
Here, we present a machine learning approach that

enables a fully automated analysis of biological FD data.

Fig. 1 Rating of force-distance (FD) curves. a Visualization of several
features that degrade the quality of FD curves. b Three FD curves with
corresponding fits according to Eq. 3 are shown. The colors of the fit
label the manual rating (1/magenta: poor, 5/yellow: acceptable,
10/green: good)

The underlying Python package nanite covers all aspects
of FD analysis, including data import, tip-sample sep-
aration, base line correction, contact point retrieval,
and model fitting. To automate the removal of artifact-
afflicted FD curves, nanite employs supervised learning,
here using manually rated FD curves of live zebrafish
spinal cord sections. With nanite, all of these functional-
ities are made available conveniently via a command-line
interface. This approach effectively bypasses the man-
ual and time-consuming analysis process and opens up
new ways to classify, compare, and visualize large nano-
indentation data sets.

Results
We applied our rating algorithm to two problems, involv-
ing AFM FD data from zebrafish spinal cord sections. The
first problem focuses on data quality as a selection crite-
rion. The second problem deals with data quality as an
additional imaging dimension.

Sorting by quality
The elastic properties of the zebrafish spinal cord are
tissue-dependent. Gray matter exhibits higher stiffness
than white matter [18]. Figure 2a illustrates the location
of gray and white matter in an exemplary zebrafish spinal
cord section, indicating the probed regions for each of
the two tissues. We compared a combined dataset from
four vertebra sections (V4, V12, V20, and V28) of ten
specimens at the age of six months, which has been pre-
sented previously (Fig. 3b in [18]). Figure 2b compares the
combined dataset to all curves with an Extra Trees rating
above and below 4.5. The general trend that gray matter
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Fig. 2 Quality-based sorting. a The schematic representation of the
adult zebrafish spinal cord indicates the four vertebral levels (V4, V12,
V20, and V28) from where tissue sections were obtained. An
exemplary tissue section is shown, depicting the locality of gray
(inside profile) and white (outside profile) matter. The fluorescence
image shows myelin-rich regions labeled with GFP (green, white
matter) and mitochondria-rich regions labeled with dsRed (magenta,
gray matter). For each probed region (red rectangles), four to five
force-distance (FD) curves were recorded. Additional FD curves for
white matter were recorded outside of these regions. In total, ten
specimens at the age of six months were measured (see [18] for
details). b The first violin plot shows the distribution of apparent
Young’s moduli for gray and white matter. The second and third plot
show the same data filtered with the Extra Trees regressor at a
classification threshold of 4.5. c The first violin plot is identical to that
in (B). The second plot shows the 150 top-rated (Extra Trees regressor)
data points for gray and white matter. The third plot shows the
remainder of the data points. The number of FD curves in each violin
plot is indicated with N1 for gray matter and N2 for white matter

is stiffer than white matter remains. However, there was
a positive correlation between apparent Young’s modulus
and curve quality which resulted in a preferred selection
of gray matter over white matter. The lower rating of the
white matter might be related to a higher viscosity that
results in a dissipation of energy and thus, worse fits with
the Hertz model. To take into account these differences
in the selection step, we compared the apparent Young’s
moduli of the 150 top rated curves for each tissue type
in Fig. 2c. This selection strategy makes it possible to
compare gray and white matter with high statistical signif-
icance without sacrificing curves due to tissue-dependent
quality.

Visualization of data quality
Quantitative AFM image analysis enables the visualization
of regional differences of zebrafish spinal cord sections.

Fig. 3 Data quality mapping. For a reference force-distance (FD) map
and for two FD maps recorded near lesion sites, a-c the normalized
minimum height given by the piezoelectric sensor, d-f the apparent
Young’s modulus obtained with Eq. 3 (gray values are above the color
range), and g-j the Extra Trees rating are shown. Each pixel represents
one FD measurement. Exemplary FD curves and corresponding fits
Eq. 3 whose location is indicated with white arrows in (g) are shown
for k the gray matter, l the white matter, andm the
section-embedding agarose. Scale bar in (c), 100 100 μm

Figure 3a-c shows the surface topography images (not
tip-sample separation) of the AFM cantilever for three dif-
ferent sections. Gray matter regions appear to protrude
from the tissue section (see Fig. 2a for orientation). As
discussed in the previous section, the apparent Young’s
moduli in gray matter regions were higher than in white
matter regions (Fig. 3d-f ). In addition, tissue stiffening
near lesion sites could be observed (apparent Young’s
modulus shown in Fig. 3e, f when compared to Fig. 3d),
which has been shown to be correlated to spinal cord
repair [18]. The Extra Trees rating visualizes data qual-
ity and, in accordance with the findings of the previous
section, also correlates with the tissue type (Fig. 3g-j).
To give a deeper insight, three exemplary FD curves

for gray matter, white matter, and the embedding agarose
(indicated in Fig. 3g) are shown in Fig. 3k-m. It should
be noted that the low quality attributed to the embedding
agarose gel is a consequence of the experimental design
and the Extra Trees training step. The indenter was too
large to probe the agarose gel with sufficient accuracy and
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the cantilever was too soft for measuring the large stiff-
ness of the agarose gel. As a result, the indentation depth
was comparatively short and the corresponding fit exhib-
ited high residuals. Thus, given the features defined in
Table 1 and visualized in Fig. 4, the agarose data exhib-
ited incommensurable conditions resulting in a low Extra
Trees rating. Clearly, the analyzed data must be of the
same nature as the training data.

Discussion
Performance
The performance of our approach is defined by the choice
of the features shown in Table 1, the choice of the regres-
sor (e.g. Extra Trees regressor), and the size of the training
set. Most importantly, it is possible to quantify the per-
formance of the regressor as a function of the training

Table 1 Summary of quality-dependent features used for
supervised learning

Number Feature name Short description

1 Area of IDT spikes Area of spikes appearing in
the indentation part

2 Curvature at CP Curvature of the force-
distance data at the con-
tact point

3 Flatness of APR residuals Fraction of the positive-
gradient residuals in the
approach part

4 Maxima in IDT residuals Sum of the indentation
residuals’ maxima in three
intervals in-between 25%
and 100% relative to the
maximum indentation

5 Monotony of IDT Change of the gradient in
the indentation part

6 Overall IDT residuals Sum of the residuals in the
indentation part

7 Relative APR size Length of the approach
part relative to the inden-
tation part

8 Residuals at CP Mean value of the resid-
uals around the contact
point

9 Residuals in 75% IDT Sum of the residuals in
the indentation part in-
between 25% and 100%
relative to the maximum
indentation

10 Residuals of APR Absolute sum of the resid-
uals in the approach part

11 Slope of BLN Slope obtained from a lin-
ear least-squares fit to the
baseline

12 Variation in BLN Comparison of the forces
at the beginning and at
the end of the baseline

The features are visualized in Fig. 4; Abbreviations in feature names: indentation
(IDT), contact point (CP), approach (APR), baseline (BLN)

Fig. 4 Visualization of the twelve features defined in Table 1. This
twelve-dimensional feature space is the training set that we
employed for supervised learning. The color of the points indicate the
manual rating from magenta (0, poor) to green (10, good)

set size (see “Methods” section for details). Our approach
achieved an average MSE of less than 1.0 rating points
and a binary classification accuracy above 87%, which is
sufficiently accurate to visualize AFM data quality and to
facilitate quality-based sorting.
Sorting FD curves according to data quality allows the

exclusion of unusable data from a subsequent analysis.
In principle, two thresholding strategies could be applied
(see “Regressor selection” section): maximizing the accu-
racy (classification threshold at 4.5 in Fig. 5c) or reducing
the false positive rate (classification threshold at 6 in
Fig. 5c). While the former strategy maximizes the number
of curves in subsequent analysis steps, the latter strat-
egy ensures that only a very small percentage of poor FD
curves (here 2.1%) is used in the final analysis. Thus, it is
possible to dynamically balance quality and quantity in the
sorting step.

Consistency
In order for our approach to work, the features extracted
from the analyzed data and those extracted from the
training data must represent data quality in similar ways.
This can be achieved by enforcing the same measure-
ment protocol (setup used, sample preparation, mea-
surement conditions) and by using the same type of
tissue for training and analysis. For instance, different
AFM setups might exhibit different levels of background
noise or differing readout frequencies. An extreme case
of mismatch between training and analysis data is
shown in Fig. 3m for agarose, which is discussed in
“Visualization of data quality” section. Thus, the perfor-
mance of a regressor that is trained with data from one
setup but applied to data from another setup could be
impaired due to feature inconsistency.
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Fig. 5 Quantification of regressor performance. aMean squared error
(MSE) in dependence of the training fraction. The training fraction is
shown in percent of the total number of samples (N = 1132); the
testing fraction consists of the remaining samples. For all regressors
(color code), the average (solid lines) and the standard deviation
(shaded regions) were computed from 100 repetitions, each with a
different random split into training and testing fraction. The
regressors are described in the main text. b Average receiver
operating characteristics (ROC) graphs. For all regressors (same color
code), an average was computed from 100 ROC graphs, each
computed using a random split of the samples into two equal parts
for training and testing. The points indicate the position of highest
accuracy (zoom in inset). The dashed diagonal line indicates the ROC
graph of a random classifier. c Accuracy and false positive rate for the
classification with the Extra Trees regressor. The expected
classification threshold at a rating of 4.5 (vertical line), which was
defined in the manual rating process, is close to the maximum of the
classification accuracy. d Visualization of the Extra Trees performance
in dependence of the training set size. The training set was randomly
split into a testing fraction of 200 samples and a training fraction.
From the training fraction, 33%, 67%, or 100% were used for training
the Extra Trees regressor which was then applied to the testing
fraction with the resulting ratings rounded to integer values. The area
of each circle represents the number of samples rated with the Extra
Trees regressor normalized to the number of curves per manual
rating. Colors represent the manual rating. The MSE and the ROC
classification accuracy (threshold at 4.5) are shown in the bottom right
corner of each plot. The gray-shaded line indicates a slope of one

Outlook
There are multiple more or less obvious ways to enhance
data analysis and improve compatibility with existing
analysis pipelines. For instance, there might be other
regressors than those discussed here that could achieve
even higher accuracies. In addition, for other experimen-
tal data, different hyper-parameters might yield better
results than those presently defined in nanite. In principle,

it could be possible to achieve higher accuracies by
increasing the training set size (here N=1132). However,
a more promising approach would be to improve the qual-
ity of the training set. For instance, the integer-valued
manual ratings could be mapped from a discrete to a con-
tinuous space via an additional comparison of FD curves
within the training set. At the same time, new features
could be found that allow a better characterization of
FD curves. The future development of nanite will also
include the implementation of existing models for addi-
tional tip geometries or for extended models that include,
for instance, the contribution of adhesion work. This will
allow tobettercapture thedata quality of biological FD data.

Conclusions
We have demonstrated a novel method that automates the
assessment of AFM FD data quality for biological tissues.
Our machine learning approach introduces data quality as
a new dimension for quantitative AFM image analysis and
allows the automated sorting of measurements according
to quality. The automation of loading, fitting, and rating
experimental data, as provided by nanite, heavily speeds
up current analysis pipelines which are mostly based on
proprietary software and on software that does not by
itself take into account data quality during analysis. For
the average FD curve, preprocessing and fitting typically
takes less than 40ms while computing the features and
rating takes approximately 250ms on a modern computer.
Thus, the proposed rating method could in principle be
employed in real-time applications. In addition, the tun-
able discrimination between good and poor FD data has
the potential to greatly simplify prevalent data analysis
procedures. For instance, this would allow tomap biopsies
in an automated manner over a large area for diagnostic
purposes, not requiring the presence of highly special-
ized personnel. In addition, it should be noted that our
approach is not limited to the analysis of tissues, but can
be applied to other problems, e.g. the measurement of
many cells, in the same way. To our knowledge, nanite
is the first software that quantifies the quality of FD
data. This achievement is seminal for the biomechani-
cal characterization of cells and tissues, as it enables the
implementation of reproducible analysis pipelines from
raw data to data evaluation without manual intervention.

Methods
Our approach can be summarized as follows. Experi-
mental FD curves are fitted with an appropriate model
function and are manually rated. In addition, a set of pre-
defined features is extracted for each curve automatically.
Together, these features and the manual ratings form the
training set. A regressor that is trained with this training
set is then used to predict the ratings of other curves based
on their features.
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Sample preparation
All zebrafish were kept and bred under standard
conditions as described in [19]. The transgenic line
Tg(mbp:GFP) was established and provided by the
laboratories of Cheol-Hee Kim, Chungnam National
University, South Korea, and Hae-Chul Park, Korea
University Ansan Hospital, South Korea [20]. The trans-
genic line Tg(alpha1-tubulin:mls-dsRed) was established
in the laboratory of Carla Koehler, UCLA, USA and
provided by Christopher Antos, CRTD, Germany. All
experiments were carried out with Tg(mbp:GFP, alpha1-
tubulin:mls-dsRed) fish and wild type fish (wik). All exper-
iments comprise male and female fish. All zebrafish were
at least threemonths old. The data recorded from 23 spec-
imens were used in this study (10 specimens for the train-
ing set assembly in “Training set assembly” section, 10
specimens for the sorting analysis in “Sorting by quality”
section, and 3 specimens for the visualization of data
quality in “Visualization of data quality” section).
All zebrafish were sacrificed by immersion in ethyl 3-

aminobenzoate methanesulfonate (MS-222, 0.1% in phos-
phate buffered saline, Sigma-Aldrich, A5040) until five
minutes after the respiratory movement of the opercula
stopped. This was followed by subsequent immersion
in ice-cold water as recommended in [21]. Sacrificed
zebrafish were dissected, embedded in agarose, and sec-
tioned with a vibrating microtome as described in more
detail in [18].
As all data presented in this study were reutilized from [18],

no additional animals were sacrificed for the present study.

Nanoindentation measurements
AFMcalibration and indentationmeasurements were per-
formed as described in more detail in [18]. Indentation
experiments and simultaneous fluorescence microscopy
were conducted with a motorized precision stage (Cell-
Hesion200, JPK Instruments, Berlin) and the upright
Axio Zoom.V16 stereo microscope with a PlanApo Z
0.5× objective (Carl Zeiss Microscopy, Jena). The AFM
probe consisted of polystyrene beads (d = 37.28± 0.34 μm,
(d = 37.28± 0.34 μm, Microparticles GmbH, PS-F-37.0)
glued to tipless silicon cantilevers (Arrow-TL1, were car-
ried out on transverse tissue sections at specific regions
of interest that belong to either gray or white matter. To
broaden the variety of FD curve quality, multiple sections
along the anterior-posterior axis (4th, 8th, and 12th verte-
brae), partially subject to spinal cord lesions, were used.
To include the choice of model in the rating process, FD

curves were first fitted and then rated. Prior to fitting, the
tip position (tip-sample separation) was computed, the tip
position was set to zero at an approximated contact point
using a baseline analysis, and the measured force was cor-
rected for an offset using the baseline average. For fitting,
we employed the Hertz model for a spherical indenter

F = E
1 − ν2

(
R2 + a2

2
ln

(
R + a
R − a

)
− aR

)
, (1)

with δ = a
2
ln
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)
. (2)

Here, F denotes the indentation force, E the apparent
Young’s modulus, ν = 0.5 the Poisson’s ratio, R= 18.64 μm
the indenter radius, a the radius of the circular con-
tact area between bead and sample, and δ = δt − δc the
indentation depth with δt the tip position and δc the con-
tact point [22, 23]. Given that this model does not have
a closed-form expression, we approximated it by com-
bining the Hertz model for a parabolic indenter with a
polynomial correction factor based on a truncated power
series approximation (personal communication,Wolfgang
Dobler, JPK Instruments, Berlin):
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This approximation achieves high accuracy, with errors
that are below four orders of magnitude relative to
the maximum indentation force (data not shown). To
reduce the impact of the (commonly large) fit residu-
als near the contact point δc, they were suppressed by
multiplication with a linear ramp within the interval
(δc − 2 μm,δc + 2 μm), which corresponds to approx-
imately ±10% of the indenter radius R. The param-
eters E and δc were varied during fitting. After fit-
ting, the FD curves and fits were manually (subjectively)
rated on a scale from 0 (poor) to 10 (good) in discrete
steps, where curves rated with 5 were considered just
usable.

Training set assembly
To render a machine learning-based rating algorithm pos-
sible, it is crucial to find a measure of quality for indi-
vidual FD curves. The goodness of fit (e.g. χ2 test) alone
is not sufficient to capture the nature of the distinct
artifacts shown in Fig. 1a. Therefore, we designed sev-
eral features, each of which capturing a different aspect
of data quality, e.g. contact point position or trends
in the fit residuals, while keeping computational costs
at a low level. The selection of features is a critical
step, because they must be able to capture the exper-
imenter’s notion of data quality. Features were divided
into two classes, binary and continuous. Three binary
features were used for preprocessing (see below) and
twelve continuous features were used for training (see
“Regressor selection” section). To simplify the visualiza-
tion of the feature space, the features were designed to
have a small spread, which was partially achieved by
applying a logarithmic filter. A short description of each
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feature is given in Table 1. All features are extracted
automatically and form the so-called sample of an FD
curve.
The training set was assembled using the samples and

the corresponding manual ratings. We preprocessed the
training set by removing unusable curves using the binary
features. These binary features identify measurements
whose fitted contact point is outside of the data range,
whose size (combined approach and indentation) is less
than 600 data points, or whose indentation part exhibits
more than five distinct spikes (see e.g. Fig. 1a). In addi-
tion, FD curves for which a feature could not be computed
were removed from the training set. For this study, we
manually rated 1132 FD curves from zebrafish spinal cord
sections. To assure that the training set exhibited a broad
quality range, we used a heterogeneous set of samples
(different vertebral levels, healthy and scarred tissue, gray
and white matter). The resulting training set, visualized in
Fig. 4, gives a brief insight into which feature combinations
could be relevant for defining the global quality of an FD
curve.

Regressor selection
To connect the features in the training set to the cor-
responding manual rating, we used a supervised learn-
ing approach. Supervised learning utilizes the connection
between the computed features and the manual ratings in
the training step. Predicting the quality of FD curves based
on predefined features is a regression problem. Since each
feature captures a different aspect of data quality and,
thus, a particular rating may encompass a complex inter-
play of features, we put our main focus on regressors
based on decision trees.
For the present study, we made extensive use of the

Python library scikit-learn [24] which comes with a com-
prehensive set of regressors and associated tools for super-
vised learning. Their working principles are not discussed
here for brevity reasons. The training set was weighted
according to the occurrence of ratings. Depending on
which regressor was used, we applied an additional pre-
processing step to the training set. For the support vector
machine regressors (SVR), a linear discriminant analysis
was applied and the training set was scaled such that the
features were centered at zero with a variance that was
comparable for all features. The hyper-parameters of each
regressor were determined using an extensive grid search.
Thereby, we obtained a set of regressors of which each was
optimized for the given training set.
An overview of the performance of all regressors is

shown in Fig. 5a. The training set was randomly split
into training fraction (used to train the regressor) and
testing fraction (used to test the prediction of the regres-
sor) at different percentages. For each percentage, this
process was repeated 100 times and the average mean

squared error (MSE) was compared. The average MSE
quantifies by how many rating points on average a pre-
diction deviates from the manual rating. The basic Deci-
sion Tree regressor and the linear SVR performed worst,
indicating either overfitting or lack of complexity to
address the regression problem. Ensemble methods such
as AdaBoost, Random Forest, Gradient Tree Boosting,
and Extra Trees better captured the rating process. The
Extra Trees regressor yielded the best results, with an
average MSE reaching values below 1.0. Thus, the Extra
Trees regressor was used in the present study.
Figure 5b shows the receiver operating characteristics

(ROC) graphs for all regressors. ROC graphs visualize the
performance for classification problems [25], plotting the
true positive rate

tp rate = positives correctly classified
total positives

(4)

versus the false positive rate

fp rate = negatives incorrectly classified
total negatives

. (5)

The ROC graph of a random classifier corresponds to
the diagonal (0, 0) → (1, 1) (dashed line in Fig. 5b). A
perfect classifier would follow the path (0, 0) → (0, 1) →
(1, 1). Thus, the further an ROC curve extends towards
the upper left in ROC space, the better its associated clas-
sifier. Here, we consider a classification into good (rating
above 4.5) and poor (rating below 4.5) data quality. The
training set was randomly split into two equal-sized frac-
tions. The first half was used to train the regressor and
the second half was used for testing. This process was
repeated 100 times with random splits to obtain an aver-
age ROC graph. For all regressors, the ROC graphs run
along the upper half space above the diagonal, indicating
good classification performance. The best classification
performance was achieved by the Extra Trees regressor,
with an ROC graph closest to the upper left corner (see
inset in Fig. 5b). For each of the averaged ROC graphs, the
point of maximum accuracy

accuracy = true positives + true negatives
total testing set size

. (6)

is depicted as a point. The Extra Trees classifier achieved
the highest accuracy (87.4%) at a classification threshold
of 4.64. Thus, the result of the ROC analysis is consistent
with that of the MSE analysis described above.
Figure 5c further visualizes the performance of the

Extra Trees regressor in the classification problem. At the
expected classification threshold of 4.5, the Extra Trees
regressor achieved a classification accuracy of 87.1%. The
discrepancy between expected (4.5) and actual (4.64) posi-
tion of the classification threshold is small, considering
the fact that the manual ratings are integers. Notably, a
threshold of 6 has a false positive rate of only 2.1%, but



Müller et al. BMC Bioinformatics          (2019) 20:465 Page 8 of 9

still achieves a classification accuracy of 79.9%. Thus, FD
curves can be sorted into good and poor curves with a
tunable specificity.
Figure 5d visualizes the improvement in rating predic-

tion for 200 randomly chosen FD curves when the number
of curves used for training is increased. As expected, a
larger training fraction reduced the MSE and increased
the classification accuracy, improving the prediction per-
formance. In addition, a larger training fraction caused a
higher correlation between the Extra Trees rating and the
manual rating, as can be seen by an increased alignment
of the data points to a slope of 1. Thus, learning-based rat-
ing with the Extra Trees regressor in combination with the
given training set forms a robust framework that is suf-
ficiently accurate to rate other experimental FD curves,
especially, but not limited to, zebrafish spinal cord tissue
sections.
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