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Abstract

Background: With the advent of array-based techniques to measure methylation levels in primary tumor samples,
systematic investigations of methylomes have widely been performed on a large number of tumor entities. Most of
these approaches are not based on measuring individual cell methylation but rather the bulk tumor sample DNA,
which contains a mixture of tumor cells, infiltrating immune cells and other stromal components. This raises questions
about the purity of a certain tumor sample, given the varying degrees of stromal infiltration in different entities. Previous
methods to infer tumor purity require or are based on the use of matching control samples which are rarely available.
Here we present a novel, reference free method to quantify tumor purity, based on two Random Forest classifiers, which
were trained on ABSOLUTE as well as ESTIMATE purity values from TCGA tumor samples. We subsequently apply this
method to a previously published, large dataset of brain tumors, proving that these models perform well in datasets that
have not been characterized with respect to tumor purity .

Results: Using two gold standard methods to infer purity – the ABSOLUTE score based on whole genome sequencing
data and the ESTIMATE score based on gene expression data- we have optimized Random Forest classifiers to predict
tumor purity in entities that were contained in the TCGA project. We validated these classifiers using an independent
test data set and cross-compared it to other methods which have been applied to the TCGA datasets (such as ESTIMATE
and LUMP).
Using Illumina methylation array data of brain tumor entities (as published in Capper et al. (Nature 555:469-474,2018)) we
applied this model to estimate tumor purity and find that subgroups of brain tumors display substantial differences in
tumor purity.

Conclusions: Random forest- based tumor purity prediction is a well suited tool to extrapolate gold standard measures
of purity to novel methylation array datasets. In contrast to other available methylation based tumor purity estimation
methods, our classifiers do not need a priori knowledge about the tumor entity or matching control tissue to predict
tumor purity.
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Background
Tumors represent a complex milieu that does not only
comprise the malignant cells themselves but receives con-
tributions from different cell types: Invading immune cells
as a part of the hosts’ defense against the tumor, blood ves-
sels, fibroblasts and other non-neoplastic cells constitute
the tumor microenvironment. The usual procedure to
investigate tumor DNA is the isolation from samples after
surgical removal. Thus, the DNA which is further
analyzed contains contaminating cell populations to a
varying degree.
Methylation arrays such as the widely used Infinium

HumanMethylation450k / MethylationEPIC array have
become increasingly popular to classify tumors into clinic-
ally meaningful groups based on distinct methylation pat-
terns [1–3]. The array assesses the methylation levels of
mainly promoter based cytosin residues in the genome.
These unsupervised and supervised classification proce-

dures are prone to biases coming from methylation pat-
terns other than the ones from tumor cells, such as stromal
or immune cells. Thus, it is important to filter out samples
with extremely low tumor purities. In addition, when call-
ing DMRs between samples of high versus low tumor pur-
ity, the results will be dominated by differences in tumor
purity and not genuine DMRs.
In recent years, a number of methods have been pub-

lished to account for this problem: The ABSOLUTE
method has been developed for whole exome sequencing
data and is based on measurement of allele frequencies
[4]. Unlike other subsequently published techniques
which back on the use of normal samples as a reference,
the method objectively measures the frequency of som-
atic aberrations in a specific cancer sample and relates
the frequency of these to the whole DNA quantity.
The model has been developed on SNP data from a

TCGA dataset which comprises 12 tumor types which
have been characterized by different “omics” techniques,
including also 450 K methylation arrays. (see Add-
itional file 7: Table S3 for entity abbreviations in the TCGA
dataset and the dataset derived from Capper et al.)
Although the ABSOLUTE method has been accepted as

a standard for SNP data and whole genome sequencing
data, its use is currently limited to samples for which either
of the datasets is available. A second method, frequently
used for gene expression array data, is ESTIMATE which
calculates a stromal score and an immune score and com-
bines both to infer tumor purity.
In the following, we present two Random Forest based

models which permit to extrapolate both ESTIMATE and
ABSOLUTE purity estimates on novel tumor methylation
array datasets. Our approach differs from more recently
published methods InfiniumPurify and PAMES in that it
accepts the two methods (ESTIMATE and ABSOLUTE) as
the gold standard for purity estimation while InfiniumPurify

is based on identifying differentially methylated regions
between tumor and normal samples which can be used to
infer purity via a kernel density estimation. Although a con-
trol-free variant of the approach has been published re-
cently [5], this is only applicable for entities which are
represented in the TCGA datasets and can not be ap-
plied to e.g. entities from the pediatric spectrum which
we have examined here and where no non-neoplastic
tissue samples are available [5]. Thus this method can-
not be applied to study the purity in our dataset derived
from Capper et al. 2018 [1].
PAMES (Purity Assessment from clonal Methylation

Sites) builds on a number of conserved CG sites identi-
fied in the TCGA dataset to infer tumor purity [6]. One
concern about this method is that it may overrate tumor
purity estimation as only few samples from the TCGA
dataset reached tumor purity estimates below 0.9 which
is in contrast to previous assessments of tumor purity,
indicating a much wider range of tumor purities in this
dataset [7]. (Table 1).
As a general setback of all these models, to the best of

our knowledge only the PAMES method has been validated
outside the TCGA dataset and none of these methods has
been applied in rare entities that are not represented in
TCGA.
In addition, no emphasis has been laid so far on the

comparison of different tumor subgroups: It has been
known for several years that e.g. breast cancer and glio-
blastomas consist [10] of different tumor subgroups with
distinct clinical features and probably also different cells
of origin. For the latter, it has even been shown that the
neural subtype may be defined solely by stromal or non-
neoplastic tissue contamination [11].
The cell of origin is particularly important when non-

neoplastic controls are chosen in whole genome
characterization experiments, as these samples do not rep-
resent a proper physiological control but are themselves a
mixture of different non-neoplastic cell types. Our group
and others have generated an extensive dataset of tumors –
enriched for pediatric brain tumors- which have so far not
been systematically investigated with respect to their purity.
Aiming to estimate ABSOLUTE and ESTIMATE tumor
purity in methlyation array data sets beyond the TCGA
data set, we trained Random Forest regression models, that
automatically perform selection of CpG sites important for
the prediction and do not rely on supervised differentially
methylation analysis between tumor versus normal tissue.
Therefore, two Random Forest models were trained, the

first on the ABSOLUTE and the second on the ESTI-
MATE values derived from TCGA data and subsequently
applied to the dataset in Capper et al. (2018, 1]. Both 450
K methylation data and ABSOLUTE values are available
for in total 2310 of the TCGA samples and served as a
training and test cohort for the Random Forest model. For
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the ESTIMATE based model, the training and test set
comprised 6360 samples. We cross-compared both our
ABSOLUTE and our ESTIMATE based RF models to
other purity measures which were available in the TCGA
dataset (such as LUMP).
Subsequently, we applied the model to the dataset

published in Capper et al. (2018) to delineate tumor
purities in this large set of pediatric brain tumors.

Results
Validation of the random Forest classifier to predict
tumor purity in the TCGA data
After having established two RF models as described in
the methods section, we empirically compared the correl-
ation and mean squared error of RF_Purify_ABSOLUTE/
RF_Purify_ESTIMATE (Fig. 1and Additional file 1: Figure
S1) with the ABSOLUTE and ESTIMATE values of differ-
ent entities represented in the TCGA dataset respectively.
Overall, we found a tight correlation between either the

published ABSOLUTE or ESTIMATE values and the RF
predicted tumor purities. Moreover, there was no system-
atic bias for the new model to either over−/ or underesti-
mate tumor purity in a given entity and no overfitting of
the training data.
Figure 1 displays the correlation of RF_Purify_ESTI-

MATE and Additional file 1: Figure S1 the correlations

of RF_Purify_ABSOLUTE with the TCGA dataset split
by entity.
The global differences in purity between the different

tumor types are preserved when comparing the two
methods – the average tumor purity of the ESTIMATE
method is higher than for the ABSOLUTE method.
To compare the RF based models with the methods of

which they were derived, we went on to calculate the
correlations of RF_Purify_ESTIMATE and RF_Purify_
ABSOULTE with the ABSOLUTE, ESTIMATE and
LUMP purities which are available for the TCGA dataset
(Fig. 2): As expected, the correlations between RF_Pur-
ify_ESTIMATE and ESTIMATE as well as RF_Purify_
ABSOLUTE and ABSOLUTE were high (0.88 and 0.89
respectively) but also the comparison with the LUMP
method yielded a high degree of concordance (correl-
ation coefficient: 0.73/0.74 for RF_Purify_ESTIMATE/
RF_Purify_ABSOLUTE). We thus concluded that the
two models were able to reliably extrapolate the ESTI-
MATE and ABSOLUTE tumor purity measures on our
test set of TCGA samples.
Seeking to further characterize the CpG sites which

are the predictors in both RF models, we analyzed the
distribution of CpG sites in the genome compared to all
CpG sites on the 450 k array (Fig. 3 A): There was a
higher fraction of CpG sites localized to the gene body
when compared to all probes on the array (0.41 in both

Table 1 Overview on published methods to infer tumor purity based on WES/SNP array, gene expression arrays and methylation
arrays

Publication Method name Statistical framework/technique Datasets used for establishing the
method/ validation of the method

Datatypes which can
be used as input

Carter et al. [4] ABSOLUTE Tumor purity inference based on
somatic copy number aberrations
in SNP arrays

TCGA WES data/SNP array

Yoshihara
et al., 2013 [8]

ESTIMATE Comparison of various published
gene sets to delineate a) immune
signature b) stromal signature -
based on these signatures,
calculation of purity score

TCGA Affymetrix gene
expression array data

Aran, D. et al.
2015 [7]

LUMP (leukocytes
unmethylation for
purity)

Averaging of the methylation
values 44 CpG sites, known to be
hypomethylated in immune cells

TCGA 450 K methylation
array data

Zhang et al.
2017 [9],
Qin al. 2018 [5]

InfiniumPurify Tumor purity estimation: (PMID:28122605)
comparison of tumor and normal samples
to identify DMC (differentially methylated
CpG sites) between tumors and an universal
set of normal samples in the TCGA dataset
followed by kernel density estimation to
obtain tumor purity

TCGA 450 K Methylation
array data

Benelli et al.
2018 [6]

PAMES (Purity
Assessment from
clonal MEthylation
Sites)

- Calculation of average methylation values
per CpG island from TCGA entities.

- Calculation of the Area under the curve for
the ROC curves of each CpG island: If AUC
< 0.2 or AUC > 0.8 a certain CpG site was
considered discriminatory and taken into
the model.

- Tumor purity estimate based on the median
of hypomethylated and hypermethylated sites

TCGA (generation of the model),
Comparison to other TCGA samples
and one additional dataset (333
prostata adenocarcinomas)

450 K methylation
array data
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Fig. 1 Pearson correlation of the ESTIMATE purity values and RF_Purify_ESTIMATE for the different TCGA tumor entities, split into training and test
set (a-s) and for the whole TCGA set with ESTIMATE values available (t)
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CpG Island

F
ra
ct
io
n
of

C
pG

si
te
s

F
ra
ct
io
n
of

C
pG

si
te
s

Gene Body Tumor suppressor genesPromoter

0.
0

0.
1

0.
2

0.
3

0.
4

0.
00

0.
02

0.
04

0.
06

0.
08 RF_purify_ESTIMATE

RF_purify_ABSOLUTE
All CpG sites on 450K array

RF_purify_ESTIMATE
RF_purify_ABSOLUTE
All CpG sites on 450K array

A B
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with tumor suppressor genes
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RF models, 0.36 for all CpG sites). More importantly, we
find that a higher fraction of CpG sites overlaps with
tumor suppressor genes in both RF based models (Fig. 3
B, 0.06 for RF_purify_ESTIMATE and 0.058 for RF_pur-
ify_ABSOLUTE and 0.012 for all CpG sites on the array),
among these are important transcription factors such as
SOX1 and PAX6 in RF_purify_ABSOLUTE as well as
RUNX1 and also PAX6 in RF_purify_ESTIMATE, to
name a few (a full list is provided as Additional file 6:
Table S2). This supports the notion that CpG sites which
localize to tumor suppressor genes may be helpful in dis-
tinguishing between DNA contributed from neoplastic
and non-neoplastic cells in a tumor-stroma admixture.
While correlation between the RF_models and ESTI-

MATE/ABSOLUTE is a helpful overall measure of quality,
the absolute differences in estimated purities may in some
instances be more helpful to judge if there is a high overall
discrepancy between models. We therefore also compared
the absolute differences in tumor purities: The median
differences between RF model and the corresponding gold
standard were 0.01 for ESTIMATE and 0.009 for ABSO-
LUTE (Additional file 3: Figure S3).

Application of the model and orthogonal validation
methods to the pediatric brain tumor methylation data
Having fitted our two Random Forest regression models
on the TCGA dataset, we next applied the method to
the previously published dataset from Capper et al.
which contains methylation array data on the most im-
portant central nervous system tumors [1]. Although
ABSOLUTE purity values based from WES or SNP array
data are not available for these samples, a subset of these
tumors has been characterized by gene expression arrays
and we calculated ESTIMATE scores for these tumors.
Thus, we used this dataset as a bona fide orthogonal
validation of our RF based methods.
Using the RF_Purify approach, we did not only find

relevant differences between the various tumor entities
but also between subgroups of tumor entities (Fig. 4):
Notably, tumor purity was highest in Medulloblastoma

among all entities examined, with the WNT-subgroup dis-
playing the highest RF_Purify_ESTIMATE and RF_Purify_
ABSOLUTE scores. Reports on tumor purity in brain tu-
mors specifically are sparse and most studies have rather
aimed at delineating spatial, genetic homogeneity in tumor
biopsies [12]. Interestingly, Atypical teratoid rhabdoid
tumor (ATRT) which is a genetically homogeneous disease
but often perceived as histologically heterogeneous had pu-
rities rather in the lower spectrum, which correlates with
its pleomorphic, histopathological appearance. The ATRT-
MYC subgroup – characterized by a higher degree of im-
mune cell infiltration than the two other subgroups ATRT-
TYR and ATRT-SHH [2] – was found to display the lowest
average purity (mean RF_Purify_ESTIMATE score: 0.837).

Grossly, glial tumors displayed a lower tumor purity
than embryonal ones- although in some entities, we dis-
covered relevant subgroup specific differences: GBM-MES
exhibited the lowest tumor (mean RF_Purify_ESTIMATE
score: 0.801) purity from all glioblastoma samples. This is
in line with the upregulation of stromal and immune
signatures which is characteristic for these tumors.
To validate the tumor predictions by the RF models, we

retrieved the Affymetrix data for a subset of tumors (n =
398) and calculated ESTIMATE tumor purity scores. We
found both a tight correlation of RF_Purify_ESTIMATE
scores and ESTIMATE (R = 0.76) and RF_Purify_ABSO-
LUTE and ESTIMATE (R = 0. 75).
In this dataset, both the ESTIMATE and the RF_Pur-

ify_ESTIMATE method tended to systematically indicate
a higher Tumor purity than the RF_Purify_ABSOLUTE.
Overall, the RF_Purify approach allowed for the ex-

trapolation of the ABSOLUTE technique to methylation
array datasets not covered in the TCGA projects and has
provided insight into tumor purity distributions among a
wide range of mostly pediatric brain tumors.

Discussion
Methylation array based tumor classification is becoming
more and more widely used in the clinical setting. The
idea to assess tumor purity from methylation data is based
on an important observation: The number of probes with
intermediate methylation level is greater in tumors com-
pared to normal samples. Many of these sites which
display intermediate methylation levels are the result of
tumor infiltration by non-neoplastic cells. Thus, tumor
(im) purity is an important latent variable which has the
potential to confound statistical analysis. While several
other methods have been published (InfiniumPurify [13]/
PAMES) the majority of these rely on the use of non-neo-
plastic tissue as control. This approach however is error
prone as in many cases no appropriate control is available
and the cell of origin of many tumors is either not known
or not available.
We present a Random Forest based approach to estimate

tumor purity. Beyond the TCGA data, we have applied
tumor purity estimation to the methylation data in Capper
et al. (2018) – this is a crucial step given that the vast ma-
jority of models which are available are strongly focused on
the entities represented in TCGA. Based on the quantile
tables presented here (Additional file 5: Table S1), these
data allow for the delineation of cut-offs per entity which
are able to sort out low-purity samples. More specifically,
we have shown that tumor purity not only varies with the
entity chosen but in some cases (such as high grade
gliomas and medulloblastomas) is also depending on the
subgroup of the respective entity.
A critical caveat of the RF_Purify models is the choice

of the ABSOLUTE and ESTIMATE method as gold
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standards. The methods that we present display high
concordances with the reference methods and are thus
also prone to the same systemic biases which may affect
either ABSOLUTE and ESTIMATE. Thus, as a potential
concern, RF_Purify may systematically fail to estimate
tumor purity in tumor subtypes not covered by the
TCGA data set. This concern was not justified - the high
correlation of RF_Purify_ESTIMATE and ESTIMATE in
the set from Capper et al. indicates that RF_Purify
generalizes to other entities not covered by TCGA. As a
general observation, RF_Purify_ABSOLUTE scores were
lower than RF_Purify_ESTIMATE scores both in the

TCGA dataset and the Capper et al. data. This repro-
duces a systemic difference which can also be observed
in the TCGA data.
Thus it is more important to consider the calculated

purity of a give sample in relation to other samples from
the same tumor (sub-) group (reference values are pro-
vided in Additional file 5: Table S1) and not aim at the ab-
solute purity value- in particular given the systematic
differences between ABSOLUTE and ESTIMATE (Fig. 1,
Additional file 1: Figure S1).
Beyond providing a reference to exclude low purity

samples from the analyses, the identification of entities

Fig. 4 Tumor purities in different entities and their subgroups (Capper et al. [4]) as calculated by RF_Purify_ESTIMATE
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and subgroups of entities with a low tumor purity may hold
the promise of identifying entities with a high number of
immune cells that infiltrate tumors and ultimately to iden-
tify entities which are thus amenable for immunotherapy.

Conclusions
We have shown that our model can also be applied to non
TCGA datasets, yielding tumor purity estimations that cor-
relate well with purities, estimated by different techniques.
Taken together, estimated tumor purity using our

model is a potential helpful sample quality measure the
can be accounted for by batch adjustment methods or
by including it in statistical models, for example in
differential expression, proteomic analysis [14], or QTL
screening to name a few.

Methods
We aimed at generating two separate RF models, which
are able to extrapolate the gold standard ABSOLUTE [4]
and ESTIMATE methods (Additional file 2: Figure S2
shows an overview on the methodology workflow). As a
first step, we downloaded the available 450 K methyla-
tion array data for all TCGA samples (https://cancergen-
ome.nih.gov/). The raw data was subjected to the same
preprocessing steps as highlighted in Capper et al. and
beta values were calculated accordingly.
For deriving the training and test set to generate RF_

purify_ABSOLUTE we downloaded all available ABSO-
LUTE values from the TCGA dataset (2308 samples) and
for RF_purify_ESTIMATE we used all samples with avail-
able ESTIMATE values (6343 samples). We split each of
these datasets into a training set (70% of all samples) and
a test set (30% of all samples) using the function “create-
Datapartition” (R-library caret, v 6.0–83). For the RF_Pur-
ify_ABSOLUTE, the training set consisted of 1617
samples, for the RF_Purify_ESTIMATE of 4452 samples.
To exclude the possibility that certain entities are under-

represented in the training or test set, we checked the
representation of these (Additional file 4: Figure S4) and
found a proportional representation of each cancer type.
To reduce the number of predictors used for final

Random Forest modelling, we applied Hartigan’s Dip
test to each training set independently. This procedure
identifies CpG sites which follow a multimodal distribu-
tion and is thus thought to better identify probes with
intermediate levels of methylation that may stem from
increased stromal infiltration in the tumor [15].
In previous studies investigating tumor purity, it was

inferred that these CpG sites were most predictive for a
non-tumor cell infiltration. We tested different numbers
of predictors (top 5, 10, 20, 30% of all CpG sites) for this
first step of variable reduction and executed all further
steps of model generation using these different numbers
of predictors: Consistently, we found that the out of bag

error of the subsequently trained models was lowest
when using the top 20% of CpG sites selected by Harti-
gan’s diptest. This also held true when comparing the
diptest to choosing the top 5,10,20 and 30% CpG sites
with the highest standard deviation.
After this initial step of variable reduction, a two step

random forest procedure was applied to both training
datasets using the randomForest function (R package: ran-
domForest): The first RF step, performed with n = 500
trees, served to further reduce the number of CpG sites.
Thereafter the predictors (CpG sites) were ranked accord-
ing to the built-in importance measure of the RF function.
To optimize this preliminary model, we generated fur-

ther RF_models with various numbers of CpG sites (0.1,
1, 5 and 10%), calculated the tumor purities of the train-
ing sets for each of these models and chose the model
which minimized the out-of-bag error. Finally, both for
the ESTIMATE and the ABSOLUTE based methods,
models with numbers of 856 CpG sites proved to be the
model with the lowest number of predictors used but
still with a low out-of-bag error.
The second RF step thus finalized both methods. The

final versions of the models are available in an R-package
at https://github.com/mwsill/RFpurify.
To further characterize the CpG sites which act as predic-

tors in the two models, we used the annotations from the R-
package IlluminaHumanMethylation450kanno.ilmn12.hg19
and tested how many CpG sites which were represented in
the models overlapped Promoters, Gene bodies and CpG
islands. To annotate CpG sites and gene symbols, we also
used this database. For quantification of the overlap with
tumor suppressor genes (TSG), we downloaded a list of
tumor suppressor genes from the database TSG2.0 (web
page https://bioinfo.uth.edu/TSGene) and overlapped these
TSG with the gene annotations derived from R-package
IlluminaHumanMethylation450kanno.ilmn12.hg19.
To orthogonally validate the models in a dataset out-

side of TCGA, we used the methylation array data from
Capper et al. which were available in house and corre-
sponding gene expression data (AffymetrixU133 arrays)
in 398 samples. For the gene expression data we calcu-
lated ESTIMATE purity scores (R-package ESTIMATE:
https://bioinformatics.mdanderson.org/estimate/rpack-
age.html) and subsequently the mean squared error and
pearson correlation coefficients between the RF_Purify_
ESTIMATE and RF_Purify_ABSOLUTE purities and the
ESTIMATE scores.

Additional files

Additional file 1: Figure S1. Pearson correlation of the ABSOLUTE
purity values and RF_Purify_ABSOLUTE for the different TCGA tumor
entities (A-J) and for the whole TCGA set with ESTIMATE values available
(K). (PDF 127 kb)
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Additional file 2: Figure S2. Overview on the workflow of model
generation used to create the two RF based models. (PDF 685 kb)

Additional file 3: Figure S3. Histograms show the absolute differences
between the RF_purify estimated tumor purity and the ESTIMATE (a) and
ABSOLUTE (b) values of the TCGA dataset. (PDF 31 kb)

Additional file 4: Figure S4. Barplots show the representation of each
TCGA entity in a) RF_purify_ESTIMATE and b) RF_purify_ABSOLUTE: Y-axis
denotes the percentage of samples which belong to a certain entity as
compared to the whole set. Blue bars denote the training set, grey bars
the whole TCGA set for which either ESTIMATE (A) or ABSOLUTE (B)
values were available. (PDF 39 kb)

Additional file 5: Table S1. Quantiles for the tumor purities as inferred
by RF_Purify_ESTIMATE and RF_Purify_ABSOLUTE. (XLSX 16 kb)

Additional file 6: Table S2. Tumor suppressor genes which overlap
with the CpG sites of RF_Purify_ESTIMATE and RF_Purify_ABSOLUTE,
(XLSX 11 kb)

Additional file 7: Table S3. Abbreviations for the entities represented
in the TCGA dataset and in Capper et al. (XLSX 13 kb)
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DMR: Differentially methylated region; LUMP: Leukocyte unmethylation for
purity; QTL: Quantitative trait loci; SNP: Single nucleotide polymorphism;
TCGA: The cancer genome atlas; TSG: Tumor suppressor gene
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