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Background: High-throughput gene expression technologies provide complex datasets reflecting mechanisms
perturbed in an experiment, typically in a treatment versus control design. Analysis of these information-rich data
can be guided based on a priori knowledge, such as networks of related proteins or genes. Assessing the response
of a specific mechanism and investigating its biological basis is extremely important in systems toxicology; as
compounds or treatment need to be assessed with respect to a predefined set of key mechanisms that could lead
to toxicity. Two-layer networks are suitable for this task, and a robust computational methodology specifically

The NPA package (https://github.com/philipmorrisintl/NPA) implements the algorithm, and a data package of eight
two-layer networks representing key mechanisms, such as xenobiotic metabolism, apoptosis, or epithelial immune

Results: Gene expression data from an animal study are analyzed using the package and its network models. The
functionalities are implemented using R6 classes, making the use of the package seamless and intuitive. The various
network responses are analyzed using the leading node analysis, and an overall perturbation, called the Biological

Conclusions: The NPA package implements the published network perturbation amplitude methodology and
provides a set of two-layer networks encoded in the Biological Expression Language.

Keywords: Gene expression, Network models, Systems toxicology

Background

Gene expression technologies provide complex datasets
reflecting the response of a cell system or organism ex-
posed to bioactive substances. Contextualizing and
quantifying the transcriptomic profiles into predefined
mechanisms by combining the gene expression changes
and networks is at the core of systems toxicology, as this
discipline requires a quantitative measure of dose-
response. Among the networks used, cause-and-effect
network models are becoming increasingly popular [3,
7-9, 12, 13, 19, 25, 29-31, 34, 35], and many of these
models, describing processes involved in cell prolifera-
tion, cell fate, cell stress, and inflammation, have already
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been published in repositories such as the Causal Bionet
(http://causalbionet.com) [3] or BEL Commons (https://
bel-commons.scai.fraunhofer.de) [14]. The underlying
biological knowledge in these networks has been ex-
tracted from the scientific literature manually and
encoded in the Biological Expression Language (BEL), a
computable language developed specifically for causal
biological networks (CBN) (http://bel.bio/).

To address the quantification of biological mecha-
nisms known to be linked or that can lead to toxico-
logical responses based on gene expression profiles, two-
layer networks are suitable, and a mathematically and
statistically sound methodology, called network perturb-
ation amplitude (NPA), was published in [23]. The two-
layer structure on the networks reflects backward rea-
soning, paradigm in which protein activities in a pathway
are inferred from their downstream gene expression
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footprints, as opposed to forward reasoning that maps
gene expression (or related fold-change) to protein activ-
ities. In this context, several studies using this approach
have been published in recent years [10-13, 15, 16, 20,
21, 24, 26, 27, 36]. This approach is a threshold-free ap-
proach and can therefore enable an objective evaluation
of network perturbations.

Implementation
The NPA package has been developed in and designed
for the R statistical environment. It is accessible in Bio-
conductor and free of charge for non-commercial use.
The implementation uses R6 classes with an S4-class
dispatching in order to make its usage more intuitive. It
does not rely on any C++ component, as the R code has
been optimized to provide fast permutation tests (less
than 5 s per two-layer structured network).

Workflow overview

The quantification of NPAs aims to describe the re-
sponse of biological mechanisms modeled by a network
using transcriptomic data. Here we focus on the particu-
lar type of causal networks for which the NPA method-
ology has been developed. Given a suitably organized
collection of causal networks selected for a priori rele-
vant biological mechanisms, the structure of the associ-
ated NPA results can be seen as a complex reduction
scheme starting from large experimental transcriptomic
data. It provides a quantification of the treatment-
induced impact on the considered biological
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mechanisms, which, in concrete applications, is used to
comparatively assess toxicity.

Concretely, the workflow of the NPA computational
workflow requires three distinct inputs in terms of ex-
perimental data and biological knowledge (Fig. 1).

Network input

The network models provided with the companion
package, NPAModels (https://github.com/philipmorri-
sintl/ NPAModels), represent the molecular mechanisms
across wide range of biological processes, including cell
fate, cell stress, cell proliferation, inflammation, and tis-
sue remodeling, relevant for human respiratory physi-
ology. The two-layer structure, as defined in [23], is
summarized below.

Network functional layer

Unlike other types of networks, the networks nodes de-
scribe molecular (protein, chemicals, genes) concentra-
tions but also represent functions such as
transcriptional, enzymatic, or kinase activities. The net-
work edges encode directed relationships between nodes,
each of which is associated with a sign representing the
increasing or decreasing direction of change between the
molecular activities. The biological knowledge repre-
sented in these networks has been manually extracted
from the scientific literature and encoded in the BEL, an
ontology developed specifically for CBNs (http://www.
openbel.org/). More CBNs and BEL resources are pub-
licly and freely available on the CBN Database website
(http://causalbionet.com) [3].
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Fig. 1 The NPA workflow. The gene expression data are used to estimate the treatment effect for each gene. The (log,) fold-changes and the
associated t-statistics are required (a). By combining the gene expression fold-changes and a two-layer causal network (b), its perturbation is
quantified and assessed for its significance by combining two specificity statistics and the fold-change standard deviations (c). Several NPAs can
be summarized into a holistic quantity describing the overall biological response, called the Biological Impact Factor (BIF) (d), which can be used
as a toxicological index for comparing various treatments. If an individual network reaches significance, the leading node analysis (e) enables the
identification of the key biological entities involved in its response to ease the interpretation
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Network transcript layer

For some nodes in the functional layer, information sup-
porting the relationship to the expression (upregulation
or downregulation) of certain genes is available. These
relationships are either extracted from literature or from
specific gene expression experiments. Such a footprint
for a given node in the functional layer (such as a tran-
scription factor or an activity of a protein) can be effi-
ciently extracted from gene expression data sets whereby
the experiment involves the inhibition or activation of
the molecule under consideration. Edges from that node
to genes significantly impacted are defined and signed
accordingly. These specific edges (directed and signed)
define the gene expression fingerprint of the network
functional layer. Typically, hundreds or thousands of
genes are included in the transcript layer. Note that not
all the nodes are required to have such footprints for
computing NPA. Following the “backward reasoning”,
paradigm stating that changes in molecular mechanisms
encoded by causal network nodes (e.g., the activity of a
transcription factor) can be deduced from the expression
changes of their downstream-regulated genes, a gene ex-
pression profile can be used to computationally predict
the activity of the functional layer nodes.

Data input

The gene expression profiles are derived from gene ex-
pression data for which one or several contrasts (typic-
ally a treatment versus control design, or linear model
coefficients) are estimated from a statistical model.
These contrasts represent the system response profile
associated with comparisons of interest and are mapped
onto the transcript layer of the two-layer network, which
reflects the perturbation of the functional layer. In our
implementation, the data input is a list, one entry per
contrast, and each entry is a data frame, with a variable
nodeLabel describing the gene symbol of each row, fold-
Change describing the estimated contrast (log,-based),
and ¢ describing the ¢-statistics associated with the fold-
change. T-statistics are typically derived from limma (in
which case the moderated t¢-statistics is used) or from
DESeq2 for RNA-seq data (in which case the ¢-statistics
is replaced by the z-statistics of the Wald test used for
testing the significance of the shrunken estimates of the
gene fold-changes).

NPA computation

The NPA method previously reported in [12, 13, 23] will
first compute the perturbations for the network nodes
based on a constraint optimization problem. If the ob-
tained transcriptomics profile reflects the perturbation
of the functional layer, all of the differential values
should be close to each other (smooth perturbation pro-
file) while being equal to the observed fold-changes 3 in
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the transcript layer, denoted V. The differential values
for the functional layer are obtained by solving:

mingeen 3, (F®)-0(y) 0D st f| =B

where o(x —y) denotes the sign of the edge x—y.
This constrained optimization problem can be solved
analytically and was implemented as a matrix multiplica-
tion, relying on sub-matrices of the signed Laplacian
matrix of the two layers [23]. Once differential values
are obtained for the functional layer, the NPA score is
then computed by summing the result over the edges of
that layer as:

NPA = Fl| > (fleo) +a(e)f(en))?

ein E

where E is the set of its edges, |E| is its size, f is the solu-
tion of the constrained problem describing the node dif-
ferential values, and e, and e; denote the start and the
end, respectively, of the edge e. This sum is efficiently
implemented as the evaluation of a quadratic form.

Finally, the computation of three accompanying statis-
tics is performed to determine if the obtained NPA value
represents a true positive. The first statistic is based on
the biological variability propagated from the uncertain-
ties of the differential gene expression values: the 95%
confidence interval (CI) around the NPA value should
not contain zero. The other two statistics test the rele-
vance of the biological mechanism(s) encoded in the
network by randomly reshuffling the network edges of
the transcriptional layer or functional layer. This turns
into two null distributions for the network-level perturb-
ation values. If the actual NPA value lies above the 95%
quantile of a null distribution, it is considered to be sta-
tistically significant and labeled as “O” or “K,” respect-
ively. Significant network perturbations correspond to
the cases where all three statistical tests lead to
significance.

In our implementation, computation time for those
statistics usually takes 49.1s for 12 comparisons and
58.1s for 48 comparisons and scales linearly with the
number of comparisons by using the precomputed per-
mutation matrices. To speed up the computation, it is
recommended to precompute the permutation matrices
using the function preprocessNetworks() provided by the
NPAModels companion package. With the preprocessed
version of the networks, the computation time drastic-
ally drops to 6.4s for 12 comparisons and 20.1s for 48
comparisons, on single Intel® Core™ i5-6500 CPU @
3.20GHz with a 16 Gb of RAM computer. If a node of
the functional layer has less than five edges to the tran-
script layer (considered as under-represented), removing
those edges is recommended. Finally, only the nodes
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Fig. 2 E-MTAB-2756. Study design and time points, from which the transcriptomic were used

having an ancestor and a descendant node with edges to
the transcript layer are scored to avoid extrapolation.

All of the computations are performed with a single
call of compute npa and plotted using the barplot
method. Eight two-layer networks are available in the ac-
companying NPAModels package .

The interpretation of a significant network perturb-
ation is supported by the inspection of the leading
nodes, defined as the functional layer nodes that contrib-
ute the most to the NPA scores. This component is key,
as two different perturbation patterns in the functional
layer can lead to the same summarized scores and as
functional layer size can be substantial (e.g., oxidative

stress network functional layer contains 194 nodes) mak-
ing the systematic inspection of all differential values te-
dious. Leading nodes are nodes of the functional layer,
whose differential values contribute 80% to the observed
effect. The inspection of this shorter list of nodes sup-
ports the interpretation and the comparison of network
perturbation across contrasts. It also allows for the as-
sessment of the directionality (activation or inhibition)
of the inferred effects on each node; as the NPA is by
definition positive. Leading node ranks and signs can be
accessed with the as.matrix method from an NPA object
and visualized as a heatmap or in the network graph by
calling the plot method.
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Fig. 3 The NPA and the BIF. a Heatmap of the NPA scores. A network is considered perturbed if, in addition to the significance of the NPA score
with respect to the experimental variation, the two companion statistics (O and K), derived to inform on the specificity of the NPA score with
respect to the biology described in the network, are significant. *O and K statistic p-values below 0.05 and NPA significant with respect to the
experimental variation. b BIF scores. The percentages give the relative biological impact, which is derived from the cumulated network
perturbations caused by the treatment relative to the reference (the treatment showing the highest perturbation; here 3R4F as REF). Only the
significant network perturbations are summarized further into this single number; hence, any component entering the score is significant by
definition. The contribution to the score for each network family is indicated by a pie chart underneath each bar. For each treatment comparison,
the & value (-1 to 1) indicates how similar the underlying network perturbations are with respect to the reference. A value of 1 indicates that all
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Fig. 4 NPA of the oxidative stress network model scored with E-MTAB-2756 transcriptomic data. The bar graph on the left (panel a) represents
the perturbation amplitude of the network model as a whole, and the network presentation on the right (panel b) shows an example of
connected leading nodes common to all contrasts. The backbone NPA values with directionalities of inferred regulation are shown as bar graphs
for each node. The green asterisk indicates that the node is a leading node in a given contrast. Highlighted nodes are the molecules discussed in
the main text. The vocabulary for the BEL is provided in http://www.openbel.org/
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Fig. 5 NPA of the apoptosis network model scored with E-MTAB-2756 transcriptomic data. The bar graph (panel a) on the left represents the
perturbation amplitude of the network model as a whole shown with the Cls accounting for experimental variation. The red star indicates that the
score is statistically different from 0. In addition, companion statistics derived to inform on the specificity of the score with respect to the network
structure are shown as *O and *K, respectively, if their p-values are below the significance level of 0.05, and by .O and K. when the corresponding
p-values are between 0.05 and 0.1. Symbol legend: *: O and K statistic p-values below 0.05 (in color), .O and K. p-values between 0.05 and 0.1 (in grey).
The network presentation on the right (panel b) shows an example of connected leading nodes common to all contrasts. The backbone NPA values
with directionalities of inferred regulation are shown as bar graphs for each node. The green asterisk indicates that the node is a leading node.
Highlighted nodes are the molecules discussed in the main text. The vocabulary for the BEL is provided in http.//www.openbel.org/
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Fig. 6 NPA of the cell cycle network model scored with E-MTAB-2756 transcriptomic data. The bar graph on the left (panel a) represents the
perturbation amplitude of the network model as a whole shown with the Cls accounting for experimental variation. The red star indicates that
the score is statistically different from 0. In addition, companion statistics derived to inform on the specificity of the score with respect to the
network structure are shown as *O and K, respectively, if their p-values are below the significance level of 0.05, and by .O and K. when the
corresponding p-values are between 0.05 and 0.1. Symbol legend: *: O and K statistic p-values below 0.05 (in color), .O and K. p-values between
0.05 and 0.1 (in grey). The network presentation on the right (panel b) shows an example of connected leading nodes common to all contrasts.
The backbone NPA values with directionalities of inferred regulation are shown as bar graphs for each node. The green asterisk indicates that the
node is a leading node in a given contrast. Highlighted nodes are the molecules discussed in the main text. The vocabulary for the BEL is

To further ease the interpretation and identification of
highly impacted sub-networks, network sub-graphs (called
here modules) that are dense in leading nodes across all the
contrasts can be extracted by the method module and plot-
ted by a simple plot call. The modules are extracted by
using the dNetFind call from the dnet package in order to
heuristically find a maximum scoring connected subgraph,
using the leading node contributions as scores. If modules
are too large for a visual inspection, they can be further
clustered by using the infomap community approach im-
plemented in the igraph package.

When several networks are available and grouped into
families (such as Cell Stress, Cell Fate), the treatment-
induced biological impact is summarized as network
family-level impact factors, which in turn are summarized
into a single quantity, called the BIF. The evaluation of the
BIF consists of filtering out the networks that are not sig-
nificantly perturbed and then summing the remaining NPA
values with weights that take into account the number of
network in each family and the nodes overlapping between
networks.

Results

Transcriptomic dataset

To show the scoring of the network models with tran-
scriptomic data, we have focused on a mouse inhalation
study reported in [4]. The study was designed to identify
the onset of emphysema induced by exposure to cigarette

smoke (CS). C57BL/6 mice were exposed to mainstream
CS from the 3R4F reference cigarette through whole-body
exposure for up to 7 months. Additionally, four cessation
scenarios were included to assess the impact of smoking
cessation on emphysema progression in the lung. Figure 2
illustrates the study arms used in this analysis. The dataset
is available in the package as data (COPD1).

NPA and BIF

The NPA scores, describing the degree perturbation of
each network as a positive amplitude, are shown in
Fig. 3a. To generate NPA scores on the whole network
suite and displaying the results, the following code was
used:

# Load packages
library(NPA)
library(NPAModels)
library(RColorBrewer)

# Load data

data(COPD1)

# Load models

models <- load_models(species = "Mm")
# Compute NPA for each network
set.seed(54)

npas <- compute_npa_list(COPD1, models)
# Compute the BIF

bif <- get_bif(npas)

# Display NPA heatmap

plot(npas, simplified.text = TRUE)

# Plot BIF results

barplot(bif, col = brewer.pal(n = 6, name = "Spectral"))

All network models were impacted in response to 5
and 7 months of CS exposure. These impacts were
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Fig. 7 NPA of the ECM degradation network model scored with E-MTAB-2756 transcriptomic data. The bar graph on the left (panel a) represents the
perturbation amplitude of the network model as a whole shown with the Cls accounting for experimental variation. The red star indicates that the
score is statistically different from 0. In addition, companion statistics derived to inform on the specificity of the score with respect to the network
structure are shown as *O and K¥, respectively, if their p-values are below the significance level of 0.05, and by .O and K. when the corresponding p-
values are between 0.05 and 0.1. Symbol legend: *: O and K statistic p-values below 0.05 (in color), .O and K. p-values between 0.05 and 0.1(in grey).
The network presentation on the right (panel b) shows an example of connected leading nodes common to all contrasts. The backbone NPA values
with directionalities of inferred regulation are shown as bar graphs for each node. The green asterisk indicates that the node is a leading node.
Highlighted nodes are the molecules discussed in the main text. The vocabulary for the BEL is provided in http.//www.openbel.org/

remarkably reduced in the lungs of mice that were ex-
posed to fresh air after 2 months of CS exposure and to
a lesser extent when the CS exposure was stopped after
4 months. A similar result was seen in the BIF that de-
picts the aggregated impact based on all networks that
were scored with the transcriptomic data (Fig. 3b).

Leading node analysis

The leading node analysis was used to dissect the mechan-
istic detail behind the perturbation of each network model
in response to CS exposure. To investigate the network
perturbation, a graphical presentation of the leading node
module in the oxidative stress network model was lever-
aged (Fig. 4) and generated using the code below:

# Extract Oxidative Stress NPA results

nets <- networks(npas) # Names of available networks

npaOxStress <- subset(npas, grep("Oxidative_Stress", nets))

# NPA barplot

barplot(npaOxStress, cex.names = 1.3, cex.annot = 2, bg = "white")
# Compute Leading node modules

set.seed(467563) #seed for igraph::cluster_infomap
OxStressLNmodule <- modules(npaOxStress)

# Plot module

res <- plot(OxStressLNmodule, type ="multiple”, which.module = 1,
vertex.size = 16, title = FALSE, col.leg = "greyl@")

The graph illustrates the signaling cascade from par-
ticulate matter exposure to the increase in superoxide
production, leading to increased intracellular reactive

oxygen species (ROS), which also results from the acti-
vation of the arachidonate 12-lipoxygenase (ALOX12)
[1] and xanthine dehydrogenase (XDH) [33]. In contrast,
thioredoxin (TXN) was inferred to be inhibited, in line
with its role in modulating intracellular ROS balance
[18]. The increase in ROS triggers multiple signaling
pathways, such as the SRC family leading to activation of
the NADPH oxidase complex via cortactin (CTTN) and
neutrophil cytosolic factor 1 (NCF1) [32]. The NADPH
oxidase complex in turn further increases the production
of ROS [2]. Other signaling molecules predicted to be
activated in response to CS and the increase in ROS in
the mouse lung include Duox1 and Map3Kk5.

The apoptosis network model represents one of
the cell fates that can result from prolonged oxida-
tive stress and tissue damage. Figure 5 shows the
perturbation for the apoptosis network as a whole
and the leading nodes inferred from the transcrip-
tomic data from CS-exposed mouse lungs. The acti-
vation of caspase-8 mediated by p53 and the FAS/
FADD pathway was inferred from the transcriptomic
data, in line with the CS toxicants, such as acrolein,
activating apoptosis pathways in lung cells [28].
TNFa pathway in the context of apoptosis was also
inferred to mediate caspase activation in this dataset.
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Inferred activation of FOXM1, subsequent activation
of SKP2, and the degradation of cyclin-dependent kinase
inhibitor 1B (CDKN1b) were observed based on the
leading node analysis of the cell cycle network scored
with transcriptomic data from the lungs of CS-treated
mice [5] (Fig. 6).

The degradation of the extracellular matrix (ECM) is
characteristic of emphysema, which is a manifestation of
chronic obstructive pulmonary disease and a phenotype
detected in the lungs of mice exposed to CS [6, 22]. The
graphical presentation of the leading nodes that are con-
nected in the ECM degradation network model is shown
in Fig. 7. The tissue inhibitor of matrix metalloproteases
(TIMP) were inferred to be downregulated, and accord-
ingly, the matrix metalloproteases (MMP) were inferred
to be activated, with subsequent degradation of collagen
in the lungs of mice exposed to CS. The leading node
analysis also indicated that increased IL1b signaling was
responsible for the molecular cascade leading to the deg-
radation of the ECM components.

Conclusions

The NPA package and its companion data package NPA-
Models provide the tools and resources to contextualize
transcriptomic profiles into manually curated networks
describing cellular processes relevant to toxicology, such
as apoptosis, cell cycle, oxidative stress, and phase I
xenobiotic metabolism. This network enrichment ap-
proach [23] can be considered as a threshold-free func-
tional class scoring methodology [17]. The computations
and presentations of the results have been facilitated by
using R6 classes and provides the user with an intuitive
and easy-to-use package.
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