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Abstract

Background: Relationships between specific microbes and proper immune system development, composition, and
function have been reported in a number of studies. However, researchers have discovered only a fraction of the
likely relationships. “Omic” methodologies such as 16S ribosomal RNA (rRNA) sequencing and time-of-flight mass
cytometry (CyTOF) immunophenotyping generate data that support generation of hypotheses, with the potential
to identify additional relationships at a level of granularity ripe for further experimentation. Pairwise linear regressions
between microbial and host immune features provide one approach for quantifying relationships between “omes”, and
the differences in these relationships across study cohorts or arms. This approach yields a top table of candidate results.
However, the top table alone lacks the detail that domain experts such as microbiologists and immunologists need to
vet candidate results for follow-up experiments.

Results: To support this vetting, we developed VOLARE (Visualization Of LineAr Regression Elements), a web application
that integrates a searchable top table, small in-line graphs illustrating the fitted models, a network summarizing the top
table, and on-demand detailed regression plots showing full sample-level detail. We applied VOLARE to three case
studies—microbiome:cytokine data from fecal samples in human immunodeficiency virus (HIV), microbiome:cytokine data
in inflammatory bowel disease and spondyloarthritis, and microbiome:immune cell data from gut biopsies in HIV. We
present both patient-specific phenomena and relationships that differ by disease state. We also analyzed interaction data
from system logs to characterize usage scenarios. This log analysis revealed that users frequently generated detailed
regression plots, suggesting that this detail aids the vetting of results.

Conclusions: Systematically integrating microbe:immune cell readouts through pairwise linear regressions and presenting
the top table in an interactive environment supports the vetting of results for scientific relevance. VOLARE allows domain
experts to control the analysis of their results, screening dozens of candidate relationships with ease. This interactive
environment transcends the limitations of a static top table.
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Background
“Omic” approaches such as transcriptomics, metabolomics,
and mass cytometry allow researchers to measure hundreds
to thousands of analytes. Here, we define an analyte as a
biological entity with a name, a numeric value, and a unit
of measurement. However, data from a single ome may

lack rich functional insight [1] or may miss signals that are
present in another ome [2]. Thus, multi-omic studies are
increasingly common [3, 4], offering the potential to formu-
late progressively more comprehensive perspectives on bio-
logical processes [5–8]. Multi-omic studies may interrogate
closely related omes, such as genes and their methylation
[3], or more disparate omes, such as the gut microbiome
and immune cell subsets [9]. Among the challenges of such
studies are analyzing the data to identify specific cross-omic
patterns. As an example of one such pattern, Bacteroides
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fragilis induces regulatory T cells to produce IL-10, confer-
ring protection from inflammation in mouse models [10].
Aberrations in both the gut microbiome and the immune
system have been associated with diseases including inflam-
matory bowel disease [11], type 1 diabetes [12], asthma
[13], multiple sclerosis [14], rheumatoid arthritis [15], and
HIV [16, 17]; and in responses to immunotherapy [9, 18,
19]. However, researchers have discovered only a fraction
of the underlying relationships and their associations with
disease. Identification of cross-omic patterns in multi-omic
data offers the potential to identify additional candidate re-
lationships at a level of granularity ripe for further experi-
mentation. Furthermore, these relationships can connect an
analyte of interest from one ome to unfamiliar analytes
in another ome, For example, an immunologist study-
ing patient responses to an immunotherapy that blocks
an inhibitory receptor, such as programmed cell death
1 (PD-1), might be interested in commensal microbes
that are associated with cell populations that express
PD-1 [20]. The ability to identify cross-omic relation-
ships is of interest both to a single researcher incor-
porating new omic technologies into his or her studies,
and to a cross-disciplinary research team.
One approach to identifying cross-omic relationships is

to systematically compare all of the analytes in one ome to
all of the analytes in another ome, using either correlation
[9] or regression techniques [18, 21]. The resulting data
can be presented as a heat map of correlation coefficients
[9, 22] or p-values [18]. Alternatively, we can focus on a
“top table” of statistically significant associations, similar to
those generated in the analysis of gene expression data
[23]. In a gene expression study, a top table lists a user-spe-
cified number of genes (e.g. 100) that are differentially
expressed between two groups, ordered by p-value from
smallest to largest. A top table may also include supple-
mental information such as an adjusted p-value, a test
statistic, and average observed values [24]. In our work, the
top table is based on a p-value from a linear regression of
the form microbe ~ cohort + immune readout + cohort x
immune readout, and includes both the microbe and the
immune readout (e.g. Bacteroides fragilis and IL-10), as
illustrated in Additional file 1. While a heat map captures
one statistic (e.g. correlation coefficient or p-value) for all
pairs of analytes, a top table itemizes multiple statistics for
the best pairs.
However, the top table alone lacks the detail that a re-

searcher needs to prioritize results for follow-up labora-
tory experiments. In the case of cross-omic regressions
that account for difference in disease state, each row in a
top table represents a complex relationship for each pair
of analytes, not well captured by a test statistic alone. To
support visual analysis of these relationships, and help
researchers prioritize results for follow-up, we developed
a novel web application called VOLARE, (Visualization

Of LineAr Regression Elements). VOLARE provides a
visual encoding of the top table and associated regres-
sion elements, leveraging existing visualization tech-
niques. We extend the top table, a fundamental tool of
single-omic analysis, to two omes. We enrich it with
small in-line graphs of the fitted regression models, from
which the researcher can drill down to detailed regres-
sion plots illustrating both the fitted model and sample-
level detail. The table itself (or a subset thereof) is
summarized by an interactive network, with analytes
represented as nodes and relationships as edges. This
interactive environment supports visual data analysis
and transcends the limitations of a static top table. This
approach may be broadly applicable to studies that
include data from two high-throughput assays in which
at least one of the assays interrogates the microbiome or
the immune system, such as microbe:metabolome, micro-
biome:proteome, and RNA-Seq:immune repertoire.
The overall goal of our approach is to support vetting

of results for scientific relevance. To gather data neces-
sary to characterize the domain, we conducted struc-
tured interviews in two sessions. The first session
included both a microbiologist and an immunologist,
the second session included only an immunologist. The
interview outline is included in Additional file 2. We
then mapped the common operations (from question
1D) to domain-specific analytical questions, deriving the
following general tasks: (1) explore relationships
between an analyte of interest and associated analytes in
the other ome, thereby borrowing information from one
domain to better understand another; (2) discover rela-
tionships that differ across disease state (e.g. HIV+ and
HIV-); (3) assess credibility of the fitted model, including
goodness of fit, the presence or absence of outliers, and
the magnitude and dynamic range of the readouts for
each analyte; (4) compare detailed regression plots
across several pairs of analytes; and (5) identify highly
connected “hub” analytes, such as a particular microbe
related to a number of immune cell subsets. We applied
VOLARE to three case studies: microbe:cytokine data
from fecal samples; microbe:cytokine data, with cyto-
kines produced by ex-vivo mitogen stimulation of intra-
epithelial lymphocytes; and microbe:immune cell data
from gut mucosal biopsies; thereby demonstrating
generalizability to multiple experimental designs inter-
rogating microbe:host immune system interplay.

Methods
Architecture and workflow
VOLARE is a web application implemented in HTML,
JavaScript, and the D3 library [25], designed for users with
expertise in immunology or microbiology. The data pre-
sented in VOLARE is a top table of regression results and
underlying detail. Fig. 1 illustrates the VOLARE architecture
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and workflow. The data preparation processes (Fig. 1a)
generate regression results from merged assay data, and
format the top table results and underlying detail into a
JavaScript Object Notation (JSON) file with the jsonlite
library [26]. We envision that this process is performed by
someone with intermediate R skills and a familiarity with
regression modeling. The user then loads this JSON file into

VOLARE for visual analysis (Fig. 1b). The processes of (1)
performing thousands of pairwise regressions and marshal-
ling associated detail and (2) analyzing the results in the top
table are distinct, and often performed by people with diffe-
rent areas of expertise. Our architecture reflects this sepa-
ration of concerns. This architecture results in a visual
analysis environment that is responsive to user input, since

JSON

Regression results
Mb.1, Ir.1, F.1_1, P.1_1
Mb.1, Ir.2, F.1_2, P.1_2
...

Merged assay data
(Each row a sample, each column an analyte)

2.  Format data for VOLARE

correction)
With top results

a) reprocess regression, collecting metrics for top table
b) collect assay data for detailed regression plots

1.  Perform regressions
For each pair:
mFull = lm(mb ~ HIV + ir + HIV*ir)
mReduced = lm(mb ~ HIV)
F = anova(mFull, mReduced)$F

JSON

A)

B)

Fig. 1 VOLARE architecture and workflow. The architecture reflects a separation of concerns between data preparation and visual analysis. Blue
horizontal parallel lines represent data files. Black ovals represent processes. a Data preparation is performed in R. Given a file of merged assay
data, all pairwise regressions are calculated and recorded, with Mb.1 and Ir.1 representing the first microbe and first immune readout respectively.
F.1_1 and P.1_1 represent the F statistic and p-value from the linear model using Mb.1 and Ir.1. Second, data is formatted for VOLARE. Regression
results are filtered for statistical significance. These top table results are reprocessed to collect additional details needed for visualization (top table
of relationships and associated metrics, underlying data, and configuration data for the web application), which are saved in a JSON file. b Visual
analysis is performed with a JavaScript web application
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the computationally intensive calculations are performed
upstream of visualization. We provide a quick start guide
and representative example scripts for performing regres-
sions and formatting the data at https://sourceforge.net/pro-
jects/cytomelodics. We also provide source code, example
input files, and documentation and R scripts that allow a
user to customize figures for publication using the data in
the JSON file. A hosted version of VOLARE is available at
http://aasix.cytoanalytics.com/volare/, and includes a link to
the JSON file used for Case Study 2, discussed below.

Regression models
To address the question, “is the relationship between
any particular microbial taxa (Mb) and any particular
immune readout (IR) different based on cohort?” we
used a partial F-test comparing the linear regression
model, Mb ~ Cohort + IR + Cohort x IR to a reduced
model, Mb ~ Cohort. This tests whether the full model
has more explanatory value than does the reduced
model. Specific cohorts and immune readouts are
discussed in the context of the case studies.

Visual design
Figure 2 illustrates the VOLARE visual analysis interface.
Since the top table is a fundamental element of omics
analysis, we built VOLARE around the table. To support
Task 1 (explore relationships between an analyte of
interest and associated analytes in the other ome), we
added an interactive filter function to the top table.
When the user enters a microbe or immune marker, the
table automatically displays only those relationships that
match the search phrase. While we could have repre-
sented the top table as a matrix or heat map, the textual
and numeric details of the table are essential to commu-
nicate the results of the statistical analysis. Furthermore,
the VOLARE top table displays all of the columns that
were included in the top table structure in the JSON file.
These columns can include mean values or observed
ranges of each analyte, p-values of cohort-immune re-
sponse interaction terms (top table in Fig. 5c), or influ-
ence measures (top tables in Fig. 6a and b), thereby
placing additional derived data in context.
To support Task 2 (discover relationships that differ

across disease state), we added small graphs of the fitted
regression model, inspired by Tufte’s sparklines [27]. We
call this embedded graphic a microplot. The graphic en-
coding of this derived data enables the user to scan the
table and quickly assess what analytes are involved in what
sorts of relationships. As such, it also functions as a small
multiple display. The microplot illustrates the regression
model using line tilt, line length, and color. While the same
data could be represented by numeric values for slope, such
an encoding would be less conducive to visual analysis.
Furthermore, the magnitude of the analyte readouts (and

thus the slopes) can vary widely across the data set. The
microplot normalizes the magnitudes by plotting the rela-
tionship in a consistently sized glyph, regardless of the mag-
nitude. Fig. 3 provides three different microplot examples,
with different interpretations. Fig. 3a illustrates a relation-
ship in which the microbe and immune readout are asso-
ciated in one cohort but not the other, possibly because the
microbe is not present in one of the cohorts. Fig. 3b illus-
trates a positive association in one cohort and negative
association in the other, which might suggest differing bio-
logical mechanisms in health and disease. Fig. 3c illustrates
a much smaller dynamic range of both analytes in one co-
hort than the other. While this could be driven by a single
outlier, it also could indicate truly different ranges in both
analytes across the two cohorts. Thus, even though the
microplot provides a valuable glimpse of the relationship
between the analytes, underlying detail is required to fully
vet the relationship.
To support Task 3 (assess credibility of the fitted model,

including goodness of fit, the presence or absence of
outliers, and the magnitude and dynamic range of the
readouts for each analyte) and Task 4 (compare detailed
regression plots across several pairs of analytes), we pro-
vide a detailed regression plot in response to clicking the
microplot. Multiple plots can be juxtaposed in the same
view to support comparison. This detailed plot illustrates
each data point, colored to indicate disease status, and the
corresponding regression fit. The encoding of a detailed
regression plot necessary to convey statistical detail aligns
well with best practices of visual encoding. Each point is
grounded in a common two-dimensional space, color
indicates groups, and tilt captures the fitted model [28].
To support Task 5 (identify highly connected “hub” ana-

lytes), we present a network that summarizes the relation-
ships in the top table. Each node represents an analyte
with color encoding the assay (e.g., purple = immune cell
subset, green =microbe), while each edge indicates a rela-
tionship between two analytes, i.e. a row in the top table.
This is an efficient use of screen real estate in which each
analyte from the top table appears only once, with rela-
tionships captured by edges. Alternatively, we could have
summarized the table with a histogram of analyte degree,
but this would not have included the relationships
between analytes. Taken together, these encodings sup-
port the Shneiderman mantra of overview first, zoom and
filter, then details on demand [29]. The network and top
table provide the overview. The microplots provide a pre-
zoomed representation. The top table itself can be filtered,
and the detailed plots are available on demand.

Biological methods and materials
Biological methods and materials are presented in
Additional file 3.
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Results
We applied VOLARE to data sets from three different
studies. The first case study interrogates microbiome:
cytokine relationships in fecal samples from HIV-nega-
tive high risk individuals and HIV-negative low risk
individuals. The second case study uses published data,
and identifies new findings in fecal microbiome:cytokine
relationships in patients with spondyloarthritis, Crohn’s
disease, ulcerative colitis, and healthy controls [30]. The
third case study considers microbiome:immune cell

relationships in gut biopsies in HIV-positive and HIV-
negative participants. In all three cases, we examine rela-
tionships between microbial taxa and immune readouts.
Since one of our goals is to identify a “reasonable” num-
ber of candidate results for vetting (about 30 to 100), we
use a different cutoff for inclusion in the top table in
each case. We generate top tables with different sets of
metrics to support different study designs, and to illus-
trate flexibility. For example, we generate p-values for all
three cohort:cytokine interaction terms in case study 2.

Fig. 2 VOLARE screenshot: Network at the top, two detailed regression plots below, and top table at the bottom. Buttons add labels to the
nodes, synchronize the table with the network, or synchronize the network with the table. The top table can be filtered by typing text to match.
The table contains one row for each relationship, listing the analytes that comprise the relationship, the test statistic (in this case F), an adjusted
p-value (pAdj), and a small plot illustrating the fitted model (microplot, abbreviated mPlot). Clicking on a microplot generates the corresponding
detailed graph. The key = label above each detailed plot references the corresponding row in the top table. In each detailed plot, the x-axis
represents the immune cell population (measured in percent of parent population) while the y-axis represents the microbial taxa (measured in
relative abundance, in the range from 0 to 1). Each point represents the values for one sample from one person. Points are color coded to
represent the cohort to which the corresponding person belongs. Lines represent the fitted regression model for each cohort. The closer the
points are to the line, the better the model

Siebert et al. BMC Bioinformatics          (2019) 20:432 Page 5 of 13



In case study 3, we illustrate influential observations. In
addition to showing the influence metric in the top
table, we also encode it in the size of the circles in the
detailed plot. Finally, we characterize user interaction
with VOLARE by analyzing server logs.

Case study 1: microbiome:cytokine relationships in HIV
Fecal samples provide a non-invasive source of microbiota
and proteins generated by immune cells. Here, we describe
an unpublished study using such samples, and analysis of
the resulting data using VOLARE. Fecal samples were
collected from study participants who were HIV negative
high risk (HR; men having sex with men, n = 17) or low
risk (LR, n = 18). High risk individuals engage in behaviors
that put them at increased risk for acquisition of HIV.
Fecal samples were analyzed by 16S rRNA sequencing to
identify microbes and by ELISA to identify a combination
of cytokines and growth factors; hereafter, called cytokines.
To compare microbes to cytokines, we combined data for
35 study participants into a single file consisting of 43
microbial genera with non-zero relative abundance values
for at least 17 of 35 samples and 17 cytokines. We
fitted 731 (43 × 17) linear regression models of the
form Mb ~ Cohort + Cytokine + Cohort x Cytokine and
compared those results to those from a reduced model, Mb ~
Cohort using a partial F-test. We surfaced the 58 pairs with
an unadjusted p < 0.05 for exploration in VOLARE.
Figure 4 illustrates analysis tasks as defined in the

Background section in the context of this case study. At a
high level, the user identifies an analyte of interest based
on prior knowledge, network community, or microplot
trends, filtering the table to display the rows that include
this analyte. Inspecting the detailed plots may in turn lead
to the identification of a new analyte of interest. First, we
searched for a specific microbe of interest, “Mb_6.” The
filtered table has only one row, showing that Mb_6 is
associated with IL-1α (Fig. 4a, Task 1). In this case, there

is a strong negative association between the bacteria and
IL-1α for the low risk group (LR in blue), while the rela-
tionship between Mb_6 and IL-1α for the high-risk group
is relatively flat (HR in red; Task 2). Clicking on the
microplot generates the detailed plot. Here, we observed
that several people in the high-risk group have high levels
of IL-1α, represented by the rightmost points with values
around 1600 and 1800 pg/ml (Fig. 4b, Task 3). Thus, IL-
1α is of interest. To see if other bacteria are associated
with these high IL-1α values, we searched the top table for
IL-1α (Fig. 4c, Task 1), drilling down on the several de-
tailed plots (Fig. 4d, Task 4). We visualized the relation-
ships between microbial taxa and IL-1α in a network
graph (Fig. 4e, Task 5). Overall, we observed that the IL-
1α outliers were associated with high levels of Mb_8, but
not with high levels of Mb_12. We speculated that Mb_8
was driving an IL-1α immune response, and considered
an in vitro experiment to recapitulate this association in
cells from other study participants.

Case study 2: microbiome:immune cell relationships in
inflammatory bowel disease and spondyloarthritis
Previously, Regner et al. reported on relationships between
the gut microbiome and cytokines produced by mitogen-
stimulated intraepithelial lymphocytes (IEL) in patients with
spondyloarthritis (SpA), Crohn’s disease (CD), ulcerative
colitis (UC), and healthy controls (HC) [30]. Among other
results, Regner identified elevated levels of TNFα in patients
with SpA and CD. To compare gut microbiome to cyto-
kines produced ex vivo by mitogen-stimulated IEL, we
combined data for 37 study participants (across 4 cohorts)
into a single file consisting of 70 microbial taxa and 6 cyto-
kines. Cytokine values were square root transformed to
compress the dynamic range of the data and dampen the
effect of very high readings. We fitted 420 (70 × 6) linear
regression models of the form Mb ~ Cohort + Cytokine +
Cohort x Cytokine and compared those results to a reduced

A.

B.

C.

Fig. 3 Microplot examples. Solid and dotted lines represent different cohorts. The vertical axis represents microbe relative abundance, while the
horizontal axis represents the immune readout. Three examples illustrate the different relationships that can be encapsulated in the sparkline-
inspired microplot. a. A relationship between the microbe and the immune readout exists in one cohort but not the other which might suggest
that the microbe is absent in the “flat line” group. b Differences in relationship between the microbe and immune readout across the two
cohorts might suggest biological differences across the cohorts. c. The difference in dynamic range across the cohorts might suggest that the
relationship captured by the longer line is driven by an outlier, with high values in both analytes
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model, Mb ~ Cohort, using a partial F-test, surfacing 32
pairs with an FDR adjusted p-value < 0.05 for exploration.
We included the p-values for the three cohort:cytokine
interaction terms in the VOLARE top table.
To follow up on the TNFα finding, we focused on rela-

tionships between microbes and TNFα (Task 1), observing
a strong relationship with Bacteroidales/S24–7 in both CD
and SpA (Fig. 5a, Task 3). Next, we searched for other rela-
tionships with Bacteroidales/S24–7, finding a relationship
with IL-6 (Fig. 5b, Task 3). While the detailed plot suggests
that this relationship was driven by a single outlier, high for
both IL-6 and S24–7, we wondered if this patient had rela-
tively high levels for other microbes. Thus, we searched for
IL-6 (Fig. 5c, Task 1), finding four other microbes (Rikenel-
laceae/RC9-gut-group, Porphyromonadaceae/Odoribacter,
Bacteria/Candidate-division-TM7, and Clostridiales/Rumi-
nococcaceae) in which the microbe: IL-6 relationship for
this patient was also aberrant, as shown in the detailed plots
in Fig. 5d (Task 4). These results suggest that there might
be patient-level patterns of microbe:cytokine relationships
associated with disease state.

Case study 3: microbiome:immune cell relationships in
HIV
We considered the interplay between the microbiome and
immune cell repertoire in gut biopsies of 18 volunteers,
half of whom were HIV+ and half HIV-. We combined
data into a single file consisting of 54 microbial genera with
non-zero relative abundance values for at least 9 samples
and 103 immune cell subsets. We fitted 5562 (54 × 103)
linear regression models of the form Mb ~ Cohort + Im-
mune cell + Cohort x Immune cell and compared those
results to a reduced model, Mb ~ Cohort, using a partial
F-test. We surfaced 78 results with an FDR adjusted p-
value < 0.1. Through visual analysis, we identified several
cases in which a microbe was associated with an immune
cell subset in health (HIV-) but not in disease (HIV+). As
an example, Bacteroides genus positively associated with
CD4+FOXP3+ and CD4+HLA-DR+CD38- T cell popula-
tions (Fig. 6a) in samples from HIV- participants. This
FOXP3+ association is concordant with prior work that
shows an increase in regulatory T cells in response to
stimulation with Bacteroides fragilis lysates [10]. Prior work

A) B)

C)

D)

E)

Fig. 4 Case study 1 mapped to tasks. a To explore relationships, we searched for a microbe of interest in the top table, and then b generated a
detailed regression plot to assess credibility of the fitted model. The x-axis represents the cytokine data (measured in pg/ml) while the y-axis
represents the microbial taxa (measured in relative abundance, in the range from 0 to 1). Each point represents the values for one sample from
one person. Points are color coded to represent the cohort to which the corresponding person belongs. Lines represent the fitted regression
model for each cohort. The closer the points are to the line, the better the model. The relatively large dynamic range of the values for IL.1alpha
make it an analyte of interest. c Partial results of the search for IL.1alpha. Microplots allow us to discover differences by disease state. d
Comparing detailed regression plots, we obsered that high values of IL.1alpha are associated with relatively high levels of Mb_8 but not Mb_12.
e The ability to show our IL.1alpha table in the network illustrates that IL.1alpha is a a hub connected to 7 proteins
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also shows an induction of CD4+HLA-DR+CD38+ T cells
in response to stimulation with whole fecal bacterial
communities [31]. While we have not previously focused
on HLA-DR+CD38- cells, others suggest that HLA-
DR+CD38-CD4+ T cells have a different functional profile
than do HLA-DR+CD38+ cells in gut-associated lymphoid
tissue in HIV [32]. Thus, this relationship surfaced by
VOLARE may inspire follow-up experiments.
In this case study, the top table includes the largest ab-

solute value of the difference in fits (DFFITS) metric [33]
(labeled maxInfluence in the top tables in Fig. 6), which
enables users to identify those relationships driven by an
overly influential data point. DFFITS represents the num-
ber of standard deviations by which the ith predicted value
changes when the regression model is generated without
the data for the ith observation. Fig. 6b illustrates two
results in which there is one highly influential observation
in the upper right-hand corner of the detailed plot. The
radius of each circle is a function of the maximum in-
fluence, allowing visualization of highly influential ob-
servations in the context of the fitted model.

Usage log analysis
Our users included six domain experts (two faculty
members and one research assistant from the University
of Colorado School of Medicine Division of Allergy and
Clinical Immunology/Infectious Disease, one faculty
member from the Division of Biomedical Informatics
and Personalized Medicine, and one faculty member and
one fellow from the Division of Rheumatology and
Division of Gastroenterology, respectively) and two com-
putational bioscience investigators. To better quantify
usage patterns, we instrumented VOLARE to log user
actions, such as loading files, searching the top table,
and generating detailed plots. An analysis session might
involve loading the same file several times to reset the
visual display. Thus, we used the notion of an “analysis
pass” to represent all of the activities from loading the
file to the last action performed prior to resetting the
display. Fig. 7 illustrates metrics for 160 analysis passes
collected over 55 days coming from 12 distinct IP
addresses. The results show that most passes last ten
minutes or less. The most common action in a pass is

A) B)

C)

D)

Fig. 5 a TNFa and Bacteroidales/S24–7 are positively associated in both SpA and CD. b IL-6 and Bacteroidales S24–7 are also positively associated
in SpA and CD, with one CD patient showing high levels of both analytes. c A subsequent exploration of IL-6 shows positive associations
between IL-6 and four other microbial taxa. In this example, the top table includes p-values for the interaction terms for each of three cohorts
(CD, SpA, and UC) with respect to the reference group of healthy controls (HC). d The detailed plot shows that the patient with the highest IL-6
values is also relatively high in four other microbial taxa
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the generation of detailed plots, with an average of 12
plots per pass. Comparing the number of detailed plots
generated per pass to the number of searches, we
identified three main usage scenarios. One scenario is
“big picture” generation of dozens of detailed plots,
unaccompanied by searches. Another scenario is a mix
of 2 to 5 searches and generation of 3 to 15 detailed
plots (“search-inspect-search”). This may represent a
cycle where one set of detailed plots leads the analyst to
search for and inspect another set of detailed plots. A
third scenario is zero or one searches combined with
the generation of 1 to 5 detailed plots (“quick check”).
This may represent a refinement of an earlier analysis,
with a goal of generating a specific set of detailed plots
for a screen capture, or a quick check of data. Taken
together, these metrics illustrate that VOLARE sup-
ports a variety of exploration scenarios and that users
are very interested in details-on-demand.

Discussion
Across all three case studies, our domain experts had
two main questions: (1) which microbes are differentially
associated with which immune readouts by disease
status; and (2) which of these candidates should we
prioritize for follow-up laboratory experiments. To iden-
tify candidate relationships, we performed regressions
across all microbe-immune readout pairs, while account-
ing for differences across cohorts. The regression frame-
work supports an arbitrary number of cohorts and
covariates such as age, sex, and study center; and offers
established procedures for assessing statistical signifi-
cance of various parts of the model, such as differences
between cohorts. VOLARE offers a variety of represen-
tations of a two ome top table: a network summarizing
relationships, a filterable top table that presents metrics
relevant to study design accompanied by a small-mul-
tiple inspired microplot of the fitted regression models,

Fig. 6 a Two immune cell populations are strongly associated with Bacteroides in samples from HIV negative participants but not in HIV positive
participants. The x-axis represents the percentage of the parent population (CD3+CD4+ T cells) that are FOXP3+ or HLADR+CD38- while the y-axis
represents the microbiome data (measured in relative abundance, in the range from 0 to 1). Each point represents the values for one sample from one
person. Points are color coded to represent the cohort to which the corresponding person belongs. Size of the points are proportional to the influence of
the point on the fitted regression, with the maximum influence value shown in the top table. Lines represent the fitted regression model for each cohort.
The closer the points are to the line, the better the model. b Examples of relationships driven by an overly influential point found in the upper right hand
corner of the detailed plots
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and detailed regression plots generated on demand. The
ability to interact with the top table and the graphic ele-
ments allows domain experts to rapidly ask and answer
questions about their multi-omic data among themselves,
thereby refining their perspectives on their multi-omic
data. VOLARE aids domain experts in vetting these results
by providing interactive representations of the underlying
data. This vetting includes qualitative and quantitative as-
sessments. Qualitative assessment considers the biological
role of at least one of the analytes in the pair, and the abil-
ity to interrogate the relationship in an in vitro experi-
ment. For example, if the microbe is culturable [34, 35],
the researcher can combine it with immune cells and
measure immunological responses such as cytokine
production, cell proliferation, and cell differentiation [10,
16, 36]. Quantitative assessment considers both the
magnitude of the readouts and the dynamic range of the
relationships. The magnitudes should be large enough to
be measured with precision, while the dynamic range
should be large enough to be biologically meaningful.
To place VOLARE in context with existing visualization

approaches, we consider three bodies of material: single
assays, regression models, and biological networks. First,
VOLARE complements existing approaches that support
the visualization of the results of single assays such as 16S
microbiome sequencing or CyTOF immunophenotyping.
Our work is focused on identifying patterns across omes.
As such, it differs from platform-specific tools for visualiz-
ing 16S data, such as Qiime [37, 38], mothur [39], and

phyloseq [40]; and tSNE, SPADE, and Citrus for visuali-
zing patterns in CyTOF data [41–43]. These tools may
perform feature extraction steps of identifying and quanti-
fying analytes, be they sequences that have been assigned
to a microbial taxonomy or clusters based on immune
markers. Our work assumes such identification and quan-
tification has been performed by a platform-appropriate
pipeline. This allows us to focus on rich visual analysis
tools that we can apply to a variety of omes. Second,
Breheny and Burchett summarize over 40 years of work in
visualization regression models in the introduction of their
generalized approach for regression visualization, the R
package visreg [44]. Like them, we are focused on plotting
models to illustrate fit. In general, visualizing model fit
focuses on illustrating the results of a single regression
model at a time. As such, there is limited emphasis on
interactive visualization. In contrast, we consider dozens
of fitted regression models concurrently. Siddiqui et al. in-
tegrated metabolomic and gene expression data using a
linear model with an interaction term for phenotype (e.g.
tumor versus non-tumor tissue in NCI-60 data sets [21]).
Our work differs in that we emphasize vetting of the re-
sults by domain experts. Third, approaches to biological
network visualization are reviewed in [45]. These inter-
active approaches tend to emphasize genomic relation-
ships (e.g. genes and gene products, genes and
transcription factors), supported by multiple lines of evi-
dence, such as co-occurrence in a publication or pathway,
or a straightforward experimental construct such as cell

Fig. 7 Usage scenarios. An analysis pass consists of loading a file and exploring the data, and lasts until the display is reset. (a) Most analysis
passes last less than 20 min, but have lasted up to 90min. (b) A comparison of the number of detailed plots generated versus the number of
searches suggests three different analysis scenarios. One scenario is “big picture” generation of dozens of detailed plots, unaccompanied by
searches (searches = 0, dPlots greater than 20). Another scenario is a mix of 2 to 5 searches and generation of around 3 to 20 detailed plots
(search-inspect-search). A third scenario is zero or one single searches combined with the generation of 1 to 10 detailed plots (quick check). Data
is jittered on the horizontal axis to reduce overplotting
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line:drug interaction [46]. One of the challenges they
tackle is filtering a very large number of relationships to a
smaller, more manageable set that can be explored by a
user, as with RenoDOI [47]. In contrast, rather than
consider hundreds or thousands of relationships, we are
focused on dozens. Navigating the “hairball” is less of a
concern in this top table domain. Furthermore, in
comparing the microbiome to immune cell repertoire,
relationships may be speculative, and not yet catalogued
in a reference database. The detailed regression plots allow
the users to assess the plausibility of these relationships.
There are several limitations to this work. First, as pre-

sented here, we have only considered two omes. While
more omes could be included by increasing pairwise com-
parisons, the pairwise approach is self-limiting to a handful
of omes. With two omes, there is one set of cross-omic
pairwise comparisons; with three omes, three sets; with
four omes, six sets; and in general, n(n-1)/2 sets, where n is
the number of omes. That said, the support for visual ana-
lysis of promising results from the current two omes is a
valuable contribution, setting the stage for extension to
more omes. Second, the regressions are performed by
stand-alone computing resources, with necessary results
and underlying details marshaled for the visualization layer.
This means that changes to the regression model cannot
be made on the fly in VOLARE. However, the regression
analysis requires some statistical experience that VOLARE
users may not have. Thus, this is a natural breakpoint for
separating the workflow. In addition, the existing approach
of handing off data to a statistician for analysis has the
same limitation. Third, we do not tune the regression
model for each analyte pair. Instead, we use the same form
of the regression model for all pairs, and support users in
vetting both model fit and biological relevance. Fourth, the
usage scenarios that we identify are based on interaction
log data from a small number of users. However, these
scenarios align with in-person field observations.
Our future work includes adding features such as

grouping by microplot, searching the top table by
Boolean expressions of analyte names, and displaying
the detailed plot in response to clicking on a network
edge. Grouping by microplot would collect results that
have similar association patterns across cohorts, such as
a positive association in disease and a negative asso-
ciation in health. Searching by Boolean expressions of
analyte names would enable users to perform more
powerful searches, such as “either of two specific micro-
bial species combined with a particular immune cell ac-
tivation marker.” Displaying the detailed plot in response
to clicking on a network edge would lay the foundation
for exploring paths of connected relationships. Our
future work also includes applying VOLARE to data sets
that include different omics platforms, such as paired
RNA-Seq and immune cell repertoire, and paired

microbiome and metabolome, and to data sets that span
more than two omes, such as microbiome, immune cell
repertoire, and cytokine repertoire. We also plan to
extend VOLARE to support regression models that may
be more appropriate for microbiome data, such as the
negative binomial [48].

Conclusion
VOLARE provides an interactive environment that tran-
scends the limitations of a static top table. It offers
graphic encodings of relationships across two omes that
may differ by disease state, providing an overview
network, a filterable top table, and details on demand.
The interactivity allows domain experts to explore ex-
perimental results among themselves with speed and
flexibility, thereby honing a nuanced perspective on their
multi-omic data. Our interaction log data demonstrates
that VOLARE supports a variety of usage scenarios and
that the detailed plots are an important component of
user-driven analysis. We applied VOLARE to three case
studies. In the fecal microbiome:cytokine study, we saw
evidence of high IL-1α associated with high levels of a
particular microbe, possibly suggesting an immune
response. In the microbiome:IEL-produced cytokine
study, we saw evidence of patient-level aberrations
between several microbes and IL-6. In the gut biopsy
microbiome:immune cell repertoire case study, we
saw strong relationships between Bacteroides and both
FOXP3+CD4+ T cells and HLA-DR+CD38-CD4+ T cells
in health but not in disease. VOLARE allows the domain
expert to identify both patient-specific phenomena and
relationships that are different by disease state. These
relationships connect specific microbial taxa with specific
immune system readouts, ideally at a level appropriate for
follow-up experiments.
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