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Abstract

Background: Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field
of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and
phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method
has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the
excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with
other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian
network (Epi-GTBN). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual
structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find
the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the
diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy
into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of
the algorithm.

Results: We compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The
experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not
affecting the efficiency for different datasets.

Conclusions: The presented methodology (Epi-GTBN) is an effective method for epistasis detection, and it can be
seen as an interesting addition to the arsenal used in complex traits analyses.
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Background
With the rapid development of many high-throughput
technologies, massive biological data has been pro-
duced in recent years, such as genome, transcription
and phenotype data. It is possible to mine genetic loci
affecting specific phenotypic traits (such as agronomic
traits, human diseases, etc.) using the genome data.
And it has also become a challenging research topic
in today’s biological field. Genome-Wide Association
Study (GWAS) is a common method for detecting
Single Nucleotide Polymorphism (SNP) associated
with phenotypes in the whole genome. This method

mainly focuses on the detection of major genes, but it
cannot detect gene-gene interactions, or epistasis,
mainly embodied in the interaction between SNPs. It
needs to develop new approaches to mine the epi-
static interactions for specific phenotypic traits.
At present, the following four kinds of methods are

mainly used for the epistasis detection in case-control
study: statistical method, information entropy method,
multi-stage method, machine learning method.

(i). Statistical method. The logistic regression is a
method used earlier to detect epistasis [1]. Later the
improved logistic regression based on Group Lasso
method is used into epistasis mining [2]. The result
of logistic regression method is easy to explain, but
it has the problems of overfitting, model decline
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and large amount of calculation. Other statistical
methods mainly include functional regression
model [3], statistical epistasis networks [4], variance
analysis-based method named FastANOVA [5], etc.
However, the efficiency of statistical methods is
often not high and it needs to set more statistical
factors and more complex parameters. Multifactor-
Dimensionality Reduction (MDR) is a commonly
used epistasis detection approach. But it adopts the
exhaustive search strategy, leading to large amount
of computation [6]. Subsequently, some researchers
improved the MDR method, including MB-MDR,
GMDR, FMDR, QMDR, UM-MDR [7], Crush-
MDR, KNN-MDR, CMDR [8] and so on. In all, the
MDR related methods are more complex when to
deal with multiple locus, and the results obtained
by these methods are difficult to explain, resulting
in poor practicability. Bayesian theory is also used
for epistasis mining. The representative method is
Zhang’s BEAM method [9], and subsequent
improvement methods, including BEAM2, BEAM3
and JBASE [10]. However, the Bayesian theory
related methods are complex, inefficient and with
insufficient accuracy.

(ii). Information entropy method. In 2008, Dong et al.
applied the information entropy theory to detect
gene loci epistasis, and verified this method on
simulated and real malaria dataset [11]. Hu et al.
used the information gain approach to detect three-
way epistatic interactions [12]. Kwon et al. dealt
with the low-order and high-order epistatic
interaction respectively based on the information
entropy theory [13]. Li judged the epistasis using
information entropy and Bayesian network K2
scoring method [14]. Besides, some research work
use the information gain method, such as MBS-IGain
[15], Exhaustive-IGain [16].

(iii).Multi-stage method. This kind of method firstly
screens out a few important loci and then detects
epistasis of the selected important locus. The
representative methods include SNPHarvester [17],
SNPRuler [18], LEAP [19], EPIQ [20], etc. On the
basis of Boolean operation, BOOST detects epistasis
using the stages of screening and testing [21]. The
efficiency of this method is relatively high, but it is
limited to the interaction between two SNPs, which
leads to limited utility. The most important step in
multi-stage method is to find the appropriate
screening criteria, but it is easy to leave out some
important epistasis loci.

(iv).Machine learning method. At present, machine
learning methods are increasingly used for mining
epistatic loci, such as random forest [22], support
vector machine [23], association rules [24], neural

network, etc. However, the biggest drawback of
machine learning method is that the result is
difficult to explain, and tends to overfitting. It often
requires cross validation, resulting in high
computation cost. In order to improve the
detection efficiency and get the global optimal
solution, some researchers use the evolutionary
algorithm into epistasis mining, such as genetic
algorithm (GA) [25], particle swarm optimization
[26], etc. Ant colony algorithm is a frequently used
heuristic search method for epistasis detection,
including AntEpiSeeker [27], AntMiner, MACOED
[28], epiACO [29], FAACOSE [30], etc. However,
ant colony algorithm has some disadvantages, such
as difficulty in determining the control parameters,
premature stagnation and slow convergence in the
early stage, which will affect the calculation
accuracy.

Compared with other methods, Bayesian network has
the advantages of constructing the causal relationship
between objects, mining implicit knowledge, processing
data with nonlinear relationship and noise, dealing with
different data types, etc. In recent years, some research
work use Bayesian network learning method to
construct the network of gene loci and phenotype, and
thus to detect the epistatic loci for specific phenotype
[31, 32]. In this work, we firstly construct the network of
gene loci for specific phenotype using Bayesian network,
and then mine the epistasis for specific phenotype. How-
ever, due to Bayesian network usually uses the partial or
random search strategy, it is easy to fall into local
optimum and further to influence the learning accuracy.
Genetic algorithm has the characteristic of rapid global
search and avoiding falling into local optimization. In
this approach, we use the genetic algorithm into the
heuristic search strategy of Bayesian network. The evolu-
tion of individual structure is realized through three
genetic operations (selection, crossover, mutation), and
thus to find the optimal network structure. Inspired by
the genetic tabu algorithm used in [33, 34], we use the
tabu search strategy into the crossover and mutation
operation of genetic algorithm. It can help to enhance
the diversity of population and thus to obtain the global
optimal solution. In the genetic algorithm, the quality of
the initial population has an important effect on the
result. We use mutual information entropy calculation
method to calculate the relationship between gene loci
and phenotype, and thus to construct the initial network.
It can help to enhance the quality of the initial network.
In order to speed up the calculation, we convert the
genotypic data into binary Boolean data and then
directly carry out the fast logic (bitwise) operation to
calculate the mutual information. The simulated and real
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datasets are used to validate the proposed Epi-GTBN,
and we compare it with other recent algorithms. Experi-
ment results show Epi-GTBN has much better epistasis
detection accuracy in the case of not affecting the
efficiency.

Results
The bnlearn [35] is an R package for learning the graph-
ical structure of Bayesian network, estimating their
parameters and performing some useful inference
(http://www.bnlearn.com/). The source code of this
package is open, so we can modify and compile the
source code conveniently. This package implements
several kinds of constraint-based, score-based and hybrid
structure learning algorithms, such as IAMB, mmpc, hc,
mmhc, etc. On the basis of the source code of bnlearn
package, we have implement the proposed Epi-GTBN
using R, see http://122.205.95.139/Epi-GTBN/.

Experiments on simulated data
The experiment is carried out on the computer with the
configuration of Intel(R) Core (TM) i7–4790 CPU@
3.60GHz 4.00GHz, and 8G memory. GAMETES is a
commonly used software for the epistasis data gener-
ation [36]. It can generate epistasis simulated data
quickly and accurately, and generate two or multi-locus
epistasis models by setting different parameters. The
parameters that can be set in this software include: num-
ber of SNP loci, heritability, minimum allele frequency
(MAF) and prevalence. Heritability is a measure of how
well differences in genes account for differences in the
traits. A heritability close to zero indicates that almost
all of the variability in a trait is due to environmental
factors, with very little influence from genetic differ-
ences. MAF refers to the frequency of unusual alleles in
a given population. In the simulation file, the last
column is phenotype Class, 1 represents case, 0 repre-
sents control. It uses 0, 1, 2 to express the genotype data,
0 denotes homozygote common genotype, 1 denotes
heterozygous genotype and 2 denotes homozygote rare
genotype.
Through setting different values of heritability h2 and

MAF, we use GAMETES to generate different simulated
datasets. Each dataset includes 100 files. To evaluate the
performance of the epistasis detection algorithm, we use
Eq.(1) to calculate the detection accuracy.

Accuracy ¼ Numedge

100
ð1Þ

In the equation, Numedge refers to the number of data-
sets in which the disease associated SNPs are success-
fully identified among all 100 datasets generated by the
same parameters.

Among existing approaches, BEAM [9], AntEpiSeeker
[27], SNPRuler [18], MDR [6], BOOST [21] are powerful
tools for the detection of epistatic interactions. In order
to do the validation, we compare our Epi-GTBN with
these tools on the simulated datasets. In addition, we
use the frequently-used Bayesian network learning algo-
rithm of hill-climbing (hc) to do comparison. In this
section, we do the detection accuracy and efficiency
comparison regarding 2-locus and 3-locus epistatic
interaction with heritability h2 set to 0.025, 0.05, 0.1, 0.2,
0.3, 0.4 and MAF set to 0.1, 0.2, 0.3, 0.4.
Generally, population size is set to 50–100 and cross-

over probability is set about 0.6 [37]. Mutation probabil-
ity is generally set as 0.005–0.01 [38]. The tabu list
length can’t be set too long or too short, such as more
than or far less than the population size. The GA
algorithm always converges within 60 iterations in our
previous experiment. In our Epi-GTBN, we set the popu-
lation size to 50, set crossover probability to 0.7, set
mutation probability to 0.002, set the length of tabu list
in the crossover operation to 30, set the maximum
number of iterations to 60, set the generations of k to 3
when fitness value of the optimal individual and the
population no longer increases.
There are no parameters used in BEAM, MDR and

BOOST. In SNPRuler, we set listSize to 2000, depth to
4 and set updateRatio to 0.5. These parameters have
no effect on the result in our previous experiments.
Population size is the only same parameter in both
AntEpiSeeker and Epi-GTBN. So in AntEpiSeeker, we
also set population size to 50 to ensure the fairness of
the experiment. Similarly, we set the maximum num-
ber of iterations to 60 in hill-climbing.

Experiment of 2-locus epistasis detection
In this experiment, we compare the detection accuracy
of 2-locus epistasis mining in the case of setting different
heritability and MAF. Figure 1 and Fig. 2 show the de-
tection accuracy and efficiency comparison of different
methods (AntEpiSeeker, BEAM, BOOST, hill-climbing,
MDR, SNPRuler and Epi-GTBN).
In Fig. 1, in the case of setting different heritability

and MAF, we can see the 2-locus epistasis detection
accuracy of BEAM and hill-climbing (hc) Bayesian net-
work learning method is far less than other 4 kinds of
methods. The accuracy of Epi-GTBN, MDR, BOOST and
AntEpiSeeker is the largest of all, mostly hold steady at
100%. The accuracy of SNPRuler is slightly less than the
above 4 kinds of approaches.
In Fig. 2, we can see the epistasis detection time of

hill-climbing is the most of all, and it is far larger than
the other 6 kinds of methods. The detection time of
BEAM, BOOST and SNPRuler is the least of all, and the
using time of AntEpiSeeker, MDR and Epi-GTBN is in
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the middle. The detection time of Epi-GTBN is less than
AntEpiSeeker and MDR. In our Epi-GTBN approach, we
convert the genotypic data into binary Boolean data, and
use the fast logic (bitwise) operation directly to calculate
the mutual information. This can save a lot of time of

calculating the mutual information entropy between any
two SNPs and Class when to construct the initial
network.
In all, the detection accuracy of MDR, BOOST and

AntEpiSeeker is same as our Epi-GTBN method, mostly

Fig. 1 2 locus epistasis detection accuracy comparison of different methods
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hold steady at 100%. But the detection efficiency of
AntEpiSeeker and MDR is lower than Epi-GTBN appar-
ently. In addition, the parameter setting of AntEpiSeeker
is complicated, and its result is related to parameters set-
ting. BOOST can only detect the 2-locus epistasis, and it

can’t be used for the multi-locus epistasis detection.
From the experiment results, we can see the epistatic
detection approach based on genetic tabu algorithm and
Bayesian network (Epi-GTBN) has much better detection
accuracy in the case of not affecting the efficiency.

Fig. 2 2 locus epistasis detection efficiency comparison of different methods
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Experiment of 3-locus epistasis detection
In this experiment, we compare the accuracy of 3-
locus epistasis mining in the case of setting different
heritability and MAF. Figure 3 illustrates the detec-
tion accuracy comparison of different methods

(MDR, BEAM, SNPRuler, hill-climbing and Epi-
GTBN).
The 3-locus epistasis detection accuracy shown in

Fig. 3 is almost the same as the case of 2-locus epistasis
detection illustrated in Fig. 1. The detection accuracy of

Fig. 3 3 locus epistasis learning accuracy comparison of different methods
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BEAM and hill-climbing (hc) method is the least of all.
The accuracy of Epi-GTBN and MDR is the largest of
all, at around 100%, which is slightly more than
SNPRuler.

Experiments on real AMD data
In order to prove the effectiveness of Epi-GTBN, we also
use the real age-related macular degeneration (AMD)
dataset, which contains 103,611 SNPs genotyped with 96
cases and 50 controls [39]. AMD refers to pathological
changes in the central area of the retina, and it is the
most important cause of irreversible visual loss in elderly
populations. AMD is considered as a complex disease
whereby multiple SNP-SNP interactions interact with
environmental factors to it. The AMD dataset has been
widely used as a benchmark dataset to validate the epis-
tasis mining approaches [13, 26, 29, 40–44].
After the filtration, there are 102,926 autosomal SNPs

remained. Firstly, SNP loci with p-values from Chi
square test less than 0.01 are removed from AMD data-
set. Subsequently, 1039 SNP loci remain in the AMD
dataset. Here, we explore 2-SNP AMD-associated gen-
etic factors to validate the effectiveness of Epi-GTBN.
We calculate the conditional mutual information be-
tween any two SNPs and phenotype firstly. Then we sort
the SNP pairs and extract the SNP pairs whose mutual
information is larger than 0.16. These SNP pairs are
used to construct the initial network, and then Epi-
GTBN is used to learn the Bayesian network of SNP loci
and phenotype. There are 171 SNP-pairs in the final
output set (see epistatic interactions of AMD.xlsx in
Additional file 1). Table 1 shows the Top-10 epistatic
interactions that Epi-GTBN have detected, which we
compared with the results of other four methods that
showed promising results when experimenting with

simulated datasets (AntEpiSeeker, MDR, BOOST,
SNPRuler). In the table, the column of MI means the
calculated mutual information I (Class | SNP1, SNP2) of
SNP1 and SNP2 in the initial network. If a SNP-pair de-
tected by Epi-GTBN was also detected by other method,
it will be marked in the table. And if that SNP-pair also
happens to be one of the top gene-gene interactions de-
tected by other methods, additional information will be
added into related cell in parentheses. We have put the
full result of Top-10 epistatic interactions captured by
AntEpiSeeker, SNPRuler, BOOST, MDR in Table 2 for
reference.
As we know, how to evaluate the detection accuracy of

the algorithms with real data is more difficult compared
with the simulated data. This is due to the precise iden-
tification of all epistasis for the real data is not known.
Therefore, we validate our method by searching for
literature support in this work. In Table 1, we can see
the Top-10 epistatic interactions detected using Epi-
GTBN have strong literature support. The interaction
(rs380390, rs1363688) and (rs380390, rs2402053) are the
most statistically significant two among all detected
SNP-SNP interactions, and it has also been reported by
many literatures [26, 29, 40, 41, 44]. Similarly, the SNP-
SNP interactions (rs380390, rs10512174), (rs380390,
rs718263), (rs1329428, rs9328536), (rs1329428, rs7467596),
(rs380390, rs724972) have been reported by many litera-
tures. Additionally, besides Top-10 SNP-pairs, seven other
SNP-pairs detected by Epi-GTBN: (rs380390, rs10512937),
(rs380390, rs10483314), (rs380390, rs10507949), (rs1394608,
rs3743175), (rs1394608, rs2828155), (rs1329428, rs3775652),
(rs3775652, rs725518) received literature supports, as shown
in Table 3. All these 171 SNP-pairs are displayed in Fig. 4.
In Fig. 4, a node denotes a SNP locus. Two linked nodes

represent one SNP-pair of final 171 SNP-pairs. The larger of

Table 1 Top-10 epistatic interactions associated with AMD captured by Epi-GTBN compare with other methods

ID SNP 1 SNP 2 MI References AntEpiSeeker MDR BOOST SNPRuler

1 rs380390 rs1363688 0.205025859 Sun et al. 2017, Shang et al. 2014,
Tuo et al. 2016, Shang et al. 2015

– ✓ (11) – –

2 rs380390 rs2402053 0.204420493 Sun et al. 2017, Tuo et al. 2016,
Shang et al. 2015
Han et al. 2012

– – – –

3 rs380390 rs10512174 0.192477486 Sun et al. 2017, Shang et al. 2015 – – – –

4 rs380390 rs718263 0.192360092 Sun et al. 2017, Shang et al. 2015 – – – –

5 rs1329428 rs9328536 0.190001652 Sun et al. 2017, Kwon et al. 2014,
Tuo et al. 2016

✓ (top-10) – – –

6 rs1329428 rs7467596 0.190001652 Tuo et al. 2016 – – – –

7 rs10503216 rs9316435 0.188192429 – ✓ (top-10) ✓ ✓ –

8 rs380390 rs335368 0.184951682 – – – – –

9 rs380390 rs555174 0.184735375 – – ✓ (top-10) – –

10 rs380390 rs724972 0.183950563 Tuo et al. 2016 – ✓ (top-10) – –
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the node, the more nodes linked with it. It can be seen evi-
dently from Fig. 4 that three SNPs ‘rs380390’, ‘rs1329428’
and ‘rs10254116’ are associated with more other SNPs. This
finding is consistent with the work that firstly introduced
about the AMD dataset [39], in which the authors reported
that two SNPs, ‘rs380390’ and ‘rs1329428’, were believed to
be particularly associated with AMD. We hope that, from
these results, some clues could be provided for the explor-
ation of causative factors of AMD.

Conclusion
GWAS focuses on single locus and main effect gene
locus detection. Although a lot of phenotype related
loci can be found using this method, these loci can

only explain very few genetic variations. One of the
important reasons is that it does not consider the
gene-gene interactions, namely epistasis. Therefore,
the detection of epistasis is of great significance to
the discovery, diagnosis, treatment and prevention of
complex diseases. In this study, we propose an
epistasis detection approach called Epi-GTBN. The
genetic tabu approach is used into the search strat-
egy of Bayesian network, and BIC scoring is used to
calculate the fitness function value. Epi-GTBN can
learn the optimal network structure quickly and
accurately, and then used to mine epistatic loci. Epi-
GTBN has 3 major features: i) The mutual informa-
tion entropy is used in the generation of initial

Table 2 Top-10 epistatic interactions associated with AMD captured by AntEpiSeeker, SNPRuler, BOOST, MDR

ID/
Methods

AntEpiSeeker SNPRuler BOOST MDR

SNP1 SNP2 SNP1 SNP2 SNP1 SNP2 SNP1 SNP2

1 rs1329428 rs9328536 rs10503790 rs6928748 rs9316435 rs10503216 rs555174 rs380390

References Sun et al. 2017, Kwon et al. 2014, Tuo et al. 2016 – – –

2 rs4880042 rs718309 rs657618 rs7908635 – – rs10507949 rs10511467

References – – – –

3 rs9316435 rs10503216 rs10512781 rs10510099 – – rs1293449 rs380390

References – – – –

4 rs10505112 rs10512174 rs215389 rs903645 – – rs961360 rs380390

References – – – –

5 rs1359634 rs1740752 rs4526387 rs2105250 – – rs10511467 rs1394608

References – – – –

6 rs1535891 rs6598991 rs485412 rs10497257 – – rs724972 rs380390

References – – – Tuo et al. 2016

7 rs9294603 rs6540592 rs1677189 rs4947673 – – rs261796 rs380390

References – – – –

8 rs943653 rs4128956 rs3829918 rs727200 – – rs1510134 rs380390

References – – – –

9 rs1233255 rs860309 rs7533063 rs10484087 – – rs1742923 rs380390

References – – – –

10 rs404199 rs10510895 rs1489402 rs10484087 – – rs1146382 rs380390

References – – – –

Table 3 Other epistatic interactions associated with AMD captured by Epi-GTBN with literature support

ID SNP 1 SNP 2 MI References

1 rs380390 rs10507949 0.183066189 Shang et al. 2015

2 rs380390 rs10512937 0.176409436 Tuo et al. 2016

3 rs380390 rs10483314 0.172425422 Tuo et al. 2016

4 rs3775652 rs725518 0.170306079 Tuo et al. 2016

5 rs1329428 rs3775652 0.168639751 Tuo et al. 2016

6 rs1394608 rs3743175 0.162643832 Tang et al. 2009, Jiang et al. 2009

7 rs1394608 rs2828155 0.162643832 Tang et al. 2009, Jiang et al. 2009
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individuals to improve the quality of the initial
population, which helps to improve the accuracy of
epistasis detection. In order to speed up the calcula-
tion, it converts the genotypic data into binary Bool-
ean data, and carries out the fast logic (bitwise)
operation directly to calculate the mutual informa-
tion. ii) It combines genetic algorithm with Bayesian
network to construct the network of gene loci for
specific phenotype. The operations of selection,
crossover, mutation are used into the search strategy
of Bayesian network, thus to evolve the individual
structure to achieve the global optimization. iii) The
tabu search strategy is applied to the operations of

crossover and mutation of genetic algorithm, which
enhances the diversity of population, and helps to
get the global optimal solution and accelerate the
convergence of the algorithm. Experimental results
in simulated and real datasets elucidate that Epi-
GTBN is an effective method for epistasis detection.
Compared with other existing approaches, Epi-GTBN
can detect epistatic loci accurately in the case of
guaranteeing efficiency.
The next research work mainly includes the following

aspects: the time used in the algorithm increases expo-
nentially when to detect multi-locus epistasis. It needs to
combine with other algorithms to perform optimization.

Fig. 4 SNP-SNP network of AMD
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In addition, prior knowledge should be borrowed to
accelerate the process of search.

Methods
Bayesian network
Bayesian network (BN) is a graphical model used to
represent the probability distribution among variables.
A Bayesian network consists of a directed acyclic
graph and a series of conditional probability tables.
The directed acyclic graph is used to express the con-
ditional dependence relationships. The conditional
probability distribution is used to parameterize the
nodes. BN provides a way of expressing causality be-
tween variables.
Supposing X = {X1, X2,…, Xn}, BN = {G, P}. G = {V, E},

G is a directed acyclic graph of X. V represents the
node set in G and each node represents a variable in
X. E represents the edge set in G. Each directed edge
represents the conditional dependence relationship
between the corresponding nodes. If there exists a di-
rected edge from Xj to Xi, we call Xj the parent node
of Xi, and Xi the sub node of Xj. P represents the
conditional probability set of BN. P = {P(Xi | pa(Xi))},
P(Xi | pa(Xi)) denotes the conditional probability of
Xi and pa (Xi) denotes the parent node set of Xi. The
full probability distribution of Bayesian network is
shown in Eq. (2)

P X1;X2;…;Xnð Þ ¼
Yn
i¼1

P Xijpa Xið Þð Þ ð2Þ

Bayesian network structure learning intends to find
the optimal network to match the specific dataset.
There are mainly two kinds of Bayesian network
structure learning methods: the score-based structure
learning methods and constraint-based structure
learning methods. The score-based structure learning
method firstly defines the scoring function, then it
uses specific search strategy to find the network
structure with the highest score. This method aims to
find a graph with the highest fitting degree of the
sample data. Due to the huge search space, it often
needs a good search strategy to speed up the search
process.

Genetic Tabu algorithm
According to the principle of natural selection, the
genetic algorithm (GA) selects the chromosomes that
are more suitable for the environment to reproduce.
Then it produces a new generation of chromosomes
that are more suitable for the environment through
the process of crossover and mutation. In this way, it
evolves generation by generation, and finally con-
verges to one of the most adaptable chromosomes, so

as to find the optimal solution. The genetic algorithm
mainly uses three kinds of operations (selection,
crossover, mutation) to evolve the population struc-
ture, and thus to search for the optimal solution.
However, in the searching process of genetic
algorithm, it is easy to generate same individual,
which affects the diversity of the population. The gen-
etic algorithm selects the better individual and in-
herits it directly, which is easy to produce local
optimal solution, and not conducive to global search.
Tabu search is a famous heuristic search algorithm,

which uses the memory function of tabu list to avoid
generating some identical individuals, thereby increasing
the diversity of population. In addition, tabu search
method can accept the inferior solution in the search
process, and thus has a stronger climbing ability. This
enables tabu search to jump out of the local optimal
solution and search for other regions in the search
process, thus greatly increase the probability of obtaining
better or global optimal solutions. In order to solve the
above problems of genetic algorithm, we apply the
unique memory function of tabu search into the opera-
tions in genetic algorithm inspired from [33, 34]. In [34],
solution attributes in tabu list are used for the
adjustment of mutation probability in genetic algorithm.
In our work, we use the tabu search strategy into the
improvement of the crossover operator and mutation
operator. This method can be used to improve the per-
formance of the algorithm and find the optimal network
structure quickly and accurately.

Epi-GTBN approach
In this work, we construct the network of gene locus
for specific phenotype using Bayesian network, and
thus to mine the epistasis interactions. The genetic
tabu algorithm is used into search strategy of Bayes-
ian network. This approach mainly includes the
following steps: initial network construction, initial
network population generation, genetic manipulations
(selection, crossover, mutation) of the network, get-
ting epistasis interactions.

Network coding
In Epi-GTBN, each individual in the genetic algorithm
corresponds to a Bayesian network structure, and it
does the search in the space of Bayesian network
structures. We use the adjacency matrix to represent
the Bayesian network structure. Supposing the num-
ber of variables is n, and each individual can be
represented as an adjacency matrix C of n × n. We
use 0/1 coding approach to represent the matrix. If
node i is the parent node of node j, then Cij = 1,
otherwise, Cij = 0, as depicted in Fig. 5.
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Initial network population generation
In this work, the initial population refers to a set of
different Bayesian network individual. In BN, each
node denotes the SNP locus or phenotype, and each
edge denotes the association between the nodes of
SNP locus or phenotype. The quality of initial popu-
lation has an important impact on the subsequent
network structure learning. We calculate mutual in-
formation to express the association between multiple
gene locus and phenotype [14], and thus to construct
the initial network. In further to enhance the calcula-
tion efficiency, we convert the genotypic data into
binary Boolean data firstly. Then we can use fast logic
(bitwise) operation to calculate the mutual informa-
tion directly. The concrete process of generating
initial population is illustrated in Fig. 6.
In Fig. 6, it firstly converts the genotype data into

binary Boolean data, and calculates the mutual infor-
mation between multiple nodes and phenotype for all
the possible combinations. Then it sorts the node
pairs according to the value of mutual information
and extracts the top-N node pairs. The top-N is
determined according to the experiment results. For
different datasets, we can extract different number of
top-N node pairs. The top-N node pairs may not
cover all the nodes, and it means there are nodes that
are not included in the top-N node pairs. Then we
select the first appearance of these nodes in the
remaining node pairs, and also extract the corre-
sponding node pairs. Finally, it constructs the initial
network according to the node pairs as the initial
individual. It generates next individual through adding
an edge, dropping an edge or reversing an edge on
the premise of not generating a ring. A new individ-
ual is generated on the basis of the next individual,

until the number of individuals reaches the popula-
tion size.
In the first step, we convert the genotype data into binary

Boolean format. For example, the genotype data depicted in
Fig. 7 is converted into the data format shown in Fig. 8.
In Fig. 7, each column denotes the genotype data of

each SNP. In the last column Class, 1 denotes the case
phenotype and 0 denotes the control phenotype. We
can see there are four samples in Fig. 7. In Fig. 8, the
first/middle/last four columns denote the binary Bool-
ean expression when the genotype data is 0/1/2
respectively.
We use Eq.(3) to calculate the mutual information

between the k epistatic SNP loci and Class [14]. In
Eq.(3), we use Eq.(4) to calculate the information en-
tropy of Class, and use Eq.(5) to calculate the joint
entropy of k SNP locus.

I ClassjSNP1;…SNPkð Þ ¼ H Classð Þ þ H SNP1;…SNPkð Þ
−H Class; SNP1;…SNPkð Þ

ð3Þ

H Classð Þ ¼ −
X1
cti¼0

p classi
� �

logp classi
� � ð4Þ

H SNP1;…; SNPkð Þ ¼ −
X2

snp1¼0

…
X2

snpk¼0

p snp1;…; snpkð Þ

logp snp1;…; snpkð Þ
ð5Þ

On the basis of binary expression of genotype data, we
can conduct the logic AND operation to calculate the
mutual information efficiently. For example, we use
Eq.(6) to calculate I(Class |SNPB, SNPC) shown in Mbit.

Fig. 5 Matrix coding of Bayesian network
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Fig. 7 The genotype data

Fig. 6 The process of initial population generation
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I ClassjSNPB; SNPCð Þ ¼ H Classð Þ þ H SNPB; SNPCð Þ
−H Class; SNPB; SNPCð Þ

ð6Þ

We use Eq.(7) to calculate H(SNPB, SNPC) in Eq.(6).

H SNPB; SNPCð Þ ¼ −
X2

snpB¼0

X2
snpC¼0

p snpB; snpCð Þ logp snpB; snpCð Þ

¼ −p 0; 0ð Þ logp 0; 0ð Þ−p 0; 1ð Þ logp 0; 1ð Þ
−p 0; 2ð Þ logp 0; 2ð Þ−p 1; 0ð Þ logp 1; 0ð Þ
−p 1; 1ð Þ logp 1; 1ð Þ−p 1; 2ð Þ logp 1; 2ð Þ
−p 2; 0ð Þ logp 2; 0ð Þ−p 2; 1ð Þ logp 2; 1ð Þ
−p 2; 2ð Þ logp 2; 2ð Þ

ð7Þ
Using the underlined binary data in Mbit, we can cal-

culate p (1, 1) using Eq.(8) through the AND operation
of binary. It can be accomplished by the counting of “1”
bits in a bit string (also called hamming weight).

p 1; 1ð Þ ¼ nsnpB¼snpC¼1

nsample
¼ hamming weight 1101ð Þ2ANDbit 1001ð Þ2

� �
4

¼ hamming weight 1001ð Þ2
� �

4
¼ 2

4
¼ 0:5

ð8Þ

Selection
The purpose of selection is to select a good individual
from the current population so that they have a
chance to be the offspring of the next generation.
The principle of selection is that the individual with
greater adaptability will be selected with larger prob-
ability, which embodies the survival of the fittest
principle. This work mainly uses the roulette selection
method. Supposing the fitness value is fi about
chromosome i, then the probability Pi of chromosome
i being selected is calculated using Eq.(9). In the
equation, num represents the size of population.

Pi ¼ f i=
Xnum
i¼1

f i ð9Þ

Crossover
Crossover is the most important operation in the gen-
etic algorithm. It can get better individuals in the
new generation through the crossover operation, and
the new individuals inherit the characteristics of their
parents. The commonly used crossover operations in-
clude single column crossover, double or multi col-
umn crossover, uniform crossover, etc. The multi
column crossover refers to a variation of several col-
umns. In order to speed up the convergence rate, we
intend to use the multi column crossover method.
Supposing two individuals of Individual1 and Indi-

vidual2 in the population, it randomly selects two
columns f1, f2 of Individual1 and s1, s2 of Individ-
ual2. The column f1 of Individual1 is exchanged with
column s1 of Individual2, and column f2 of Individ-
ual1 is exchanged with column s2 of Individual2.

Individual1[...f1...f2...] ↔
crossover

Individual2[...s1...s2...].
Then we can get Individual1[...s1...s2...] and Indivi-
dual2[...f1...f2...]. It will also judge whether the cross-
over operation will generate a ring or not. When
there is no ring structure in both Individual1 and In-
dividual2, they will be considered as new offspring.

Avoid ring generation If it will generate a ring struc-
ture when to exchange a row in the randomly chosen
column in the process of crossover operation, the
algorithm will skip that row. Then it judges the next
row until all the two columns are exchanged. In Fig. 9,
the crossover operation randomly selects two columns
of Individual1 and of Individual2. Take a column pair
for example, the second column is chosen in Individ-
ual1, and the first column is chosen in Individual2, as
illustrated in the red mark of Fig. 9. The crossover
operation is executed in the following two steps:

1). Exchange the first row in the chosen columns of
two individuals. If the first row with the value of
1 in the second column of Individual1 is
exchanged with the first row with the value of 0
in the first column of Individual2, we can see a
ring structure in generated in Individual2, as
illustrated in the red mark of Fig. 9. Then the

Fig. 8 The binary Boolean expression of genotype data
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crossover operation will skip the first row and do
not exchange that row, then do the exchanging
from the second row.

2). Exchange the second row and the third row, we
can see no ring structure will be generated. The
crossover operation will not skip these rows, and
the final two individuals can be obtained after
the crossover operation.

The general crossover operator In the different off-
spring of particular population, crossover operation
may produce the same offspring. This will cause the
partial similarity of chromosomes in the population,
and lead to search stagnant and prone to premature
phenomenon. In Fig. 10, Individual1 and Individual2
are randomly chosen to do the crossover operation in
iteration 1. Then we get two new offspring shown in
iteration 2. In iteration 2, Individual2 and Individualn

are randomly chosen to do the crossover operation.
In this way, two offspring are identical with the par-
ents, as illustrated in the red mark. This crossover
operation does not produce new offspring.

The crossover tabu operator In order to solve the
search stagnant and premature phenomenon that gen-
erated by general crossover operators, we use the
memory function of tabu search method into the
crossover operation of genetic algorithm. We compare
the generated new offspring individual with the indi-
viduals in the tabu list one by one after each cross-
over operation, as illustrated in Fig. 6. If the new
offspring individual does not belong to the tabu list,
the algorithm will enter into the next generation and
the new individual will be stored into the tabu list.
The crossover operation will be carried out repeatly
until the offspring are not belonging to the tabu list,

Fig. 9 Process of avoid ring structure generation
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as illustrated in Fig. 10. The detailed procedure is
elucidated in Algorithm 1.

In Algorithm 1, Par_Individual1, Par_Individual2 are two
parent individuals. tabu_list denotes the tabu table, and
nnodes denotes the node number. In the output, amat1 and
amat2 represent the coding of two new individuals.

Mutation
The mutation operator first selects an individual in
the population randomly. The selected individual

randomly changes the structure with a certain muta-
tion probability Pm. It is beneficial to increase the
diversity of the population. The algorithm uses tabu
mutation operator to select the mutation that has bet-
ter variation fitness value, and it also ensures that a
ring is not generated.

The general mutation operator If the random prob-
ability is less than the mutation probability, it ran-
domly selects a locus to perform mutation, as shown
in Fig. 11. If the individual fitness is improved after
the mutation and no ring structure is generated, then
accept this individual and store it into the population.

The tabu mutation operator The general mutation
operator has strong randomness and may damage in-
dividuals with high fitness value. In order to solve
this problem, we use the memory function of tabu list
and propose a tabu mutation operator. This operator
invokes evaluation function to determine the oper-
ation strategy. The new generated individual will be
stored into the tabu list when the variation produces
an inferior solution and improves the fitness value.
The tabu mutation operator can avoid roundabout
searches, and its climbing ability is better than the

Fig. 10 Process of crossover tabu operator
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general mutation operator. The concrete process is
illustrated in Algorithm 2.

In Algorithm 2, Individual represents the current
population, num represents the size of current popula-
tion and tabu_list denotes the tabu table. Individualmu

represents the new individual generated by tabu muta-
tion operation.

Fitness value evaluation
The fitness function is a standard to judge the quality of
an individual or a solution. It determines which out-
standing individuals are retained and which poorer indi-
viduals are eliminated. The genetic algorithm is an
evolutionary search mechanism based on the fitness
function. In this work, the fitness value evaluates the
quality of the Bayesian network, and thus to guide the
search strategy. In our method, the fitness value can be
calculated using the BN scoring function. There are sev-
eral kinds of BN scoring function, such as Bayesian

Information Criterion (BIC), Akaike Information Criter-
ion (AIC), Equivalent Dirichlet Posterior Density (BDe),
K2, Log-likelihood, etc. To prevent over-fitting, we use
the BIC scoring function to control the model complex-
ity [45]. In addition, our experiment results demonstrate
that the BIC scoring function has better learning effect.
In the case of given prior knowledge and sample

data, Bayesian Information Criterion (BIC) selects the
Bayesian network structure with the largest posterior
probability. Supposing D represents the sample data,
G represents the Bayesian network structure, we can
get Eq.(10) using Bayesian formula. In the equation,
P(G) represents the priori knowledge of network
structure.

P GjDð Þ ¼ P DjGð ÞP Gð Þ=P Dð Þ ð10Þ

Using θG to denote the parameters of the network
structure, we can get Eq.(11) through the marginal inte-
gration scheme.

P DjGð Þ ¼
Z

P DjG; θGð ÞP θGjGð ÞdθG ð11Þ

The BIC scoring function is shown in Eq.(12).

BIC GjDð Þ ¼
Xn
i¼1

Xqi
j¼1

Xri
k¼1

mijk lg
mijk

mij�
−
Xn
i¼1

qi ri−1ð Þ
2

lgm

ð12Þ

In the equation, m represents the total number of
samples. n represents the number of variables. ri rep-
resents the number of values for the ith variable. qi
represents the combinations number of the parent
about the ith variable. mijk represents the sample
number of ith variable takes the kth value, and its
parent nodes take the jth combination.

The end judgement
When the fitness value of an optimal individual reaches
a given threshold, achieving the maximum number of it-
erations, or the fitness value of the optimal individual
and the population no longer increases after k genera-
tions, then end up the algorithm.

Fig. 11 The general mutation operator
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