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Abstract

Background: When applying genomic medicine to a rare disease patient, the primary goal is to identify one or
more genomic variants that may explain the patient’s phenotypes. Typically, this is done through annotation, filtering,
and then prioritization of variants for manual curation. However, prioritization of variants in rare disease patients
remains a challenging task due to the high degree of variability in phenotype presentation and molecular source of
disease. Thus, methods that can identify and/or prioritize variants to be clinically reported in the presence of such
variability are of critical importance.

Methods: We tested the application of classification algorithms that ingest variant annotations along with
phenotype information for predicting whether a variant will ultimately be clinically reported and returned to a patient.
To test the classifiers, we performed a retrospective study on variants that were clinically reported to 237 patients in
the Undiagnosed Diseases Network.

Results: We treated the classifiers as variant prioritization systems and compared them to four variant prioritization
algorithms and two single-measure controls. We showed that the trained classifiers outperformed all other tested
methods with the best classifiers ranking 72% of all reported variants and 94% of reported pathogenic variants in the
top 20.

Conclusions: We demonstrated how freely available binary classification algorithms can be used to prioritize variants
even in the presence of real-world variability. Furthermore, these classifiers outperformed all other tested methods,
suggesting that they may be well suited for working with real rare disease patient datasets.
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Background
Genome and exome sequencing are both currently being
used as molecular diagnostic tools for patients with rare,
undiagnosed diseases [1–3]. Typically, these technologies
are applied clinically by following workflows consisting
of blood draw, sequencing, alignment, variant calling,
variant annotation, variant filtering, and variant prioriti-
zation [4, 5]. Then, clinical analysts usually perform the
more manual processes of inspecting and then reporting
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variants based on a set of patient phenotypes from the
referring doctor.
In general, commonly used pipelines exist for the steps

from sequencing through variant calling [6, 7]. Despite
differences in performance, most of these pipelines are
relatively uniform in that they start with the same inputs
(i.e. read files, commonly FASTQ format) and produce
the same outputs (i.e. a set of variants, commonly Variant
Call Format). In contrast, methods for variant annotation
and/or variant filtering are quite diverse [8–11]. These
methods use a wide range of annotation sources includ-
ing but not limited to population allele frequencies [12],
conservation scores [13–15], haploinsufficiency scores
[16, 17], deleteriousness scores [17, 18], transcript impact
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scores [19–23], and previously associated disease anno-
tation [24–26]. Variant prioritization is also quite diverse
with some methods relying only on the variant annota-
tions to prioritize variants [9] and some relying only on
patient phenotype to rank the variants [27–30]. There are
also methods which combine both variant annotations
and phenotype score to rank the variants [31–34], a selec-
tion of which are benchmarked on the same simulated
datasets in [35].
Given a prioritized list of variants, analysts manually

inspect each one and curate a subset to ultimately report
to the ordering physician. Unfortunately, manual curation
is a time consuming process where analysts must inspect
each variant while maintaining a mental picture of the
patient’s phenotype. One group reported an average of 600
variants per case analyzed by two people (one analyst and
one director) over three hours, meaning a throughput of
≈100 variants per man-hour [36]. If causative variants can
be identified earlier due to a high rank from prioritization,
it’s possible that the full filtered variant list can be short-
circuited, reducing the total number of variants reviewed
and therefore the time to analyze a case. Additionally,
accurate prioritization is a step towards the ultimate goal
of fully automating the analysis of the sequencing data for
rare disease patients.
One of the issues with previously published ranking

methods is that they were primarily tested on simu-
lated datasets with known, single-gene, pathogenic vari-
ants injected into real or simulated background genomic
datasets. Additionally, when phenotype terms were used,
they tended to select all matching phenotype terms for
the simulated disease and then inject/remove a few terms
(typically 2-3) in order to provide some variability. In
practice, rare disease patients often have much more
variability in their phenotype terms for a wide variety
of reasons such as multiple genetic diseases, variabil-
ity in disease presentation, phenotypes of non-genetic
origin, and/or variability in the standards describing a
phenotype.
In this paper, we focus on real patient data from the

multi-site collaboration of the Undiagnosed Diseases Net-
work (UDN) [1]. Patients accepted into the UDN are
believed to have rare, undiagnosed diseases of genetic
origin. Because the UDN is not focused on a single par-
ticular disease, the patient population has a diverse range
of phenotypes represented. Additionally, the exact pheno-
type terms associated to an individual patient are highly
variable for the reasons described above. Because the
UDN is a research collaboration, there is also variability in
reported variants that range in pathogenicity from “vari-
ant of uncertain significance” (VUS) through “pathogenic”
as defined by the ACMG guidelines [37]. The summation
of this real-world variation means that accurately iden-
tifying and/or prioritizing variants is challenging due to

uncertainty and variation in phenotype inputs and varia-
tion in pathogenicity of reported variant outputs.

Methods
Overview
We tested the application of classification algorithms
for identifying clinically reported variants in real world
patients in two ways: 1) predicting whether a variant
observed by an analyst would be clinically reported and
2) prioritizing all variants seen by the clinical analysts. In
particular, we focused our analyses on real patients with a
diverse collection of rare, undiagnosed diseases that were
admitted to the Undiagnosed Diseases Network (UDN)
[1]. We limited our patients to those who received whole
genome sequencing and received at least one primary
variant (i.e. not secondary or incidental) on their clinical
report. We extracted data directly from the same anno-
tation and filtering tool used by the analysts in order to
replicate their data view of each variant in a patient. Addi-
tionally, we incorporated phenotype information into the
models using two scoring systems that are based on rank-
ing genes by their association to a set of patient pheno-
types. Finally, each variant was either labeled as “returned”
or “not returned” depending on whether it was ultimately
reported back to the clinical site.
Given the above variant information, we split the data

into training and testing sets for measuring the perfor-
mance of classifiers to predict whether a variant would be
clinically reported or not. We tested four classifiers that
are readily available in the sklearn [38] and imblearn [39]
Python modules. Of note, our focus was not on picking
the “best” classifier, but rather on analyzing their overall
ability to handle the variability of real-world patient cases
from the UDN.
Each classifier calculated probabilities of a variant

belonging to the “returned” class, allowing us to mea-
sure their performance as both a classifier and a priori-
tization/ranking system. After tuning each classifier, we
generated summaries of the performance of each method
from both a binary classification perspective and a vari-
ant prioritization perspective. Additionally, we tested four
publicly available variant prioritization algorithms and
two single-value ranking methods for comparison. All of
the scripts to train classifiers, test classifiers, and format
results are contained in the VarSight repository. A visu-
alization of the workflow for gathering features, training
the models, and testing the models can be found in the
Additional file 1.

Data sources
All samples were selected from the cohort of Undiag-
nosed Diseases Network (UDN) [1] genome sequencing
samples that were sequenced at HudsonAlpha Institute
for Biotechnology (HAIB). In short, the UDN accepts
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patients with rare, undiagnosed diseases that are believed
to have a genetic origin. The UDN is not restricted to a
particular disease, so there are a diverse set of diseases
and phenotypes represented across the whole population.
The phenotypes annotated to a patient are also variable
compared to simulated datasets for a variety of reasons
including: 1) patients may have multiple genetic diseases,
2) phenotype collection is done at seven different clinical
sites leading to differences in the standards of collection,
3) patients may exhibit more or fewer phenotypes than
are associated with the classic disease presentation, and 4)
patients may have phenotypes of non-genetic origin such
as age- or pathogen-related phenotypes. For more details
on the UDN, we refer the reader to Ramoni et al., 2017 [1].
DNA for these UDN patients was prepared from whole

blood samples (with few exceptions) and sequenced via
standard operation protocols for use as a Laboratory-
Developed Test in the HAIB CAP/CLIA lab. The analyses
presented in this paper are based on data that is or will be
deposited in the dbGaP database under dbGaP accession
phs001232.v1.p1 by the UDN.

Alignment and variant calling
After sequencing, we followed GATK best practices [40]
to align to the GRCh37 human reference genome with
BWA-mem [41]. Aligned sequences were processed via
GATK for base quality score recalibration, indel realign-
ment, and duplicate removal. Finally, SNV and indel vari-
ants were joint genotyped, again following GATK best
practices [40]. The end result of this pipeline is one
Variant Call Format (VCF) file per patient sample. This
collection of VCF files is used in the following sections.

Variant annotation and filtering
After VCF generation, the clinical analysts followed var-
ious published recommendations (e.g. [4, 5]) to annotate
and filter variants from proband samples. For variant
annotation and filtering, we used the same tool that
our analysts used during their initial analyses. The tool,
Codicem [42], loads patient variants from a VCF and
annotates the variants with over fifty annotations that the
analysts can use to interpret pathogenicity. These anno-
tations include: variant level annotations such as CADD
[18], conservation scores [13, 14], and population frequen-
cies [12]; gene level annotations such as haploinsufficiency
scores [16, 17], intolerance scores [15], and disease asso-
ciations [24–26]; and transcript level annotations such
as protein change scores [19–22] and splice site impact
scores [23]. Additionally, if the variant has been previ-
ously curated in another patient through Human Gene
Mutation Database (HGMD) or ClinVar [24, 26], those
annotations are also made available to the analysts.
Codicem also performs filtering for the analysts to

reduce the number of variants that are viewed through

a standard clinical analysis. We used the latest version
of the primary clinical filter for rare disease variants to
replicate the standard filtering process for patients in
the UDN. In short, the following criteria must be met
for a variant to pass through the clinical filter: suffi-
cient total read depth, sufficient alternate read depth,
low population frequency, at least one predicted effect
on a transcript, at least one gene-disease association,
and to not be a known, common false-positive from
sequencing. In general, the filter reduces the number of
variants from the order of millions to hundreds (anecdo-
tally, roughly 200-400 variants per proband after filtering).
For details on the specific filter used, please refer to
Additional file 1.

Phenotype annotation
The Codicem annotations are all agnostic of the patient
phenotype. As noted earlier, we do not expect the patient
phenotypes to exactly match the classic disease presen-
tation due to the variety and complexity of diseases,
phenotypes, and genetic heritage tied to UDN patients.
Despite this, we made no effort to alter or condense the
set of phenotypes provided by the corresponding clinical
sites. In order to incorporate patient phenotype informa-
tion, we used two distinct methods to rank genes based
on the Human Phenotype Ontology (HPO) [43]. We then
annotated each variant with the best scores from their
corresponding gene(s).
The first method uses phenotype-to-gene annotations

provided by the HPO to calculate a cosine score [44]
between the patient’s phenotypes and each gene. Given
P terms in the HPO, this method builds a binary, P-
dimensional vector for each patient such that only the
phenotype terms (including ancestral terms in the ontol-
ogy) associated with the patient are set to 1, and all other
terms are set to 0. Similarly, a P-dimensional vector for
each gene is built using the phenotype-to-gene annota-
tions. Then, the cosine of the angle between the patient
vector and each gene vector is calculated as a representa-
tion of similarity. This method tends to be more conser-
vative because it relies solely on curated annotations from
the HPO.
The second method, an internally-developed tool called

PyxisMap [30], uses the same phenotype-to-gene annota-
tions from the HPO, but adds in automatically text-mined
annotations from NCBI’s PubTator [45] and performs a
Random-Walk with Restart [46] on the ontology graph
structure. The PyxisMap method has the added benefit of
incorporating gene-phenotype connections from recent
papers that have not been manually curated into the HPO,
but it also tends to make more spurious connections due
to the imprecision of the text-mining from PubTator. Each
method generates a single numerical feature that is used
in the following analyses.
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Patient selection
In the clinical analysis, each patient was fully analyzed by
one director and one analyst. After the initial analysis, the
full team of directors and analysts review flagged variants
and determine their reported pathogenicity. In our analy-
sis, we focused on variants that were clinically reported as
“primary”, meaning the team of analysts believed the vari-
ant to be directly related to the patient’s phenotype. Note
that secondary and/or incidental findings are specifically
not included in this list. The team of analysts assigned
each primary variant a classification of variant of uncer-
tain significance (VUS), likely pathogenic, or pathogenic
adhering to the recommendations in the American Col-
lege of Medical genetics (ACMG) guidelines for variant
classification [37].
We required the following for each proband sample

included in our analyses: 1) at least one clinically reported
primary variant that came through the primary clinical
filter (i.e. it was not found through some other targeted
search) and 2) a set of phenotypes annotated with Human
Phenotype Ontology [43] terms using the Phenotips soft-
ware [47]. At the time of writing, this amounted to 378
primary-reported variants and 87819 unreported variants
spanning a total of 237 proband samples.

Feature selection
For the purposes of classification, all annotations needed
to be cleaned, reformatted, and stored as numerical fea-
tures. For single-value numerical annotations (e.g. float
values like CADD), we simply copied the annotation
over as a single value feature. Missing annotations were
assigned a default value that was outside the expected
value range for that feature. Additionally, these default val-
ues were always on the less impactful side of the spectrum
(e.g. a default conservation score would err on the side of
not being conserved). The one exception to this rule was
for variant allele frequencies where a variant absent from
a database was considered to have an allele frequency of
0.0. For multi-value numerical annotations, we reduced
the values (using minimum or maximum) to a single value
corresponding to the “worst” value (i.e. most deleterious
value, most conserved value, etc.) that was used as the
feature.
For categorical data, we relied on bin-count encoding to

store the features. We chose to bin-count because there
are many annotations where multiple categorical labels
may be present at different quantities. For example, a
single ClinVar variantmay havemultiple entries where dif-
ferent sites have selected different levels of pathogenicity.
In this situation, we desired to capture not only the cate-
gorical label as a feature, but also the number of times that
label occurred in the annotations.
After converting all annotations to numerical features,

we had a total of 95 features per variant. We then pruned

down to only the top 20 features using univariate fea-
ture selection (specifically the SelectKBest method of
sklearn [38]). This method evaluates how well an indi-
vidual feature performs as a classifier and keeps only
the top 20 features for the full classifiers. Note that only
the training set was used to select the top features and
that selection was later applied to the testing set prior to
final evaluation. Table 1 shows the list of retained fea-
tures ordered by feature importance after training. Feature
importance was derived from the random forest classifiers
which automatically report how important each feature
was for classification. The entire set of annotations along
with descriptions of how each was processed prior to
feature selection are detailed in the Additional file 1.

Classifier training and tuning
As noted earlier, there are generally hundreds of variants
per proband that pass the filter, but only a few are ever
clinically reported. Across all 237 proband samples, there
were a total of 378 clinically reported variants and another
87819 variants that were seen but not reported. As a

Table 1 Feature selection

Feature label RF(sklearn) BRF(imblearn)

HPO-cosine 0.2895 0.2471

PyxisMap 0.2207 0.2079

CADD Scaled 0.1031 0.1007

phylop100 conservation 0.0712 0.0817

phylop conservation 0.0641 0.0810

phastcon100 conservation 0.0572 0.0628

GERP rsScore 0.0357 0.0416

HGMD assessment type_DM 0.0373 0.0344

HGMD association confidence_High 0.0309 0.0311

Gnomad Genome total allele count 0.0192 0.0322

ClinVar Classification_Pathogenic 0.0228 0.0200

ADA Boost Splice Prediction 0.0081 0.0109

Random Forest Splice Prediction 0.0077 0.0105

Meta Svm Prediction_D 0.0088 0.0092

PolyPhen HV Prediction_D 0.0075 0.0071

Effects_Premature stop 0.0049 0.0057

SIFT Prediction_D 0.0026 0.0056

PolyPhen HD Prediction_D 0.0025 0.0049

Effects_Possible splicing modifier 0.0029 0.0035

ClinVar Classification_Likely Pathogenic 0.0034 0.0020

This table shows the top 20 features that were used to train the classifiers ordered
from most important to least important. After training, the two random forest
classifiers report the importance of each feature in the classifier (total is 1.00 per
classifier). We average the two importance values, and order them from most to
least important. Feature labels with an ‘_’ represent a single category of a
multi-category feature (i.e. “HGMD assessment type_DM” means the “DM”
bin-count feature from the “HGMD assessment type” annotation in Codicem)
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result, there is a major imbalance in the number of true
positives (variants clinically reported) and true negatives
(variants seen, but not clinically reported).
We split the data into training and test sets on a per-

proband basis with the primary goal of roughly balancing
the total number of true positives in each set. Additionally,
the cases were assigned to a particular set by chronologi-
cal order of analysis in order to reduce any chronological
biases that may be introduced by expanding scientific
knowledge (i.e. there are roughly equal proportions of
“early” or “late” proband samples from the UDN in each
set). In the training set, there were a total of 189 returned
variants and 44593 not returned variants spanning 120
different probands. In the test set, there were a total of 189
returned variants and 43226 not returned variants span-
ning 117 different probands. In our results, the returned
test variants are further stratified by their reported levels
of pathogenicity.
We then selected four publicly available binary-

classificationmodels that are capable of training on imbal-
anced datasets: the RandomForest model by sklearn
[38], the LogisticRegression model by sklearn, the
BalancedRandomForestmodel by imblearn [39], and
the EasyEnsembleClassifier model by imblearn.
These classifiers were chosen for three main reasons: 1)
their ability to handle imbalanced data (i.e. far more unre-
ported variants than reported variants), 2) their ability
to scale to the size of the training and testing datasets,
and 3) they are freely available implementations that can
be tuned, trained, and tested with relative ease in the
same Python framework. The two random forest classi-
fiers build collections of decision trees that weight each
training input by its class frequency. Logistic regression
calculates the probability of a value belonging to a par-
ticular class, again weighting by the class frequency. In
contrast to the other three tested methods, the ensem-
ble classification balances the training input using random
under-sampling and then trains an ensemble of AdaBoost
learners. For more details on each classifier, please refer to
the sklearn and imblearn documentations [38, 39].
Initially, we also tested the support vector clas-

sifier by sklearn (SVC), the multi-layer perceptron
by sklearn (MLPClassifier), and the random
under-sampling AdaBoost classifier by imblearn
(RUSBoostClassifier). Each of these was excluded
from our results due to, respectively, scaling issues with
the training size, failure to handle the data imbalance, and
overfitting to the training set. While we did not achieve
positive results using these three implementations, it
may be possible to use the methods through another
implementation.
For each of our tested classifiers, we selected a list of

hyperparameters to test and tested each possible combi-
nation of those hyperparameters. For each classifier and

set of hyperparameters, we performed stratified 10-fold
cross validation on the training variants and recorded
the balanced accuracy (i.e. weighted accuracy based on
inverse class frequency) and the F1 scores (i.e. harmonic
mean between precision and recall). For each classi-
fier type, we saved the hyperparameters and classifier
with the best average F1 score (this is recommended for
imbalanced datasets). These four tuned classifiers were
then trained on the full training set and tested against
the unseen set of test proband cases. The set of hyper-
parameters tested along with the highest performance
setting for each hyperparameter can be found in the
Additional file 1.

Results
Classifier statistics
The hyperparameters for each classifier were tuned using
10-fold cross validation and the resulting average and
standard deviation of balanced accuracy is reported in
Table 2. After fitting the tuned classifiers to the full
training set, we evaluated the classifiers on the testing
set by calculating the area under the receiver operator
curve (AUROC) and area under the precision-recall curve
(AUPRC) (also shown in Table 2). Figure 1 shows the cor-
responding receiver operator curves and precision-recall
curves for the results from the testing set on all four
classifiers.
From these metrics, we can see that all four classi-

fiers have a similar performance with regards to AUROC.
However, all classifiers have a relatively poor performance
from a precision-recall perspective (best AUPRC was
0.2458). This indicates that from a classification perspec-
tive, these classifiers would identify a high number of
false positives relative to the true positives unless a very
conservative cutoff score was used. Practically, we would
not recommend using these trained classifiers to do auto-
mated reporting because it would either report a large
number of false positives or miss a large number of true
positives.

Table 2 Classifier performance statistics

Classifier CV10 Acc. AUROC AUPRC

RandomForest(sklearn) 0.84+-0.13 0.9282 0.1961

LogisticRegression(sklearn) 0.84+-0.13 0.9300 0.2458

BalancedRandomForest(imblearn) 0.86+-0.11 0.9313 0.2015

EasyEnsembleClassifier(imblearn) 0.85+-0.08 0.9303 0.1918

For each tuned classifier, we show performance measures commonly used for
classifiers (from left to right): 10-fold cross validation balanced accuracy (CV10 Acc.),
area under the receiver operator curve (AUROC), and area under the precision-recall
curve (AUPRC). The CV10 Acc. was gathered during hyperparameter tuning by
calculating the average and standard deviation of the 10-fold cross validation.
AUROC and AUPRC was evaluated on the testing set after hyperparameter tuning
and fitting to the full training set
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Fig. 1 Receiver operator and precision-recall curves. These figures show the performance of the four classifiers on the testing set after
hyperparameter tuning and fitting to the training set. On the left, we show the receiver operator curve (false positive rate against the true positive
rate). On the right, we show the precision recall curve. Area under the curve (AUROC or AUPRC) is reported beside each method in the legend

Ranking statistics
We also quantified the performance of each classifier as
a ranking system. For each proband, we used the classi-
fiers to calculate the probability of each class (reported
or not reported) for each variant and ranked those vari-
ants from highest to lowest probability of being reported.
We then calculated median and mean rank statistics for
the reported variants. Additionally, we quantified the per-
centage of reported variants that were ranked in the top 1,
10, and 20 variants in each case. While the classifiers were
trained as a binary classification system, we stratified the
results further to demonstrate differences between vari-
ants that were clinically reported as a variant of uncertain
significance (VUS), likely pathogenic, and pathogenic.
For comparison, we selected to run Exomiser [33],

Phen-Gen [48], and DeepPVP [34]. For each tool, we
input the exact same set of phenotype terms used by the
classifiers we tested. Additionally, we used the same set
of pre-filtered variants from Codicem as input to each
ranking algorithm. As a result, all external tools and our
trained classifiers are ranking on identical phenotype and
variant information.
For Exomiser, we followed the installation on their web-

site to install Exomiser CLI v.11.0.0 along with version
1811 for hg19 data sources. We ran Exomiser twice, once
using the default hiPhive prioritizer (incorporates knowl-
edge from human, mouse, and fish) and once using the
human only version of the hiPhive prioritizer (this was
recommended instead of the PhenIX algorithm [32]).
Phen-Gen V1 was run using the pre-compiled binary
using the “dominant” and “genomic” modes to maximize
the output. Of note, Phen-Gen was the only external
method that did not fully rank all variants, so we con-
servatively assumed that any absent variants were at the
next best possible rank. Thus, the reported Phen-Gen
comparisons are an optimistic representation for this test
data. Finally, DeepPVP v2.1 was run using the instructions
available on their website. Details on the exact installation

and execution for each external tool can be found in the
Additional file 1.
Finally, we added two control scores for comparison:

CADD scaled and HPO-cosine. These scores were inputs
to each classifier, but also represent two common ways
one might naively order variants after filtering (by pre-
dicted deleteriousness and by similarity to phenotype).
The results for the two control scores, all four external
tools, and all four trained classifiers are shown in Tables 3
and 4. A figure visualizing all ranking results can be found
in the Additional file 1.
In the overall data, all four classifiers outperform the

single-value measures and external tools across the board.
Overall, the median rank ranged from 6-10 in the trained
classifiers compared to 15 in the best externally tested
tool. The classifiers ranked 16-23% of all variants in
the first position and 65-72% in the top 20. As one
would intuitively expect, all classifiers performed better
as the returned pathogenicity increased ranking 33-52%
of pathogenic variants in the first position and 80-94% of
pathogenic variants in the top 20.

Discussion
There are two major factors that we believe are influenc-
ing the classifiers’ performance relative to the externally
tested tools. First, all results were generated using real-
world patients from the UDN, but only our four classifiers
were trained on real-world patients from the UDN. In
contrast, the four external tools were primarily evaluated
and/or trained using simulations that do not capture the
variation and/or uncertainty that is apparent in the UDN
patient datasets. Second, the four classifiers we tested
have far more information (i.e. features) available to them
than the external tools. As noted in our methods, we tried
to reflect an analyst’s view of each variant as much as pos-
sible, starting with 95 features that were pruned down to
20 features used by each classifier. Incorporating the same
set of features and/or training on real-world patients may
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Table 3 Ranking performance statistics

Ranking System
Case Rank - Median (Mean)

All (n=189) VUS (n=111) LP (n=42) Path. (n=36)

CADD Scaled 57.0 (99.13) 69.0 (107.78) 39.5 (91.24) 28.0 (81.67)

HPO-cosine 22.0 (53.96) 22.0 (56.05) 26.0 (56.38) 19.5 (44.69)

Exomiser(hiPhive) 79.0 (105.34) 85.0 (116.33) 93.5 (101.10) 34.0 (76.42)

Exomiser(hiPhive, human only) 35.0 (53.60) 37.0 (63.84) 34.0 (45.60) 24.5 (31.36)

Phen-Gen 55.0 (48.66) 65.0 (52.91) 47.0 (47.48) 24.0 (36.92)

DeepPVP 15.0 (76.95) 23.0 (79.68) 19.5 (84.95) 6.0 (59.19)

RandomForest(sklearn) 10.0 (29.64) 15.0 (39.27) 8.0 (20.07) 4.0 (11.11)

LogisticRegression(sklearn) 6.0 (29.24) 14.0 (39.87) 3.0 (22.05) 1.0 (4.83)

BalancedRandomForest(imblearn) 8.0 (28.24) 14.0 (38.64) 5.0 (17.67) 3.0 (8.50)

EasyEnsembleClassifier(imblearn) 7.0 (28.72) 15.0 (40.15) 6.0 (18.40) 2.0 (5.50)

This table shows the ranking performance statistics for all methods evaluated on our test set. CADD Scaled and HPO-cosine are single value measures that were used as
inputs to the classifiers we tested. The middle four rows (two Exomiser runs, Phen-Gen, and DeepPVP) represent external tools that ranked the same set of variants as the
classifier algorithms. Phen-Gen was the only external tool that did not rank every variant in the set, so we conservatively assumed unranked variants were at the next best
position despite being unranked. The bottom four rows are the tuned, binary classification methods tested in this paper. Each method was used to rank (prioritize) the
Codicem-filtered variants from each proband in the test set, and the position of reported variants was recorded such that lower values indicate better performance with “1”
indicating the first variant in the list. The “Case Rank” columns show the median and mean ranks for all reported variants along with the variants split into their reported
pathogenicity (variant of uncertain significance (VUS), likely pathogenic (LP), or pathogenic (Path.)) derived from the ACMG guidelines. All values in this table were generated
using only the Codicem-filtered variants from testing set

improve the externally tested tools with respect to these
classifiers.
We expect these classification algorithms could be

refined in a variety of ways. First, adding new features
could lead to increased performance in the classifiers.
Additionally, some of the features represent data that is
not freely available to the research community, so replac-
ing those features with publicly accessible sources would
likely influence the results. Second, there may be a bet-
ter classification algorithms for this type of data. The
four selected classifiers were all freely available methods

intended to handle the large class imbalance in the
training set, but other algorithms that aren’t as readily
available may have better performance.
Finally, training the classifier on different patient popu-

lations will likely yield different results, especially in terms
of feature selection and feature importances. The patient
phenotypes were gathered from multiple clinical sites,
but the reported variants were generated by one clinical
laboratory. While there were multiple analysts working
each case and a team review process for these cases, we
suspect that a classifier trained on results from multiple

Table 4 Top variant statistics. This table shows the ranking performance statistics for all methods evaluated on our test set (same order
as Table 3)

Ranking System
Percentage in Top X Variants - X=(1, 10, 20)

All (n=189) VUS (n=111) LP (n=42) Path. (n=36)

CADD Scaled 4, 17, 24 0, 9, 15 7, 21, 30 13, 41, 47

HPO-cosine 7, 32, 47 7, 31, 48 7, 28, 40 8, 38, 50

Exomiser(hiPhive) 7, 29, 36 6, 30, 36 2, 16, 28 16, 38, 44

Exomiser(hiPhive, human only) 7, 28, 37 6, 28, 36 2, 16, 30 16, 38, 50

Phen-Gen 4, 21, 30 5, 20, 27 4, 16, 26 2, 27, 44

DeepPVP 11, 42, 52 4, 36, 47 16, 42, 50 27, 61, 72

RandomForest(sklearn) 16, 53, 65 9, 45, 55 19, 61, 76 36, 69, 80

LogisticRegression(sklearn) 23, 58, 72 13, 44, 62 26, 71, 80 52, 88, 94

BalancedRandomForest(imblearn) 16, 55, 67 9, 44, 57 23, 66, 76 33, 77, 86

EasyEnsembleClassifier(imblearn) 17, 58, 70 12, 43, 60 14, 71, 78 36, 88, 94

The “Percentage in Top X Variants” columns show the percentage of reported variants that were found in the top 1, 10, and 20 variants in a case after ranking by the
corresponding method



Holt et al. BMC Bioinformatics          (2019) 20:496 Page 8 of 10

laboratories would have different results. Furthermore,
our classifiers were trained on a wide range of rare
disease patients, so restricting to a particular disease type
(based on inheritance, phenotype, impacted tissue, etc.)
may allow for the classifiers to focus on different feature
sets that yield better results.

Conclusion
We assessed the application of binary classification
algorithms for identifying variants that were ultimately
returned on a clinical report for rare disease patients.
We trained and tested these algorithms using real patient
variants and phenotype terms obtained from the Undiag-
nosed Diseases Network. From a classification perspec-
tive, we found that these methods tend to have low pre-
cision scores, meaning a high number of false positives
were identified by eachmethod. However, when evaluated
as a ranking system, all four methods out-performed the
single-measure ranking systems and external tools that
were tested. The classifiers had median ranks of 6-10 for
all reported variants and ranked 65-72% of those variants
in the top 20 for the case. For “Pathogenic” variants, the
median ranks were 1-4 and 80-94% of those variants were
ranked in the top 20 for the case.
Overall, we believe the classifiers trained in VarSight

represent a significant step forward in tackling real clin-
ical data. The tested classifiers improved our ability
to prioritize variants despite the variability and uncer-
tainty injected by real-world patients. Ultimately, we
believe implementing these classifiers will enable analysts
to assess the best candidate variants first, allowing for
faster clinical throughput and increased automation in the
future.
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Additional file 1: Supplementary Document. (PDF 673 kb)
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